Abstract
Medical prognostic (prediction) models (MPM) are essential in modern healthcare. They determine health and disease risks and are created to improve diagnosis and treatment outcomes. All MPMs fall into two categories. Diagnostic medical models (DMM) aim at assessing individual risk for a disease present, whereas predictive medical models (PMM) evaluate the risk for development of a disease and its complications in future. This review discusses DMM and PMM characteristics, conditions for their elaboration, criteria for medical application, also in hematology, as well as challenges of their creation and quality check.
References
- Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. Br Med J. 2020;369:m1328. doi: 10.1136/bmj.m1328.
- Van Smeden M, Reitsma JB, Riley RD, et al. Clinical prediction models: diagnosis versus prognosis. J Clin Epidemiol. 2021;132:142–5. doi: 10.1016/j.jclinepi.2021.01.009.
- Schalling M, Gleiss A, Gisslinger B, et al. Essential thrombocythemia vs. pre-fibrotic/early primary myelofibrosis: discrimination by laboratory and clinical data. Blood Cancer J. 2017;7(12):643. doi: 10.1038/s41408-017-0006-y.
- Guncar G, Kukar M, Notar M, et al. An application of machine learning to haematological diagnosis. Sci Rep. 2018;8(1):411. doi: 10.1038/s41598-017-18564-8.
- Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.
- Van de Schans SАM, Steyerberg EW, Nijziel MR, et al. Validation, revision and extension of the Follicular Lymphoma International Prognostic Index (FLIPI) in a population-based setting. Ann Oncol. 2009;20(10):1697–702. doi: 10.1093/annonc/mdp053.
- Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J Clin Oncol. 2015;33(26):2863–9. doi: 10.1200/JCO.2015.61.2267.
- Лучинин А.С. Искусственный интеллект в гематологии. Клиническая онкогематология. 2022;15(1):16–27. doi: 10.21320/2500-2139-2022-15-1-16-27.
- [Luchinin AS. Artificial Intelligence in Hematology. Clinical oncohematology. 2022;15(1):16–27. doi: 10.21320/2500-2139-2022-15-1-16-27. (In Russ)]
- Zhou L, Meng X, Huang Y, et al. An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors. Nat Mach Intell. 2022;4(5):494–503. doi: 10.1038/s42256-022-00483-7.
- Szumilas M. Explaining Odds Ratios. J Can Acad Child Adolesc Psychiatry. 2010;19(3):227–29.
- Barraclough H, Simms L, Govindan R. Biostatistics Primer: What a Clinician Ought to Know: Hazard Ratios. J Thorac Oncol. 2011;6(6):978–82. doi: 10.1097/JTO.0b013e31821b10ab.
- Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31. doi: 10.1093/eurheartj/ehu207.
- Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17(1):230. doi: 10.1186/s12916-019-1466-7.
- Wolff RF, Moons KGM, Riley RD, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51–8. doi: 10.7326/M18-1376.
- Moons KGM, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. Br Med J. 2009;338:b606. doi: 10.1136/bmj.b606.
- Altman DG, Bland JM. Missing data. Br Med J. 2007;334(7590):424. doi: 10.1136/bmj.38977.682025.2C.
- Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. Br Med J. 2020;368:m441. doi: 10.1136/bmj.m441.
- Jenkins DG, Quintana-Ascencio PF. A solution to minimum sample size for regressions. PloS One. 2020;15(2):e0229345. doi: 10.1371/journal.pone.0229345.
- Van Voorhis WCR, Morgan BL. Understanding Power and Rules of Thumb for Determining Sample Sizes. Tutor Quant Meth Psychol. 2007;3(2):43–50. doi: 10.20982/tqmp.03.2.p043.
- Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9. doi: 10.1016/s0895-4356(96)00236-3.
- Bujang MA, Sa’at N, Sidik TMITAB, Joo LC. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays J Med Sci. 2018;25(4):122–30. doi: 10.21315/mjms2018.25.4.12.
- Zhou P-Y, Wong AKC. Explanation and prediction of clinical data with imbalanced class distribution based on pattern discovery and disentanglement. BMC Med Inform Decis Mak. 2021;21(1):16. doi: 10.1186/s12911-020-01356-y.
- Pauker SG, Kassirer JP. The Threshold Approach to Clinical Decision Making. N Engl J Med. 1980;302(20):1109–17. doi: 10.1056/NEJM198005153022003.
- Lee DK. Data transformation: a focus on the interpretation. Korean J Anesthesiol. 2020;73(6):503–8. doi: 10.4097/kja.20137.
- Zhang Z. Variable selection with stepwise and best subset approaches. Ann Transl Med. 2016;4(7):136. doi: 10.21037/atm.2016.03.35.
- Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385395. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3.
- de Hond AAH, Leeuwenberg AM, Hooft L, et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. NPJ Digit Med. 2022;5(1):1–13. doi: 10.1038/s41746-021-00549-7.
- Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian J Intern Med. 2013;4(2):627–35.
- Agarwal A, Sharma P, Alshehri M, et al. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Comput Sci. 2021;7:e437. doi: 10.7717/peerj-cs.437.
- Hendriksen JMT, Geersing GJ, Moons KGM, de Groot JАH. Diagnostic and prognostic prediction models. J Thromb Haemost. 2013;11(Suppl 1):129–41. doi: 10.1111/jth.12262.
- Huang Y, Li W, Macheret F, et al. A tutorial on calibration measurements and calibration models for clinical prediction models. J Am Med Inform Assoc. 2020;27(4):621–33. doi: 10.1093/jamia/ocz228.
- Snell KIE, Archer L, Ensor J, et al. External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb. J Clin Epidemiol. 2021;135:79–89. doi: 10.1016/j.jclinepi.2021.02.011.
- Ramspek CL, Teece L, Snell KIE, et al. Lessons learnt when accounting for competing events in the external validation of time-to-event prognostic models. Int J Epidemiol. 2022;51(2):615–25. doi: 10.1093/ije/dyab256.
- Van Geloven N, Giardiello D, Bonneville EF, et al. Validation of prediction models in the presence of competing risks: a guide through modern methods. Br Med J. 2022;377:e069249. doi: 10.1136/bmj-2021-069249.
- Altman DG, Bland JM. Absence of evidence is not evidence of absence. Br Med J. 1995;311(7003):485. doi: 10.1136/bmj.311.7003.485.
- Smith GD, Ebrahim S. Data dredging, bias, or confounding. Br Med J. 2002;325(7378):1437–8. doi: 10.1136/bmj.325.7378.1437.
- Lakens D, Adolfi FG, Albers CJ, et al. Justify your alpha. Nat Hum Behav. 2018;2(3):168–71. doi: 10.1038/s41562-018-0311-x.
- Benjamin DJ, Berger JO, Johannesson M, et al. Redefine statistical significance. Nat Hum Behav. 2018;2(1):6–10. doi: 10.1038/s41562-017-0189-z.
- Van Smeden M, Lash TL, Groenwold RHH. Reflection on modern methods: five myths about measurement error in epidemiological research. Int J Epidemiol. 2020;49(1):338–47. doi: 10.1093/ije/dyz251.
- Altman DG, Royston P. The cost of dichotomising continuous variables. Br Med J. 2006;332(7549):1080. doi: 10.1136/bmj.332.7549.1080.
- Wynants L, van Smeden M, McLernon DJ, et al. Three myths about risk thresholds for prediction models. BMC Med. 2019;17(1):192. doi: 10.1186/s12916-019-1425-3.
- Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–41. doi: 10.1002/sim.2331.
- Vargha A, Rudas T, Delaney HD, Maxwell SE. Dichotomization, Partial Correlation, and Conditional Independence. J Educ Behav Stat. 1996;21(3):264–82. doi: 10.3102/10769986021003264.
- Basagana X, Pedersen M, Barrera-Gomez J, et al. Analysis of multicentre epidemiological studies: contrasting fixed or random effects modelling and meta-analysis. Int J Epidemiol. 2018;47(4):1343–54. doi: 10.1093/ije/dyy
- Лучинин А.С. Лечение пациентов с впервые диагностированной диффузной В-крупноклеточной лимфомой: обзор литературы и метаанализ. Клиническая онкогематология. 2022;15(2):130–9. doi: 10.21320/2500-2139-2022-15-2-130-139.
- [Luchinin AS. Treatment of Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma: A Literature Review and Meta-Analysis. Clinical oncohematology. 2022;15(2):130–9. doi: 10.21320/2500-2139-2022-15-2-130-139. (In Russ)]
- Riley RD, Collins GS, Ensor J, et al. Minimum sample size calculations for external validation of a clinical prediction model with a time-to-event outcome. Stat Med. 2022;41(7):1280–95. doi: 10.1002/sim.9275.
- Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: Part I – continuous outcomes. Stat Med. 2019;38(7):1262–75. doi: 10.1002/sim.7993.
- Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: Part II – binary and time-to-event outcomes. Stat Med. 2019;38(7):1276–96. doi: 10.1002/sim.7992.
- Riley RD, Debray TPA, Collins GS, et al. Minimum sample size for external validation of a clinical prediction model with a binary outcome. Stat Med. 2021;40(19):4230–51. doi: 10.1002/sim.9025.
- Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. Br Med J. 2009;338:b2393. doi: 10.1136/bmj.b2393.
- Petrazzini BO, Naya H, Lopez-Bello F, et al. Evaluation of different approaches for missing data imputation on features associated to genomic data. BioData Min. 2021;14(1):44. doi: 10.1186/s13040-021-00274-7.
- Sun GW, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol. 1996;49(8):907–16. doi: 10.1016/0895-4356(96)00025-x.
- Heinze G, Dunkler D. Five myths about variable selection. Transpl Int. 2017;30(1):6–10. doi: 10.1111/tri.12895.
- Chen R-C, Dewi C, Huang S-W, Caraka RE. Selecting critical features for data classification based on machine learning methods. J Big Data. 2020;7(1):52. doi: 10.1186/s40537-020-00327-4.
- Moons KGM, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart. 2012;98(9):691–8. doi: 10.1136/heartjnl-2011-301247.
- Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-73. doi: 10.7326/M14-0698.
- Vasey B, Nagendran M, Campbell B, et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med. 2022;28(5):924–33. doi: 10.1038/s41591-022-01772-9.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.