Cardiovascular Complications of the Immunotherapy of Hematological Malignancies: A Literature Review
ISSN (print) 1997-6933     ISSN (online) 2500-2139
#4 2023
PDF_2023-16-4_407-412 (Russian)

Keywords

cardiotoxicity
immunotherapy
oncology
hematology

How to Cite

Gimatdinova G.R., Danilova O.E., Kuzmin V.P., Davydkin G.I., Kostalanova Y.V., Kudlai D.A., Davydkin I.L. Cardiovascular Complications of the Immunotherapy of Hematological Malignancies: A Literature Review. Clinical Oncohematology. 2024;(4):407–412. doi:10.21320/2500-2139-2023-16-4-407-412.

Keywords

Abstract

In clinical oncology in general, tumor treatment is closely related to a highly relevant issue of chemotherapy-induced adverse events. Among side effects, cardiovascular toxicity occupies the foremost place. The strategy of controlling the cardiovascular complications associated with antitumor drug and cell therapies presupposes an early diagnosis of changes in the heart muscle and blood vessels at the stage of subclinical manifestations of adverse events. The present literature review provides the analysis of data on immunotherapy side effects in hematological malignancies with a focus on cardiovascular complications. The review comprehensively discusses the characteristics of cardiovascular complications associated with immune checkpoint inhibitors, CAR-T cell products, bispecific antibodies as well as immunomodulatory and antiangiogenic drugs.

PDF_2023-16-4_407-412 (Russian)

References

  1. Totzeck M, Michel L, Lin Y, et al. Cardiotoxicity from chimeric antigen receptor-T cell therapy for advanced malignancies. Eur Heart J. 2022;43(20):1928–40. doi: 10.1093/eurheartj/ehac106.
  2. Asnani A. Cardiotoxicity of Immunotherapy: Incidence, Diagnosis, and Management. Curr Oncol Rep. 2018;20(6):44. doi: 10.1007/s11912-018-0690-1.
  3. Yasukawa M. Immunotherapy for hematological neoplasms. Rinsho Ketsueki. 2012;53(10):1759–67. doi: 10.11406/rinketsu.53.1759.
  4. Totzeck M, Schuler M, Stuschke M, et al. Cardio-oncology – strategies for management of cancer-therapy related cardiovascular disease. Int J Cardiol. 2019;280:163–75. doi: 10.1016/j.ijcard.2019.01.038.
  5. Moslehi JJ. Cardiovascular Toxic Effects of Targeted Cancer Therapies. N Engl J Med. 2016;375(15):1457–67. doi: 10.1056/NEJMra1100265.
  6. Rassaf T, Totzeck M, Backs J, et al. Onco-Cardiology: Consensus Paper of the German Cardiac Society, the German Society for Pediatric Cardiology and Congenital Heart Defects and the German Society for Hematology and Medical Oncology. Clin Res Cardiol. 2020;109(10):1197–222. doi: 10.1007/s00392-020-01636-7.
  7. Michel L, Helfrich I, Hendgen-Cotta UB, et al. Targeting early stages of cardiotoxicity from anti-PD1 immune checkpoint inhibitor therapy. Eur Heart J. 2022;43(4):316–29. doi: 10.1093/eurheartj/ehab430.
  8. Шубникова Е.В., Букатина Т.М., Вельц Н.Ю. и др. Ингибиторы контрольных точек иммунного ответа: новые риски нового класса противоопухолевых средств. Безопасность и риск фармакотерапии. 2020;8(1):9–22. doi: 10.30895/2312-7821-2020-8-1-9-22.
  9. [Shubnikova EV, Bukatina TM, Velts NYu, et al. Immune checkpoint inhibitors: new risks of a new class of antitumour agents. Safety and Risk of Pharmacotherapy. 2020;8(1):9–22. doi: 10.30895/2312-7821-2020-8-1-9-22. (In Russ)]
  10. Лепик К.В. Ингибиторы иммунных контрольных точек в терапии лимфом. Клиническая онкогематология. 2018;11(4):303–12. doi: 10.21320/2500-2139-2018-11-4-303-312.
  11. [Lepik KV. Immune Checkpoint Inhibitors in the Treatment of Lymphomas. Clinical oncohematology. 2018;11(4):303–12. doi: 10.21320/2500-2139-2018-11-4-303-312. (In Russ)]
  12. Zarifa A, Lopez-Mattei J, Palaskas N, et al. Immune Checkpoint Inhibitor (ICI)-Related Cardiotoxicity. Adv Exp Med Biol. 2021;1342:377–87. doi: 10.1007/978-3-030-79308-1_15.
  13. Mahmood SS, Fradley MG, Cohen JV, et al. Myocarditis in Patients Treated with Immune Checkpoint Inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64. doi: 10.1016/j.jacc.2018.02.037.
  14. Michel L, Totzeck M, Lehmann L, et al. Emerging role of immune checkpoint inhibitors and their relevance for the cardiovascular system. Herz. 2020;45(7):645–51. doi: 10.1007/s00059-020-04954-8.
  15. Patel R, Parikh R, Gunturu K, et al. Cardiotoxicity of Immune Checkpoint Inhibitors. Curr Oncol Rep. 2021;23(7):79. doi: 10.1007/s11912-021-01070-6.
  16. Dong M, Yu T, Zhang Z, et al. ICIs-Related Cardiotoxicity in Different Types of Cancer. J Cardiovasc Dev Dis. 2022;9(7):203. doi: 10.3390/jcdd9070203.
  17. Palaskas N, Lopez-Mattei J, Durand JB, et al. Immune Checkpoint Inhibitor Myocarditis: Pathophysiological Characteristics, Diagnosis, and Treatment. J Am Heart Assoc. 2020;9(2):e013757. doi: 10.1161/JAHA.119.013757.
  18. Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018;36(17):1714–68. doi: 10.1200/JCO.2017.77.6385
  19. Rassaf T, Totzeck M, Backs J, et al. Onkologische Kardiologie. Der Kardiologie. 2020;14:267–93. doi: 10.1007/s12181-020-00395-z.
  20. Bonaca MP, Olenchock BA, Salem JE, et al. Myocarditis in the Setting of Cancer Therapeutics: Proposed Case Definitions for Emerging Clinical Syndromes in Cardio-Oncology. Circulation. 2019;140(2):80–91. doi: 10.1161/CIRCULATIONAHA.118.034497.
  21. Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42(14):1289–367. doi: 10.1093/eurheartj/ehaa575.
  22. Michel L, Rassaf T, Totzeck M. Biomarkers for the detection of apparent and subclinical cancer therapy-related cardiotoxicity. J Thorac Dis. 2018;10(Suppl 35):S4282–S4295. doi: 10.21037/jtd.2018.08.15.
  23. Thavendiranathan P, Zhang L, Zafar A, et al. Myocardial T1 and T2 Mapping by Magnetic Resonance in Patients with Immune Checkpoint Inhibitor-Associated Myocarditis. J Am Coll Cardiol. 2021;77(12):1503–16. doi: 10.1016/j.jacc.2021.01.050.
  24. Khunger A, Battel L, Wadhawan A, et al. New Insights into Mechanisms of Immune Checkpoint Inhibitor-Induced Cardiovascular Toxicity. Curr Oncol Rep. 2020;22(7):65. doi: 10.1007/s11912-020-00925-8.
  25. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(38):3599–726. doi: 10.1093/eurheartj/ehab368.
  26. Castrillon J, Eng C, Cheng F. Pharmacogenomics for immunotherapy and immune-related cardiotoxicity. Hum Mol Genet. 2020;29(R2):R186–R196. doi: 10.1093/hmg/ddaa137.
  27. Safi M, Ahmed H, Al-Azab M, et al. PD-1/PDL-1 Inhibitors and Cardiotoxicity; Molecular, Etiological and Management Outlines. J Adv Res. 2020;29:45–54. doi: 10.1016/j.jare.2020.09.006.
  28. Brumberger Z, Branch M, Klein M, et al. Cardiotoxicity risk factors with immune checkpoint inhibitors. Cardiooncology. 2022;8(1):3. doi: 10.1186/s40959-022-00130-5.
  29. Burns EA, Gentille C, Trachtenberg B, et al. Cardiotoxicity Associated with Anti-CD19 Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Recognition, Risk Factors, and Management. Diseases. 2021;9(1):20. doi: 10.3390/diseases9010020.
  30. Lefebvre B, Kang Y, Smith AM, et al. Cardiovascular effects of CAR T cell therapy. A retrospective study. JACC CardioOncol. 2020;2(2):193–203. doi: 10.1016/j.jaccao.2020.04.012.
  31. Le RQ, Li L, Yuan W, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist. 2018;23(8):943–7. doi: 10.1634/theoncologist.2018-0028.
  32. Riegler LL, Jones GP, Lee DW. Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy. Ther Clin Risk Manag. 2019;15:323–35. doi: 10.2147/TCRM.S150524.
  33. Alvi R, Frigault M, Fradley M, et al. Cardiovascular Events Among Adults Treated with Chimeric Antigen Receptor T-Cells (CAR-T). J Am Coll Cardiol. 2019;74(25):3099–108. doi: 10.1016/j.jacc.2019.10.038.
  34. Dal’bo N, Patel R, Parikh R, et al. Cardiotoxicity of Contemporary Anticancer Immunotherapy. Curr Treat Options Cardiovasc Med. 2020;22(12):62. doi: 10.1007/s11936-020-00867-1.
  35. Gutierrez C, Rajendram P, Pastores S. Toxicities Associated with Immunotherapy and Approach to Cardiotoxicity with Novel Cancer Therapies. Crit Care Clin. 2021;37(1):47–67. doi: 10.1016/j.ccc.2020.08.003.
  36. Oved J, Barrett D, Teachey D. Cellular therapy: Immune-related complications. Immunol Rev. 2019;290(1):114–26. doi: 10.1111/imr.12768.
  37. Gardner R, Ceppi F, Rivers J, et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood. 2019;134(24):2149–58. doi: 10.1182/blood.2019001463.
  38. Thakur A, Huang M, Lum L. Bispecific antibody-based therapeutics: Strengths and challenges. Blood Rev. 2018;32(4):339–47. doi: 10.1016/j.blre.2018.02.004.
  39. Jung J, Lee S, Yang D, et al. Efficacy and safety of blinatumomab treatment in adult Korean patients with relapsed/refractory acute lymphoblastic leukemia on behalf of the Korean Society of Hematology ALL Working Party. Ann Hematol. 2019;98(1):151–8. doi: 10.1007/s00277-018-3495-2.
  40. Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol. 2021;14(1):75. doi: 10.1186/s13045-021-01084-4.
  41. Stein-Merlob A, Ganatra S, Yang E. T-cell Immunotherapy and Cardiovascular Disease: Chimeric Antigen Receptor T-cell and Bispecific T-cell Engager Therapies. Heart Fail Clin. 2022;18(3):443–54. doi: 10.1016/j.hfc.2022.02.008.
  42. Darvishi B, Farahmand L, Jalili N, Majidzadeh-A K. Blinatumomab provoked fatal heart failure. Int Immunopharmacol. 2016;41:42–6. doi: 10.1016/j.intimp.2016.10.017.
  43. Piccolomo A, Schifone C, Strafella V, et al. Immunomodulatory Drugs in Acute Myeloid Leukemia Treatment. Cancers (Basel). 2020;12(9):2528. doi: 10.3390/cancers12092528.
  44. Chanan-Khan A, Miller K, Musial L, et al. Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study. J Clin Oncol. 2006;24(34):5343–9. doi: 10.1200/JCO.2005.05.0401.
  45. Jacob R, Strati P, Palaskas N, et al. Lenalidomide-Induced Myocarditis, Rare But Possibly Fatal Toxicity of a Commonly Used Immunotherapy. JACC Case Rep. 2020;2(13):2095–100. doi: 10.1016/j.jaccas.2020.07.033.
  46. Bringhen S, Milan A, Ferri C, et al. Cardiovascular adverse events in modern myeloma therapy – Incidence and risks. A review from the European Myeloma Network (EMN) and Italian Society of Arterial Hypertension (SIIA). Haematologica. 2018;103(9):1422–32. doi: 10.3324/haematol.2018.191288.
  47. Das A, Dasgupta S, Gong Y, et al. Cardiotoxicity as an adverse effect of immunomodulatory drugs and proteasome inhibitors in multiple myeloma: A network meta-analysis of randomized clinical trials. Hematol Oncol. 2022;40(2):233–42. doi: 10.1002/hon.2959.
  48. Bojan A, Torok-Vistai T, Parvu A. Assessment and Management of Cardiotoxicity in Hematologic Malignancies. Dis Markers. 2021;2021:6616265. doi: 10.1155/2021/6616265.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.