A Current View on Pathogenesis, Diagnosis, and Treatment of Some Rare Acute Leukemia Variants

Olga Yurevna Baranova, A.D. Shirin,

DOI:

https://doi.org/10.21320/2500-2139-2022-15-4-307-326

Fundamental discoveries in immunobiology of normal hematopoiesis, emerging views on malignant growth mechanisms together with further improvement of diagnostic capabilities led to a crucial change in perception of leukemiology as one of separate important areas of modern clinical oncohematology. The now available detailed molecular genetic classification of acute leukemias is being complemented by new disease variants. New categories of acute leukemias and progenitor cell tumors have been identified. Nevertheless, many issues related to pathogenesis and classification of some variants of this heterogeneous disease remain unsolved and require further study. The present review provides thorough analysis of some rare variants of acute leukemias which are particularly challenging in terms of pathogenesis, diagnosis, and choice of treatment.

  • Olga Yurevna Baranova NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478 ; ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478
  • A.D. Shirin NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478 ; ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478
  1. Воробьев А.И., Дризе Н.И., Чертков И.Л. Схема кроветворения: 2005. Терапевтический архив. 2006;78(7):5–12.
  2. [Vorob’ev AI, Drize NI, Chertkov IL. Diagram of hematopoiesis: 2005. Terapevticheskii arkhiv. 2006;78(7):5–12. (In Russ)]
  3. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol. 1998;16(1):395–419. doi: 10.1146/annurev.immunol.16.1.395. DOI: https://doi.org/10.1146/annurev.immunol.16.1.395
  4. Ashkenazi A, Dixit VM. Death Receptors: Signaling and Modulation. Science. 1998;281(5381):1305–8. doi: 10.1126/science.281.5381.1305. DOI: https://doi.org/10.1126/science.281.5381.1305
  5. Domen J, Weissman I. Hematopoietic Stem Cells Need Two Signals to Prevent Apoptosis; Bcl-2 Can Provide One of These, Kitl/C-KIT Signaling the Other. J Exp Med. 2000;192(12):1707–18. doi: 1084/jem.192.12.1707. DOI: https://doi.org/10.1084/jem.192.12.1707
  6. Akashi K, He X, Chen J, et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood. 2003;101(2):383–9. doi: 10.1182/blood-2002-06-1780. DOI: https://doi.org/10.1182/blood-2002-06-1780
  7. Фрадкин В. Перепрограммирование живых клеток: новые успехи [электронный документ]. Доступно по: https://www.dw.com/ru/%D0%BF%D0%B5%D1%80%D0%B5%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5-%D0%B6%D0%B8%D0%B2%D1%8B%D1%85-%D0%BA%D0%BB%D0%B5%D1%82%D0%BE%D0%BA-%D0%BD%D0%BE%D0%B2%D1%8B%D0%B5-%D1%83%D1%81%D0%BF%D0%B5%D1%85%D0%B8/a-15194138. Ссылка активна на 02.06.2022.
  8. [Fradkin V. Reprogramming of living cells: new achievements (Internet). Available from: https://www.dw.com/ru/%D0%BF%D0%B5%D1%80%D0%B5%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5-%D0%B6%D0%B8%D0%B2%D1%8B%D1%85-%D0%BA%D0%BB%D0%B5%D1%82%D0%BE%D0%BA-%D0%BD%D0%BE%D0%B2%D1%8B%D0%B5-%D1%83%D1%81%D0%BF%D0%B5%D1%85%D0%B8/a-15194138. Accessed 06.2022. (In Russ)]
  9. Копнин Б.П. Современные представления о механизмах злокачественного роста: сходства и различия солидных опухолей и лейкозов. Клиническая онкогематология. 2012;5(3):165–83.
  10. [Kopnin BP. Modern concepts of the mechanisms of tumor growth: similarities and differences between solid tumors and leukemia. Klinicheskaya onkogematologiya. 2012;5(3):165–83. (In Russ)]
  11. Киселевский М.В., Самойленко И.В., Жаркова О.В. и др. Прогностические биомаркеры эффективности иммунотерапии злокачественных новообразований ингибиторами контрольных точек иммунного ответа. Российский журнал детской гематологии и онкологии. 2021;8(2):73–83. doi: 10.21682/2311-1267-2021-8-2-73-83.
  12. [Kiselevskii MV, Samoilenko IV, Zharkova OV, et al. Predictive biomarkers of inhibitors immune checkpoints therapy in malignant tumors. Russian Journal of Pediatric Hematology and Oncology. 2021;8(2):73–83. doi: 10.21682/2311-1267-2021-8-2-73-83. (In Russ)] DOI: https://doi.org/10.21682/2311-1267-2021-8-2-73-83
  13. Voelkerding KV, Dames SA, Durtschi JD. Next-generation Sequencing: From Basic Research to Diagnostics. Clin Chem. 2009;55(4):641–8. doi: 10.1373/clinchem.2008.112789. DOI: https://doi.org/10.1373/clinchem.2008.112789
  14. Ansorge WJ. Next-generation DNA sequencing techniques. New Biotechnol. 2009;25(4):195–203. doi: 10.1016/j.nbt.2008.12.009. DOI: https://doi.org/10.1016/j.nbt.2008.12.009
  15. Kchouk M, Gibrat JF, Elloumi M. Generations of Sequencing Technologies: From First to Next Generation. Biol Med. 2017;9(03). doi: 10.4172/0974-8369.1000395. DOI: https://doi.org/10.4172/0974-8369.1000395
  16. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. doi: 10.1056/NEJMoa1516192. DOI: https://doi.org/10.1056/NEJMoa1516192
  17. Ross JS, Cronin M. Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol. 2011;136(4):527–39. doi: 10.1309/ajcpr1svt1vhugxw. DOI: https://doi.org/10.1309/AJCPR1SVT1VHUGXW
  18. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the Classification of the Acute Leukaemias. Br J Haematol. 1976;33(4):451–8. doi: 10.1111/j.1365-2141.1976.tb03563.x. DOI: https://doi.org/10.1111/j.1365-2141.1976.tb03563.x
  19. Bennett JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103(4):620–5. doi: 10.7326/0003-4819-103-4-620. DOI: https://doi.org/10.7326/0003-4819-103-4-620
  20. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51(2):189–99. doi: 10.1111/j.1365-2141.1982.tb02771.x. DOI: https://doi.org/10.1111/j.1365-2141.1982.tb08475.x
  21. Bennett JM, Catovsky D, Daniel MT, et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-M0). Br J Haematol. 1991;78(3):325–9. doi: 10.1111/j.1365-2141.1991.tb04444.x. DOI: https://doi.org/10.1111/j.1365-2141.1991.tb04444.x
  22. Jaffe ES, Harris NL, Stein H, et al, eds. Pathology and Genetics: Tumours of Haematopoietic and Lymphoid Tissues (WHO Classification of Tumours). Lyon: IARC Press; 2001.
  23. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. 4th edition. Lyon: WHO Press; 2008.
  24. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press;
  25. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56. doi: 10.1016/S1470-2045(08)70314-0.
  26. Neumann M, Heesch S, Schlee C, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood. 2013;121(23):4749–52. doi: 10.1182/blood-2012-11-465138.
  27. Neumann M, Coskun E, Fransecky L, et al. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors. PLoS One. 2013;8(1):e53190. doi: 10.1371/journal.pone.0053190.
  28. Zhang J, Ding L, Holmfeldt L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63. doi: 10.1038/nature10725. DOI: https://doi.org/10.1038/nature10725
  29. Di Guglielmo G. Le Maltase Eritremiche Ed Eritroleucemiche. II Pensiero Scientifico. Haematologica. 1928;9:301–47.
  30. Boddu P, Benton CB, Wang W, et al. Erythroleukemia – Historical perspectives and recent advances in diagnosis and management. Blood Rev. 2018;32(2):96–105. doi: 10.1016/j.blre.2017.09.002. DOI: https://doi.org/10.1016/j.blre.2017.09.002
  31. Liu W, Hasserjian RP, Hu Y, et al. Pure erythroid leukemia: a reassessment of the entity using the 2008 World Health Organization classification. Mod Pathol. 2010;24(3):375–83. doi: 10.1038/modpathol.2010.194. DOI: https://doi.org/10.1038/modpathol.2010.194
  32. Grossmann V, Bacher U, Haferlach C, et al. Acute erythroid leukemia (AEL) can be separated into distinct prognostic subsets based on cytogenetic and molecular genetic characteristics. Leukemia. 2013;27(9):1940–3. doi: 10.1038/leu.2013.144. DOI: https://doi.org/10.1038/leu.2013.144
  33. Lessard M, Struski S, Leymarie V, et al. Cytogenetic study of 75 erythroleukemias. Cancer Genet Cytogenet. 2005;163(2):113–22. doi: 10.1016/j.cancergencyto.2005.05.006. DOI: https://doi.org/10.1016/j.cancergencyto.2005.05.006
  34. Guillermo M, Benton C, Wang S, et al. More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia. Blood. 2017;129(18):2584–7. doi: 10.1182/blood-2016-11-749903. DOI: https://doi.org/10.1182/blood-2016-11-749903
  35. Almeida A, Prebet T, Itzykson R, et al. Clinical Outcomes of 217 Patients with Acute Erythroleukemia According to Treatment Type and Line: A Retrospective Multinational Study. Int J Mol Sci. 2017;18(4):837. doi: 10.3390/ijms18040837. DOI: https://doi.org/10.3390/ijms18040837
  36. Taylor J, Kim SS, Stevenson KE, et al. Loss-Of-Function Mutations In The Splicing Factor ZRSR2 Are Common In Blastic Plasmacytoid Dendritic Cell Neoplasm and Have Male Predominance. Blood. 2013;122(21):741. doi: 10.1182/blood.v122.21.741.741. DOI: https://doi.org/10.1182/blood.V122.21.741.741
  37. Voelkl A, Flaig M, Roehnisch T, et al. Blastic plasmacytoid dendritic cell neoplasm with acute myeloid leukemia successfully treated to a remission currently of 26 months duration. Leuk Res. 2011;35(6):61–3. doi: 10.1016/j.leukres.2010.11.019. DOI: https://doi.org/10.1016/j.leukres.2010.11.019
  38. Facchetti F, Wolf-Peeters CD, Kennes C, et al. Leukemia-associated lymph node infiltrates of plasmacytoid monocytes (so-called plasmacytoid T-cells). Evidence for two distinct histological and immunophenotypical patterns. Am J Surg Pathol. 1990;14(2):101–12. doi: 10.1097/00000478-199002000-00001. DOI: https://doi.org/10.1097/00000478-199002000-00001
  39. Fitzgerald-Bocarsly P. Human natural interferon-alpha producing cells. Pharmacol Ther. 1993;60(1):39–62. doi: 10.1016/0163-7258(93)90021-5. DOI: https://doi.org/10.1016/0163-7258(93)90021-5
  40. Liu Y-J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors Annu Rev Immunol. 2005;23(1):275–306. doi: 10.1146/annurev.immunol.23.021704.115633. DOI: https://doi.org/10.1146/annurev.immunol.23.021704.115633
  41. Colonna M, Trinchieri G, Liu Y-J. Plasmacytoid dendritic cells in immunity. Nat Immunol. 2004;5(12):1219–26. doi: 10.1038/ni1141. DOI: https://doi.org/10.1038/ni1141
  42. Gill MА, Bajwa G, George TA, et al. Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J Immunol. 2010;184(11):5999–6006. doi: 10.4049/jimmunol.0901194. DOI: https://doi.org/10.4049/jimmunol.0901194
  43. Shi Y, Wang E. Blastic Plasmacytoid Dendritic Cell Neoplasm: A Clinicopathologic Review. Arch Pathol Lab Med. 2014;138(4):564–9. doi: 10.5858/ 2013–0101-rs. DOI: https://doi.org/10.5858/arpa.2013-0101-RS
  44. Zheng YY, Chen G, Zhou XG, et al. Retrospective analysis of 4 cases of the so-called blastic NK-cell lymphoma, with reference to the 2008 WHO classification of tumors of haematopoietic and lymphoid tissues. Zhonghua Bing Li Xue Za Zhi. 2010;39(9):600–5.
  45. Takiuchi Y, Maruoka H, Aoki K, et al. Leukemic manifestation of blastic plasmacytoid dendritic cell neoplasm lacking skin lesion: a borderline case between acute monocytic leukemia. J Clin Exp Hematopathol. 2012;52(2):107–11. doi: 10.3960/jslrt.52.107. DOI: https://doi.org/10.3960/jslrt.52.107
  46. Petrella T, Comeau MR, Maynadie M, et al. Agranular CD4+ CD56+ hematodermic neoplasm’ (blastic NK-cell lymphoma) originates from a population of CD56+ precursor cells related to plasmacytoid monocytes. Am J Surg Pathol. 2002;26(7):852–62. doi: 10.1097/00000478-200207000-00003. DOI: https://doi.org/10.1097/00000478-200207000-00003
  47. Petrella T, Bagot M, Willemze R, et al. Blastic NK-cell lymphomas (agranular CD4+CD56+ hematodermic neoplasms). Am J Clin Pathol. 2005;123(5):662–75. doi: 10.1309/gjwnpd8hu5maj837. DOI: https://doi.org/10.1309/GJWNPD8HU5MAJ837
  48. Garnache-Ottou F, Vidal C, Biichle S, et al. How should we diagnose and treat blastic plasmacytoid dendritic cell neoplasm patients. Blood Adv. 2019;3(24):4238–51. doi: 10.1182/bloodadvances.2019000647. DOI: https://doi.org/10.1182/bloodadvances.2019000647
  49. Lucioni M, Novara F, Fiandrino G, et al. Twenty-one cases of blastic plasmacytoid dendritic cell neoplasm: focus on biallelic locus 9p21.3 deletion. Blood. 2011;118(17):4591–4. doi: 10.1182/blood-2011-03-337501. DOI: https://doi.org/10.1182/blood-2011-03-337501
  50. Dijkman R, Doorn R, Szuhai K, et al. Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood. 2007;109(4):1720–7. doi: 10.1182/blood-2006-04-018143. DOI: https://doi.org/10.1182/blood-2006-04-018143
  51. Sapienza MR, Fuligni F, Agostinelli C, et al. Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition. Leukemia. 2014;28(8):1606–16. doi: 10.1038/leu.2014.64. DOI: https://doi.org/10.1038/leu.2014.64
  52. Menezes J, Acquadro F, Wiseman M, et al. Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia. 2014;28(4):823–9. doi: 10.1038/leu.2013.283. DOI: https://doi.org/10.1038/leu.2013.283
  53. Stenzinger A, Endris V, Pfarr N, et al. Targeted ultra-deep sequencing reveals recurrent and mutually exclusive mutations of cancer genes in blastic plasmacytoid dendritic cell neoplasm. Oncotarget. 2014;5(15):6404–13. doi: 10.18632/oncotarget.2223. DOI: https://doi.org/10.18632/oncotarget.2223
  54. Cota C, Vale E, Viana I, et al. Cutaneous manifestations of blastic plasmacytoid dendritic cell neoplasm-morphologic and phenotypic variability in a series of 33 patients. Am J Surg Pathol. 2010;34(1):75–87. doi: 10.1097/PAS.0b013e3181c5e26b. DOI: https://doi.org/10.1097/PAS.0b013e3181c5e26b
  55. Jacob MC, Chaperot L, Mossuz P, et al. CD4+ CD56+ lineage negative malignancies: a new entity developed from malignant early plasmacytoid dendritic cells. Haematologica. 2003;88(8):941–55.
  56. Julia F, Petrella T, Beylot-Barry M, et al. Blastic plasmacytoid dendritic cell neoplasm: clinical features in 90 patients. Br J Dermatol. 2013;169(3):579–86. doi: 10.1111/bjd.12412. DOI: https://doi.org/10.1111/bjd.12412
  57. Pagano L, Valentini CG, Pulsoni A, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: an Italian multicenter study. Haematologica. 2013;98(2):239–46. doi: 10.3324/haematol.2012.072645.
  58. Trottier AM, Cerquozzi S, Owen CJ. Blastic plasmacytoid dendritic cell neoplasm: challenges and future prospects. Blood Lymphat Cancer. 2017;7:85–93. doi: 10.2147/blctt.s132060. DOI: https://doi.org/10.2147/BLCTT.S132060
  59. Riaz W, Zhang L, Horna P, Sokol L. Blastic plasmacytoid dendritic cell neoplasm: update on molecular biology, diagnosis, and therapy. Cancer Control. 2014;21(4):279–89. doi: 10.1177/107327481402100404. DOI: https://doi.org/10.1177/107327481402100404
  60. Kharfan-Dabaja MA, Lazarus HM, Nishihori T, et al. Diagnostic and therapeutic advances in blastic plasmacytoid dendritic cell neoplasm: A focus on hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2013;19(7):1006–12. doi: 10.1016/j.bbmt.2013.01.027. DOI: https://doi.org/10.1016/j.bbmt.2013.01.027
  61. Gruson B, Vaida I, Merlusca L, et al. L-asparaginase with methotrexate and dexamethasone is an effective treatment combination in blastic plasmacytoid dendritic cell neoplasm. Br J Haematol. 2013;163(4):543–5. doi: 10.1111/bjh.12523. DOI: https://doi.org/10.1111/bjh.12523
  62. Gilis L, Lebras L, Bouafia-Sauvy F, et al. Sequential combination of high dose methotrexate and L-asparaginase followed by allogeneic transplant: A first-line strategy for CD4+/CD56+ hematodermic neoplasm. Leuk Lymphoma. 2012;53(8):1633–7. doi: 10.3109/10428194.2012.656627. DOI: https://doi.org/10.3109/10428194.2012.656627
  63. Pagano L, Valentini CG, Pulsoni A, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: An Italian multicenter study. Haematologica. 2013;98(2):239–46. doi: 10.3324/haematol.2012.072645. DOI: https://doi.org/10.3324/haematol.2012.072645
  64. Tsagarakis NJ, Kentrou NA, Papadimitriou K, et al. Acute lymphoplasmacytoid dendritic cell (DC2) leukemia: Results from the Hellenic Dendritic Cell Leukemia Study Group. Leuk Res. 2010;34(4):438–46. doi: 10.1016/j.leukres.2009.09.006. DOI: https://doi.org/10.1016/j.leukres.2009.09.006
  65. Deotare U, Yee KWL, Le LW, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: 10-Color flow cytometry diagnosis and HyperCVAD therapy: BPDCN Diagnosis and Therapy. Am J Hematol. 2016;91(3):283–6. doi: 10.1002/ajh.24258. DOI: https://doi.org/10.1002/ajh.24258
  66. Bekkenk MW, Jansen PM, Meijer CJLM, Willemze R. CD56+ hematological neoplasms presenting in the skin: A retrospective analysis of 23 new cases and 130 cases from the literature. Ann Oncol. 2004;15(7):1097–108. doi: 10.1093/annonc/mdh268. DOI: https://doi.org/10.1093/annonc/mdh268
  67. Khwaja R, Daly A, Wong M, et al. Azacitidine in the treatment of blastic plasmacytoid dendritic cell neoplasm: A report of 3 cases. Leuk Lymphoma. 2016;57(11):2720–2. doi: 10.3109/10428194.2016.1160084. DOI: https://doi.org/10.3109/10428194.2016.1160084
  68. Laribi K, Denizon N, Ghnaya, H, et al. Blastic plasmacytoid dendritic cell neoplasm: The first report of two cases treated by 5-azacytidine. Eur J Haematol. 2014;93(1):81–5. doi: 10.1111/ejh.12294. DOI: https://doi.org/10.1111/ejh.12294
  69. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17. doi: 10.1182/blood-2018-08-868752. DOI: https://doi.org/10.1182/blood-2018-08-868752
  70. DiNardo CD, Rausch CR, Benton C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am J Hematol. 2018;93(3):401–7. doi: 10.1002/ajh.25000. DOI: https://doi.org/10.1002/ajh.25000
  71. Agha ME, Monaghan SA, Swerdlow SH, et al. Venetoclax in a Patient with a Blastic Plasmacytoid Dendritic-Cell Neoplasm. N Engl J Med. 2018;379(15):1479–81. doi: 10.1056/NEJMc1808354. DOI: https://doi.org/10.1056/NEJMc1808354
  72. Pemmaraju N, Lane AA, Sweet K, et al. Results of pivotal phase 2 clinical trial of tagraxofusp (sl-401) in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). HemaSphere. 2019;3(S1):481. doi: 10.1097/01.hs9.0000562548.32991.bc. DOI: https://doi.org/10.1097/01.HS9.0000562548.32991.bc
  73. Dubois SG, Etzell JE, Matthay KK, et al. Pediatric acute blastic natural killer cell leukemia. Leuk Lymphoma. 2002;43(4):901–6. doi: 10.1080/10428190290017088. DOI: https://doi.org/10.1080/10428190290017088
  74. Hyakuna N, Toguchi S, Higa T, et al. Childhood blastic NK cell leukemia successfully treated with L-asparaginase and allogeneic bone marrow transplantation. Pediatr Blood Cancer. 2004;42(7):631–4. doi: 10.1002/pbc.20034. DOI: https://doi.org/10.1002/pbc.20034
  75. Liang X, Greffe B, Garrington T, Graham DK. Precursor natural killer cell leukemia. Pediatr Blood Cancer. 2008;50(4):876–8. doi: 10.1002/pbc.21189. DOI: https://doi.org/10.1002/pbc.21189
  76. Matano S, Nakamura S, Nakamura S, et al. Monomorphic agranular natural killer cell lymphoma/leukemia with no Epstein-Barr virus association. Acta Haematol. 1999;101(4):206–8. doi: 10.1159/000040955. DOI: https://doi.org/10.1159/000040955
  77. Suzuki Y, Kato S, Kohno K, et al. Clinicopathological analysis of 46 cases with CD4+ and/or CD56+ immature haematolymphoid malignancy: reappraisal of blastic plasmacytoid dendritic cell and related neoplasms. 2017;71(6):972–84. doi: 10.1111/his.13340. DOI: https://doi.org/10.1111/his.13340
  78. Khoury JD. Blastic Plasmacytoid Dendritic Cell Neoplasm. Curr Hematol Malig Rep. 2018;13(6):477–83. doi: 10.1007/s11899-018-0489-z. DOI: https://doi.org/10.1007/s11899-018-0489-z
  79. Julia F, Dalle S, Duru G, et al. Blastic plasmacytoid dendritic cell neoplasms: clinico-immunohistochemical correlations in a series of 91 patients. Am J Surg Pathol. 2014;38(5):673–80. doi: 10.1097/pas.0000000000000156. DOI: https://doi.org/10.1097/PAS.0000000000000156
  80. Massone C, Chott A, Metze D, et al. Subcutaneous, blastic natural killer (NK), NK/T-cell, and other cytotoxic lymphomas of the skin: a morphologic, immunophenotypic, and molecular study of 50 patients. Am J Surg Pathol. 2004;28(6):719–35. doi: 10.1097/01.pas.0000126719.71954.4f. DOI: https://doi.org/10.1097/01.pas.0000126719.71954.4f
  81. Santucci M, Pimpinelli N, Massi D, et al. Cytotoxic/natural killer cell cutaneous lymphomas. Report of EORTC Cutaneous Lymphoma Task Force Workshop. Cancer. 2003;97(3):610–27. doi: 10.1002/cncr.11107. DOI: https://doi.org/10.1002/cncr.11107
  82. Sanchez MJ, Muench MO, Roncarolo MG, et al. Identification of a common T/natural killer cell progenitor in human fetal thymus. J Exp Med. 1994;180(2):569–76. doi: 10.1084/jem.180.2.569. DOI: https://doi.org/10.1084/jem.180.2.569
  83. Oshimi K. Progress in understanding and managing natural killer-cell malignancies. Br J Haematol. 2007;139(4):532–44. doi: 10.1111/j.1365-2141.2007.06835.x. DOI: https://doi.org/10.1111/j.1365-2141.2007.06835.x
  84. Grzywacz B, Kataria N, Kataria N, et al. Natural killer-cell differentiation by myeloid progenitors. Blood. 2011;117(13):3548–58. doi: 10.1182/blood-2010-04-281394. DOI: https://doi.org/10.1182/blood-2010-04-281394
  85. Suzuki R, Nakamura S, Suzumiya J, et al. Blastic natural killer cell lymphoma/leukemia (CD56-positive blastic tumor). Cancer. 2005;104(5):1022–31. doi: 10.1002/cncr.21268. DOI: https://doi.org/10.1002/cncr.21268
  86. Sedick Q, Alotaibi S, Alshieban S, et al. Natural Killer Cell Lymphoblastic Leukaemia/Lymphoma: Case Report and Review of the Recent Literature. Case Rep Oncol. 2017;10(2):588–95. doi: 10.1159/000477843. DOI: https://doi.org/10.1159/000477843
  87. Spits H, Lanier LL, Phillips JH. Development of human T and natural killer cells. Blood. 1995;85(10):2654–70. doi: 10.1182/blood.v85.10.2654.bloodjournal85102654. DOI: https://doi.org/10.1182/blood.V85.10.2654.bloodjournal85102654
  88. Marquez C, Trigueros C, Franco JM, et al. Identification of a common developmental pathway for thymic natural killer cells and dendritic cells. Blood. 1998;91(8):2760–71. doi: 1182/blood.v91.8.2760.2760_2760_2771. DOI: https://doi.org/10.1182/blood.V91.8.2760.2760_2760_2771
  89. Hanna J, Gonen-Gross T, Fitchett J, et al. Novel APC-like properties of human NK cells directly regulate T cell activation. J Clin Invest. 2004;114(11):1612–23. doi: 10.1172/jci22787. DOI: https://doi.org/10.1172/JCI200422787
  90. Spits H, Lanier LL. Natural killer or dendritic: what’s in a name? Immunity. 2007;26(1):11–6. doi: 10.1016/j.immuni.2007.01.004. DOI: https://doi.org/10.1016/j.immuni.2007.01.004
  91. Френкель М.А., Баранова О.Ю., Антипова А.С. и др. NK-клеточный лимфобластный лейкоз/лимфома (обзор литературы и собственные наблюдения). Клиническая онкогематология. 2016;9(2):208–17. doi: 10.21320/2500-2139-2016-9-2-208-217.
  92. [Frenkel’ MA, Baranova OYu, Antipova AS, et al. NK-Cell Lymphoblastic Leukemia/Lymphoma (Literature Review and Authors’ Experience). Clinical oncohematology. 2016;9(2):208–17. doi: 10.21320/2500-2139-2016-9-2-208-217. (In Russ)] DOI: https://doi.org/10.21320/2500-2139-2016-9-2-208-217
  93. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56. doi: 10.1016/S1470-2045(08)70314-0. DOI: https://doi.org/10.1016/S1470-2045(08)70314-0
  94. Inukai T, Kiyokawa N, Campana D, et al. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: results of the Tokyo Children’s Cancer Study Group Study L99-15. Br J Haematol 2012;156(3):358–65. doi: 10.1111/j.1365-2141.2011.08955.x. DOI: https://doi.org/10.1111/j.1365-2141.2011.08955.x
  95. Wood B, Winter S, Dunsmore K, et al. Patients with early T-сell precursor (ETP) acute lymphoblastic leukemia (ALL) have high levels of minimal residual disease (MRD) at the of induction-A Children’s Oncology Group (COG) Study. Blood. 2009;114(22):9. doi: 10.1182/blood.v114.22.9.9. DOI: https://doi.org/10.1182/blood.V114.22.9.9
  96. Sin C-F, Man PM. Early T-Cell Precursor Acute Lymphoblastic Leukemia: Diagnosis, Updates in Molecular Pathogenesis, Management, and Novel Therapies. Front Oncol. 2021;11:750789. doi: 10.3389/fonc.2021.750789. DOI: https://doi.org/10.3389/fonc.2021.750789
  97. Neumann M, Coskun E, Fransecky L, et al. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors. PLoS One. 2013;8(1):e53190. doi: 10.1371/journal.pone.0053190. DOI: https://doi.org/10.1371/journal.pone.0053190
  98. Neumann M, Heesch S, Schlee C, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood. 2013;121(23):4749–52. doi: 10.1182/blood-2012-11-465138. DOI: https://doi.org/10.1182/blood-2012-11-465138
  99. Van Vlierberghe P, Ambesi-lmpiombato A, Perez-Garcia A, et al. ETV6 mutations in early immature human T cell leukemias. J Exp Med. 2011;208(13):2571–9. doi: 10.1084/jem.20112239. DOI: https://doi.org/10.1084/jem.20112239
  100. Conter V, Valsecchi MG, Buldini B, et al. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis. Lancet Haematol. 2016;3(2):e80–е86. doi: 10.1016/S2352-3026(15)00254-9. DOI: https://doi.org/10.1016/S2352-3026(15)00254-9
  101. Ma M, Wang X, Tang J, et al. Early T-cell precursor leukemia: a subtype of high risk childhood acute lymphoblastic leukemia. Front Med. 2012;6(4):416–20. doi: 10.1007/s11684-012-0224-4. DOI: https://doi.org/10.1007/s11684-012-0224-4
  102. Wood BL, Winter SS, Dunsmore KP, et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children’s Oncology Group (COG) Study AALL0434. Blood. 2014;124(21):1. doi: 10.1182/blood.v124.21.1.1. DOI: https://doi.org/10.1182/blood.V124.21.1.1
  103. Bond J, Marchand T, Touzart A, et al. An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. Haematologica. 2016;101(6):732–40. doi: 10.3324/haematol.2015.141218. DOI: https://doi.org/10.3324/haematol.2015.141218
  104. McEwan A, Pitiyarachchi O, Viiala Relapsed/Refractory ETP-ALL Successfully Treated With Venetoclax and Nelarabine as a Bridge to Allogeneic Stem Cell Transplant. HemaSphere 2020;4(3):e379. doi: 10.1097/hs9.0000000000000379. DOI: https://doi.org/10.1097/HS9.0000000000000379
  105. Mullighan C, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80. doi: 10.1056/NEJMoa0808253. DOI: https://doi.org/10.1056/NEJMc090454
  106. Mullighan C, Zhang J, Harvey R, еt al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2009;106(23):9414–8. doi: 10.1073/pnas.0811761106. DOI: https://doi.org/10.1073/pnas.0811761106
  107. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34. doi: 10.1016/S1470-2045(08)70339-5. DOI: https://doi.org/10.1016/S1470-2045(08)70339-5
  108. Корзик А.В., Вшивкова О.С. BCR-ABL1-подобный острый лимфобластный лейкоз: от биологии к перспективным методам терапии. Гематология. Трансфузиология. Восточная Европа. 2021;7(3):313–27. doi: 10.34883/PI.2021.7.3.005.
  109. [Korzik AV, Vshyukova OS. BCR-ABL1-like acute lymphoblastic leukemia: from biology to promising therapies. Hematology. Transfusiology. Eastern Europe. 2021;7(3):313–27. doi: 10.34883/PI.2021.7.3.005. (In Russ)] DOI: https://doi.org/10.34883/PI.2021.7.3.005
  110. Цаур Г.А., Ольшанская Ю.В., Друй А.Е. BCR-ABL1-подобный острый лимфобластный лейкоз у детей. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2019;18(1):112‒26. doi: 10.24287/1726-1708-2019-18-1-112-126.
  111. [Tsaur GA, Olshanskaya YuV, Druy AE. BCR-ABL1-like pediatric acute lymphoblastic leukemia. Pediatric Hematology/Oncology and Immunopathology. 2019;18(1):112–126. doi: 10.24287/1726-1708-2019-18-1-112-126. (In Russ)] DOI: https://doi.org/10.24287/1726-1708-2019-18-1-112-126
  112. Boer JM, Koenders JE, van der Holt B, et al. Expression profiling of adult acute lymphoblastic leukemia identifies a BCR-ABL 1-like subgroup characterized by high non-response and relapse rates. Haematologica. 2015;100(7):e261–е264. doi: 10.3324/haematol.2014.117424. DOI: https://doi.org/10.3324/haematol.2014.117424
  113. Boer JM, Marchante JR, Evans WE, et al. (2015). BCR-ABL 1-like cases in pediatric acute lymphoblastic leukemia: a comparison between DCOG/Erasmus MC and COG/St. Jude signatures. Haematologica. 2015;100(9):e354–е357. doi: 10.3324/haematol.2015.124941. DOI: https://doi.org/10.3324/haematol.2015.124941
  114. Roberts KG, Pei D, Campana D, et al. Outcomes of children with BCR-ABL 1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol. 2014;32(27):3012–20. doi: 10.1200/JCO.2014.55.4105. DOI: https://doi.org/10.1200/JCO.2014.55.4105
  115. Weston BW, Hayden MA, Roberts KG, et al. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J Clin Oncol. 2013;31(25):e413–е416. doi: 10.1200/JCO.2012.47.6770. DOI: https://doi.org/10.1200/JCO.2012.47.6770
  116. Xu X-Q, Wang J-M, Lu S-Q, et al. Clinical and biological characteristics of adult biphenotypic acute leukemia in comparison with that of acute myeloid leukemia and acute lymphoblastic leukemia: a case series of a Chinese population. Haematologica. 2009;94(7):919–27. doi: 10.3324/haematol.2008.003202. DOI: https://doi.org/10.3324/haematol.2008.003202
  117. Rubnitz JE, Onciu M, Pounds S, et al. Acute mixed lineage leukemia in children: the experience of St Jude Children’s Research Hospital. Blood. 2009;113(21):5083–9. doi: 10.1182/blood-2008-10-187351. DOI: https://doi.org/10.1182/blood-2008-10-187351
  118. Mirro J, Zipf TF, Pui HC, et al. Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood. 1985;66(5):1115–23. doi: 1182/blood.v66.5.1115.bloodjournal6651115. DOI: https://doi.org/10.1182/blood.V66.5.1115.bloodjournal6651115
  119. Gale RP, Ben Bassat I. Hybrid acute leukaemia. Br J Haematol. 1987;65(3):261–4. doi: 10.1111/j.1365-2141.1987.tb06851.x. DOI: https://doi.org/10.1111/j.1365-2141.1987.00254.x-i1
  120. Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.
  121. Catovsky D, Matutes E, Buccheri V, et al. A classification of acute leukaemia for the 1990s. Ann Hematol. 1991;62(1):16–21. doi: 10.1007/BF01714978. DOI: https://doi.org/10.1007/BF01714978
  122. Bene MC, Bernier M, Casasnovas RO, et al. The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemias and undifferentiated leukemias. The European Group for the Immunological Classification of Leukemias (EGIL). Blood. 1998;92(2):596–9.1182/blood.v92.2.596.414k05_596_599. DOI: https://doi.org/10.1182/blood.V92.2.596
  123. Manola KN. Cytogenetic abnormalities in acute leukaemia of ambiguous lineage: an overview. Br J Haematol. 2013;163(1):24–39. doi: 1111/bjh.12484. DOI: https://doi.org/10.1111/bjh.12484
  124. Matutes E, Pickl WF, Van’t Veer M, et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. 2011;117(11):3163–71. doi: 10.1182/blood-2010-10-314682. DOI: https://doi.org/10.1182/blood-2010-10-314682
  125. Gerr H, Zimmermann M, Schrappe M, et al. Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations. Br J 2010;149(1):84–92. doi: 10.1111/j.1365-2141.2009.08058.x. DOI: https://doi.org/10.1111/j.1365-2141.2009.08058.x
  126. Maruffi M, Sposto R, Oberley MJ, et al. Therapy for children and adults with mixed phenotype acute leukemia: a systematic review and meta-analysis. Leukemia. 2018;32(7):1515–28. doi: 10.1038/s41375-018-0058-4. DOI: https://doi.org/10.1038/s41375-018-0058-4
  127. Al-Seraihy AS, Owaidah TM, Ayas M, et al. Clinical characteristics and outcome of children with biphenotypic acute leukemia. Haematologica. 2009;94(12):1682–90. doi: 10.3324/haematol.2009.009282. DOI: https://doi.org/10.3324/haematol.2009.009282
  128. Orgel E, Alexander TB, Wood BL, et al. Mixed-phenotype acute leukemia: a cohort and consensus research strategy from the Children’s oncology group acute leukemia of ambiguous lineage task force. Cancer. 2020;126(3):593–601. doi: 10.1002/cncr.32552. DOI: https://doi.org/10.1002/cncr.32552
  129. Hrusak O, de Haas V, Stancikova J, et al. International cooperative study identifies treatment strategy in childhood ambiguous lineage leukemia. Blood. 2018;132(3):264–76. doi: 1182/blood-2017-12-821363.
  130. Wolach O, Stone RM. Optimal therapeutic strategies for mixed phenotype acute leukemia. Curr Opin Hematol. 2020;27(2):95–102. doi: 1097/moh.0000000000000570. DOI: https://doi.org/10.1097/MOH.0000000000000570
  131. Shimizu H, Yokohama A, Hatsumi N, et al. Philadelphia chromosome-positive mixed phenotype acute leukemia in the imatinib era. Eur J Haematol. 2014;93(4):297–301. doi: 10.1111/ejh.12343. DOI: https://doi.org/10.1111/ejh.12343
  132. Qasrawi A, Ramlal R, Munker R, Hildebrandt GC. Prognostic impact of Philadelphia chromosome in mixed phenotype acute leukemia (MPAL): A cancer registry analysis on real-world outcome. Am J Hematol. 2020;95(9):1015–21. doi: 10.1002/ajh.25873. DOI: https://doi.org/10.1002/ajh.25873
  133. Park JA, Ghim TT, Bae K, et al. Stem cell transplant in the treatment of childhood biphenotypic acute leukemia. Pediatr Blood Cancer. 2009;53(3):444–52. doi: 10.1002/pbc.22105. DOI: https://doi.org/10.1002/pbc.22105
  134. Tian H, Xu Y, Liu L, et al. Comparison of outcomes in mixed phenotype acute leukemia patients treated with chemotherapy and stem cell transplantation versus chemotherapy alone. Leuk Res. 2016;45:40–6. doi: 10.1016/j.leukres.2016.04.002. DOI: https://doi.org/10.1016/j.leukres.2016.04.002
  135. Munker R, Brazauskas R, Wang HL, et al. Allogeneic hematopoietic cell transplantation for patients with mixed phenotype acute leukemia. Biol Blood Marrow Transplant. 2016;22(6):1024–9. doi: 10.1016/j.bbmt.2016.02.013. DOI: https://doi.org/10.1016/j.bbmt.2016.02.013
  136. Rossi JG, Bernasconi AR, Alonso CN, et al. Lineage switch in childhood acute leukemia: an unusual event with poor outcome. Am J Hematol. 2012;87(9):890–7. doi: 10.1002/ajh.23266. DOI: https://doi.org/10.1002/ajh.23266
  137. Dorantes-Acosta E, Pelayo R. Lineage switching in acute leukemias: a consequence of stem cell plasticity? Bone Marrow Res. 2012;2012:406796. doi: 10.1155/2012/406796. DOI: https://doi.org/10.1155/2012/406796
  138. Rath A, Panda T, Dhawan R, et al. A paradigm shift: lineage switch from T-ALL to B/myeloid MPAL. Blood Res. 2021;56(1):50–3. doi: 10.5045/br.2021.2020268. DOI: https://doi.org/10.5045/br.2021.2020268
  139. Kobayashi S, Teramura M, Mizoguchi H, Tanaka J. Double Lineage Switch from Acute Megakaryoblastic Leukemia (AML-M7) to Acute Lymphoblastic Leukemia (ALL) and Back Again: A Case Report. J Blood Disorders Transf. 2014;5(3):199. doi: 10.4172/2155-9864.1000199. DOI: https://doi.org/10.4172/2155-9864.1000199
  140. Lounici A, Cony-Makhoul P, Dubus P, et al. Lineage switch from acute myeloid leukemia to acute lymphoblastic leukemia: report of an adult case and review of the literature. Am J Hematol. 2000;65(4):319–21. doi: 10.1002/1096-8652(200012)65:4<319::aid-ajh13>3.0.co;2-1. DOI: https://doi.org/10.1002/1096-8652(200012)65:4<319::AID-AJH13>3.3.CO;2-T
  141. Mantadakis E, Danilatou V, Stiakaki E, et al. T-cell acute lymphoblastic leukemia relapsing as acute myelogenous leukemia. Pediatr Blood Cancer. 2007;48(3):354–7. doi: 10.1002/pbc.20543. DOI: https://doi.org/10.1002/pbc.20543
  142. Emami A, Ravindranath Y, Inoue S, et al. Phenotypic change of acute monocytic leukemia to acute lymphoblastic leukemia on therapy. Am J Pediatr Hematol Oncol. 1983;5(4):341–3. doi: 10.1097/00043426-198324000-00004. DOI: https://doi.org/10.1097/00043426-198324000-00004
  143. Hatae Y, Yagyu K, Yanazume N, et al. Lineage switch on recurrence from minimally differentiated acute leukemia (M0) to acute megakaryocytic leukemia (M7). Rinsho Ketsueki. 2002;43(7):543–7.
  144. Haddox C, Mangaonkar A, Chen D, et al. Blinatumomab-induced lineage switch of B-ALL with t(4:11)(q21;q23) KMT2A/AFF1 into an aggressive AML: pre- and post-switch phenotypic, cytogenetic and molecular analysis. Blood Cancer. 2017;7(9):e607. doi: 10.1038/bcj.2017.89. DOI: https://doi.org/10.1038/bcj.2017.89
  145. Gentles AJ, Plevritis SK, Majeti R, et al. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA. 2010;304(24):2706–15. doi: 10.1001/jama.2010.1862. DOI: https://doi.org/10.1001/jama.2010.1862
  146. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350(16):1617–28. doi: 10.1056/NEJMoa040465. DOI: https://doi.org/10.1056/NEJMoa040465
  147. Beck K. Plasticity Cell Definition. Available from: https://sciencing.com/plasticity-cell-definition-6239472.html. (accessed 06.2022).
  148. Shannon K, Armstrong SA. Genetics, epigenetics, and leukemia. N Engl J Med. 2010;363(25):2460–1. doi: 10.1056/NEJMe1012071. DOI: https://doi.org/10.1056/NEJMe1012071
  149. He X, Li C, Kapinova A, Nguyen K. Stem cell plasticity: fact or fiction. Available from: https://web.wpi.edu/Pubs/E-project/Available/E-project-082713-220018/unrestricted/8-27-13__Stem-2_Final_IQP_Report.pdf. (accessed 06.2022).
  150. Corbett JL, Tosh D. Conversion of one cell type into another: implications for understanding organ development, pathogenesis of cancer and generating cells for therapy. Biochem Soc Trans. 2014;42(3):609–16. doi: 10.1042/BST2014005. DOI: https://doi.org/10.1042/BST20140058
  151. Kondo M, Scherer DC, Miyamoto T, et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature. 2000;407(6802):383–6. doi: 10.1038/35030112. DOI: https://doi.org/10.1038/35030112
  152. Bell JJ, Bhandoola A. The earliest thymic progenitors for T-cells possess myeloid lineage potential. Nature. 2008;452(7188):764–7. doi: 10.1038/nature06840. DOI: https://doi.org/10.1038/nature06840
  153. Зеркаленкова Е.А., Илларионова О.И., Казакова А.Н. и др. Смена линейной дифференцировки в рецидиве острого лейкоза с перестройкой гена MLL (KMT2A). Обзор литературы и описание случаев. Онкогематология. 2016;11(2):21–9. doi: 10.17650/1818-8346-2016-11-2-21-29.
  154. [Zerkalenkova EA, Illarionova OI, Kazakova AN, et al. Lineage switch in relapse of acute leukemia with rearrangement of MLL gene (KMT2A). Literature review and case reports. Oncohematology. 2016;11(2):21–9. doi: 10.17650/1818-8346-2016-11-2-21-29. (In Russ)] DOI: https://doi.org/10.17650/1818-8346-2016-11-2-21-29
  155. Представление о кроветворении и стволовых кроветворных клетках [электронный документ]. Доступно по: http://www.ispms.ru/files/Publications/sharkeev_2013/pdf/4_19.pdf. Ссылка активна на 02.06.2022.
  156. [A view on hematopoiesis and hematopoietic stem cells (Internet). Available from: http://www.ispms.ru/files/Publications/sharkeev_2013/pdf/4_19.pdf. Accessed 02.06.2022. (In Russ)]
  157. Ramesh T, Lee SH, Lee CS, et al. Somatic cell dedifferentiation/reprogramming for regenerative medicine. Int J Stem Cells. 2009;2(1):18–27. doi: 10.15283/ijsc.2009.2.1.18. DOI: https://doi.org/10.15283/ijsc.2009.2.1.18
  158. Oliveri RS. Epigenetic dedifferentiation of somatic cells into pluripotency: cellular alchemy in the age of regenerative medicine? Regen Med. 2007;2(5):795–816. doi: 2217/17460751.2.5.795. DOI: https://doi.org/10.2217/17460751.2.5.795

Keywords:

rare acute leukemia variants, blastic plasmacytoid dendritic cell neoplasm, early T-cell precursor acute lymphoblastic leukemia, acute leukemias of indeterminate lineage, pure erythroid leukemia, lineage switch

Downloads

Download data is not yet available.

Author Biography

  • Olga Yurevna Baranova, NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478, ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

    MD, PhD

Published

01.10.2022

Issue

RARE HEMATOLOGICAL TUMORS AND SYNDROMES

How to Cite

Baranova O.Y., Shirin A.D. A Current View on Pathogenesis, Diagnosis, and Treatment of Some Rare Acute Leukemia Variants. Clinical Oncohematology. Basic Research and Clinical Practice. 2022;15(4):307–326. doi:10.21320/2500-2139-2022-15-4-307-326.

Most read articles by the same author(s)