Прогностические модели в медицине
ISSN (print) 1997-6933     ISSN (online) 2500-2139
2023-1
PDF_2023-16-1_27-36

Ключевые слова

прогностическая модель
искусственный интеллект

Как цитировать

Лучинин А.С. Прогностические модели в медицине. Клиническая онкогематология. 2024;(1):27–36. doi:10.21320/2500-2139-2023-16-1-27-36.

Ключевые слова

Аннотация

Медицинские прогностические (предиктивные) модели (МПМ) имеют важное значение в современном здравоохранении. Они определяют риски для здоровья и возникновения заболеваний. Целью их создания является улучшение результатов диагностики и лечения. Все МПМ можно разделить на две категории. Диагностические медицинские модели (ДММ) помогают рассчитать индивидуальный риск присутствия заболевания, в то время как прогностические медицинские модели (ПММ) — риск возникновения болезни или его осложнения в будущем. В обзоре обсуждаются характеристики ДММ и ПММ, условия их разработки, критерии применения в медицине, в частности в гематологии, а также проблемы, возникающие на этапе их создания и проверки качества.

PDF_2023-16-1_27-36

Библиографические ссылки

  1. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. Br Med J. 2020;369:m1328. doi: 10.1136/bmj.m1328.
  2. Van Smeden M, Reitsma JB, Riley RD, et al. Clinical prediction models: diagnosis versus prognosis. J Clin Epidemiol. 2021;132:142–5. doi: 10.1016/j.jclinepi.2021.01.009.
  3. Schalling M, Gleiss A, Gisslinger B, et al. Essential thrombocythemia vs. pre-fibrotic/early primary myelofibrosis: discrimination by laboratory and clinical data. Blood Cancer J. 2017;7(12):643. doi: 10.1038/s41408-017-0006-y.
  4. Guncar G, Kukar M, Notar M, et al. An application of machine learning to haematological diagnosis. Sci Rep. 2018;8(1):411. doi: 10.1038/s41598-017-18564-8.
  5. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.
  6. Van de Schans SАM, Steyerberg EW, Nijziel MR, et al. Validation, revision and extension of the Follicular Lymphoma International Prognostic Index (FLIPI) in a population-based setting. Ann Oncol. 2009;20(10):1697–702. doi: 10.1093/annonc/mdp053.
  7. Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J Clin Oncol. 2015;33(26):2863–9. doi: 10.1200/JCO.2015.61.2267.
  8. Лучинин А.С. Искусственный интеллект в гематологии. Клиническая онкогематология. 2022;15(1):16–27. doi: 10.21320/2500-2139-2022-15-1-16-27.
  9. [Luchinin AS. Artificial Intelligence in Hematology. Clinical oncohematology. 2022;15(1):16–27. doi: 10.21320/2500-2139-2022-15-1-16-27. (In Russ)]
  10. Zhou L, Meng X, Huang Y, et al. An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors. Nat Mach Intell. 2022;4(5):494–503. doi: 10.1038/s42256-022-00483-7.
  11. Szumilas M. Explaining Odds Ratios. J Can Acad Child Adolesc Psychiatry. 2010;19(3):227–29.
  12. Barraclough H, Simms L, Govindan R. Biostatistics Primer: What a Clinician Ought to Know: Hazard Ratios. J Thorac Oncol. 2011;6(6):978–82. doi: 10.1097/JTO.0b013e31821b10ab.
  13. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31. doi: 10.1093/eurheartj/ehu207.
  14. Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17(1):230. doi: 10.1186/s12916-019-1466-7.
  15. Wolff RF, Moons KGM, Riley RD, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51–8. doi: 10.7326/M18-1376.
  16. Moons KGM, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. Br Med J. 2009;338:b606. doi: 10.1136/bmj.b606.
  17. Altman DG, Bland JM. Missing data. Br Med J. 2007;334(7590):424. doi: 10.1136/bmj.38977.682025.2C.
  18. Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. Br Med J. 2020;368:m441. doi: 10.1136/bmj.m441.
  19. Jenkins DG, Quintana-Ascencio PF. A solution to minimum sample size for regressions. PloS One. 2020;15(2):e0229345. doi: 10.1371/journal.pone.0229345.
  20. Van Voorhis WCR, Morgan BL. Understanding Power and Rules of Thumb for Determining Sample Sizes. Tutor Quant Meth Psychol. 2007;3(2):43–50. doi: 10.20982/tqmp.03.2.p043.
  21. Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9. doi: 10.1016/s0895-4356(96)00236-3.
  22. Bujang MA, Sa’at N, Sidik TMITAB, Joo LC. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays J Med Sci. 2018;25(4):122–30. doi: 10.21315/mjms2018.25.4.12.
  23. Zhou P-Y, Wong AKC. Explanation and prediction of clinical data with imbalanced class distribution based on pattern discovery and disentanglement. BMC Med Inform Decis Mak. 2021;21(1):16. doi: 10.1186/s12911-020-01356-y.
  24. Pauker SG, Kassirer JP. The Threshold Approach to Clinical Decision Making. N Engl J Med. 1980;302(20):1109–17. doi: 10.1056/NEJM198005153022003.
  25. Lee DK. Data transformation: a focus on the interpretation. Korean J Anesthesiol. 2020;73(6):503–8. doi: 10.4097/kja.20137.
  26. Zhang Z. Variable selection with stepwise and best subset approaches. Ann Transl Med. 2016;4(7):136. doi: 10.21037/atm.2016.03.35.
  27. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385395. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3.
  28. de Hond AAH, Leeuwenberg AM, Hooft L, et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. NPJ Digit Med. 2022;5(1):1–13. doi: 10.1038/s41746-021-00549-7.
  29. Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian J Intern Med. 2013;4(2):627–35.
  30. Agarwal A, Sharma P, Alshehri M, et al. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Comput Sci. 2021;7:e437. doi: 10.7717/peerj-cs.437.
  31. Hendriksen JMT, Geersing GJ, Moons KGM, de Groot JАH. Diagnostic and prognostic prediction models. J Thromb Haemost. 2013;11(Suppl 1):129–41. doi: 10.1111/jth.12262.
  32. Huang Y, Li W, Macheret F, et al. A tutorial on calibration measurements and calibration models for clinical prediction models. J Am Med Inform Assoc. 2020;27(4):621–33. doi: 10.1093/jamia/ocz228.
  33. Snell KIE, Archer L, Ensor J, et al. External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb. J Clin Epidemiol. 2021;135:79–89. doi: 10.1016/j.jclinepi.2021.02.011.
  34. Ramspek CL, Teece L, Snell KIE, et al. Lessons learnt when accounting for competing events in the external validation of time-to-event prognostic models. Int J Epidemiol. 2022;51(2):615–25. doi: 10.1093/ije/dyab256.
  35. Van Geloven N, Giardiello D, Bonneville EF, et al. Validation of prediction models in the presence of competing risks: a guide through modern methods. Br Med J. 2022;377:e069249. doi: 10.1136/bmj-2021-069249.
  36. Altman DG, Bland JM. Absence of evidence is not evidence of absence. Br Med J. 1995;311(7003):485. doi: 10.1136/bmj.311.7003.485.
  37. Smith GD, Ebrahim S. Data dredging, bias, or confounding. Br Med J. 2002;325(7378):1437–8. doi: 10.1136/bmj.325.7378.1437.
  38. Lakens D, Adolfi FG, Albers CJ, et al. Justify your alpha. Nat Hum Behav. 2018;2(3):168–71. doi: 10.1038/s41562-018-0311-x.
  39. Benjamin DJ, Berger JO, Johannesson M, et al. Redefine statistical significance. Nat Hum Behav. 2018;2(1):6–10. doi: 10.1038/s41562-017-0189-z.
  40. Van Smeden M, Lash TL, Groenwold RHH. Reflection on modern methods: five myths about measurement error in epidemiological research. Int J Epidemiol. 2020;49(1):338–47. doi: 10.1093/ije/dyz251.
  41. Altman DG, Royston P. The cost of dichotomising continuous variables. Br Med J. 2006;332(7549):1080. doi: 10.1136/bmj.332.7549.1080.
  42. Wynants L, van Smeden M, McLernon DJ, et al. Three myths about risk thresholds for prediction models. BMC Med. 2019;17(1):192. doi: 10.1186/s12916-019-1425-3.
  43. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–41. doi: 10.1002/sim.2331.
  44. Vargha A, Rudas T, Delaney HD, Maxwell SE. Dichotomization, Partial Correlation, and Conditional Independence. J Educ Behav Stat. 1996;21(3):264–82. doi: 10.3102/10769986021003264.
  45. Basagana X, Pedersen M, Barrera-Gomez J, et al. Analysis of multicentre epidemiological studies: contrasting fixed or random effects modelling and meta-analysis. Int J Epidemiol. 2018;47(4):1343–54. doi: 10.1093/ije/dyy
  46. Лучинин А.С. Лечение пациентов с впервые диагностированной диффузной В-крупноклеточной лимфомой: обзор литературы и метаанализ. Клиническая онкогематология. 2022;15(2):130–9. doi: 10.21320/2500-2139-2022-15-2-130-139.
  47. [Luchinin AS. Treatment of Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma: A Literature Review and Meta-Analysis. Clinical oncohematology. 2022;15(2):130–9. doi: 10.21320/2500-2139-2022-15-2-130-139. (In Russ)]
  48. Riley RD, Collins GS, Ensor J, et al. Minimum sample size calculations for external validation of a clinical prediction model with a time-to-event outcome. Stat Med. 2022;41(7):1280–95. doi: 10.1002/sim.9275.
  49. Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: Part I – continuous outcomes. Stat Med. 2019;38(7):1262–75. doi: 10.1002/sim.7993.
  50. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: Part II – binary and time-to-event outcomes. Stat Med. 2019;38(7):1276–96. doi: 10.1002/sim.7992.
  51. Riley RD, Debray TPA, Collins GS, et al. Minimum sample size for external validation of a clinical prediction model with a binary outcome. Stat Med. 2021;40(19):4230–51. doi: 10.1002/sim.9025.
  52. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. Br Med J. 2009;338:b2393. doi: 10.1136/bmj.b2393.
  53. Petrazzini BO, Naya H, Lopez-Bello F, et al. Evaluation of different approaches for missing data imputation on features associated to genomic data. BioData Min. 2021;14(1):44. doi: 10.1186/s13040-021-00274-7.
  54. Sun GW, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol. 1996;49(8):907–16. doi: 10.1016/0895-4356(96)00025-x.
  55. Heinze G, Dunkler D. Five myths about variable selection. Transpl Int. 2017;30(1):6–10. doi: 10.1111/tri.12895.
  56. Chen R-C, Dewi C, Huang S-W, Caraka RE. Selecting critical features for data classification based on machine learning methods. J Big Data. 2020;7(1):52. doi: 10.1186/s40537-020-00327-4.
  57. Moons KGM, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart. 2012;98(9):691–8. doi: 10.1136/heartjnl-2011-301247.
  58. Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-73. doi: 10.7326/M14-0698.
  59. Vasey B, Nagendran M, Campbell B, et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med. 2022;28(5):924–33. doi: 10.1038/s41591-022-01772-9.
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.