Аннотация
Цель. Оценить частоту и влияние на прогноз мутаций в генах DNMT3A, IDH1, IDH2 и ASXL1 в изолированном варианте и в сочетании с известными хромосомными аберрациями и генными мутациями у пациентов с впервые диагностированным острым миелоидным лейкозом (ОМЛ) из отдельных регионов Российской Федерации.
Материалы и методы. В исследование включено 83 пациента с впервые выявленным ОМЛ из 22 регионов Российской Федерации, которым проведено молекулярно-генетическое исследование с целью выявить мутации в генах IDH1 (R132), IDH2 (R140), ASXL1 и DNMT3A методами цифровой капельной ПЦР и секвенирования по Сэнгеру.
Результаты. Частота определения мутаций в гене DNMT3A составила 16,7 %, в гене IDH1 (R132) — 6 %, IDH2 (R140) — 9,6 % и ASXL1 — 6 %. Мутация R140 в гене IDH2 коррелировала с более старшим возрастом пациентов. Выявлена статистически значимая связь мутаций в генах IDH1 (R132), IDH2 (R140) и DNMT3A с мутантным типом гена NPM1. Мутации в генах IDH1 (R132), IDH2 (R140) значимо чаще определялись у пациентов с нормальным кариотипом. Отмечается благоприятное влияние на прогноз при ОМЛ мутаций IDH1 (R132) и IDH2 (R140), вероятнее всего связанное с высокой частотой сочетаемости с мутацией NPM1. Мутантный тип гена DNMT3A негативно влиял на показатели общей выживаемости у пациентов с мутацией в гене NPM1. Мутация в гене ASXL1 также служит неблагоприятным прогностическим фактором, ухудшающим показатели общей выживаемости у пациентов с диким типом гена NPM1.
Заключение. С учетом широкой распространенности мутаций в генах эпигенетической регуляции, а также их потенциального вклада в прогноз при ОМЛ определение мутационного статуса генов DNMT3A, IDH1, IDH2 и ASXL1 на этапе первичной диагностики представляется обоснованным и необходимым в реальной клинической практике.
Библиографические ссылки
- De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441. doi: 10.1038/bcj.2016.50.
- Cancer Genome Atlas Research Network; Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. doi: 10.1056/NEJMoa1301689.
- Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi: 10.1182/blood-2016-08-733196.
- Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325–36. doi: 10.1182/blood-2002-03-0772.
- Острые миелоидные лейкозы. Клинические рекомендации. Под ред. А.Д. Каприна. М.: Ассоциация онкологов России, 2020.
- [AD Kaprin, ed. Ostrye mieloidnye leikozy. Klinicheskie rekomendatsii. (Acute myeloid leukemias. Clinical guidelines.) Moscow: Assotsiatsiya Onkologov Rossii Publ.; 2020. (In Russ)]
- Takahashi S. Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol. 2011;4:36. doi: 10.1186/1756-8722-4-36.
- Kishtagari A, Levine RL. The Role of Somatic Mutations in Acute Myeloid Leukemia Pathogenesis. Cold Spring Harb Perspect Med. 2021;11(4):a034975. doi: 10.1101/cshperspect.a034975.
- Jiang Y, Dunbar A, Gondek LP, et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood. 2009;113(6):1315–25. doi: 10.1182/blood-2008-06-163246.
- Зайкова Е.К., Белоцерковская Е.В., Зайцев Д.В. и др. Молекулярная диагностика мутаций гена FLT3 у пациентов с острыми миелоидными лейкозами. Клиническая онкогематология. 2020;13(2):150–60. doi: 10.21320/2500-2139-2020-13-2-150-160.
- [Zaikova EK, Belotserkovskaya EV, Zaytsev DV, et al. Molecular Diagnosis of FLT3 Mutations in Acute Myeloid Leukemia Patients. Clinical oncohematology. 2020;13(2):150–60. doi: 10.21320/2500-2139-2020-13-2-150-160. (In Russ)]
- Whitehall VL, Dumenil TD, McKeone DM, et al. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype. Epigenetics. 2014;9(11):1454–60. doi: 10.4161/15592294.2014.971624.
- Berenstein R, Blau IW, Kar A, et al. Comparative examination of various PCR-based methods for DNMT3A and IDH1/2 mutations identification in acute myeloid leukemia. J Exp Clin Cancer Res. 2014;33(1):44. doi: 10.1186/1756-9966-33-4.
- Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
- Shivarov V, Ivanova M, Naumova E. Rapid detection of DNMT3A R882 mutations in hematologic malignancies using a novel bead-based suspension assay with BNA(NC) probes. PLoS One. 2014;9(6):e99769. doi: 10.1371/journal.pone.0099769.
- Maiti A, Qiao W, Sasaki K, et al. Venetoclax with decitabine vs intensive chemotherapy in acute myeloid leukemia: A propensity score matched analysis stratified by risk of treatment-related mortality. Am J Hematol. 2021;96(3):282–91. doi: 10.1002/ajh.26061.
- Cherry EM, Abbott D, Amaya M, et al. Venetoclax and azacitidine compared with induction chemotherapy for newly diagnosed patients with acute myeloid leukemia. Blood Adv. 2021;5(24):5565–73. doi: 10.1182/bloodadvances.2021005538.
- Montalban-Bravo G, DiNardo CD. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018;14(10):979–93. doi: 10.2217/fon-2017-0523.
- Kishtagari A, Levine RL. The Role of Somatic Mutations in Acute Myeloid Leukemia Pathogenesis. Cold Spring Harb Perspect Med. 2021;11(4):a034975. doi: 10.1101/cshperspect.a034975.
- DiNardo CD, Ravandi F, Agresta S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015;90(8):732–36. doi: 10.1002/ajh.24072.
- Zarnegar-Lumley S, Alonzo TA, Othus M, et al. Characteristics and prognostic effects of IDH mutations across the age spectrum in AML: a collaborative analysis from COG, SWOG, and ECOG. Blood. 2020;136(Suppl 1):31–2. doi: 10.1182/blood-2020-134211.
- Aref S, Kamel Areida el S, Abdel Aaal MF, et al. Prevalence and Clinical Effect of IDH1 and IDH2 Mutations Among Cytogenetically Normal Acute Myeloid Leukemia Patients. Clin Lymphoma Myeloma Leuk. 2015;15(9):550–5. doi: 10.1016/j.clml.2015.05.009.
- Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28(14):2348–55. doi: 10.1200/JCO.2009.27.3730.
- Белоцерковская Е.В., Зайкова Е.К., Петухов А.В. и др. Выявление мутаций генов эпигенетической регуляции генома IDH1/2, DNMT3A, ASXL1 и их сочетания с мутациями FLT3, NPM1, RUNX1 у пациентов с острыми миелоидными лейкозами. Клиническая онкогематология. 2021;14(1):13–21. doi: 10.21320/2500-2139-2021-14-1-13-21.
- [Belotserkovskaya EV, Zaikova EK, Petukhov AV, et al. Identification of Mutations in IDH1/2, DNMT3A, ASXL1 Genes of Genome Epigenetic Regulation and Their Co-Occurrence with FLT3, NPM1, RUNX1 Mutations in Acute Myeloid Leukemia. Clinical oncohematology. 2021;14(1):13–21. doi: 10.21320/2500-2139-2021-14-1-13-21. (In Russ)]
- ElNahass YH, Badawy RH, ElRefaey FA, et al. IDH Mutations in AML Patients; A higher Association with Intermediate Risk Cytogenetics. Asian Pac J Cancer Prev. 2020;21(3):721–5. doi: 10.31557/APJCP.2020.21.3.721.
- Molenaar RJ, Thota S, Nagata Y, et al. Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia. 2015;29(11):2134–42. doi: 10.1038/leu.2015.91.
- Xu Q, Li Y, Lv N, et al. Correlation Between Isocitrate Dehydrogenase Gene Aberrations and Prognosis of Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Clin Cancer Res. 2017;23(15):4511–22. doi: 10.1158/1078-0432.CCR-16-2628.
- Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol. 2019;56(2):84–9. doi: 10.1053/j.seminhematol.2018.08.001.
- Park DJ, Kwon A, Cho BS, et al. Characteristics of DNMT3A mutations in acute myeloid leukemia. Blood Res. 2020;55(1):17–26. doi: 10.5045/br.2020.55.1.17.
- Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. doi: 10.1056/NEJMoa1005143.
- Wang M, Yang C, Zhang L, Schaar DG. Molecular Mutations and Their Cooccurrences in Cytogenetically Normal Acute Myeloid Leukemia. Stem Cells Int. 2017;2017:6962379. doi: 10.1155/2017/6962379.
- Ostronoff F, Othus M, Ho PA, et al. Mutations in the DNMT3A exon 23 independently predict poor outcome in older patients with acute myeloid leukemia: a SWOG report. Leukemia. 2013;27(1):238–41. doi: 10.1038/leu.2012.168.
- Gaidzik VI, Schlenk RF, Paschka P, et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood. 2013;121(23):4769–77. doi: 10.1182/blood-2012-10-461624.
- Roller A, Grossmann V, Bacher U, et al. Landmark analysis of DNMT3A mutations in hematological malignancies. Leukemia. 2013;27(7):1573–8. doi: 10.1038/leu.2013.65.
- Kihara R, Nagata Y, Kiyoi H, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014;28(8):1586–95. doi: 10.1038/leu.2014.55.
- Dunlap JB, Leonard J, Rosenberg M, et al. The combination of NPM1, DNMT3A, and IDH1/2 mutations leads to inferior overall survival in AML. Am J Hematol. 2019;94(8):913–20. doi: 10.1002/ajh.25517.
- Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
- Asada S, Fujino T, Goyama S, Kitamura T. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci. 2019;76(13):2511–23. doi: 10.1007/s00018-019-03084-7.
- Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209–21. doi: 10.1056/NEJMoa1516192.
- Pratcorona M, Abbas S, Sanders MA, et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica. 2012;97(3):388–92. doi: 10.3324/haematol.2011.051532.
- Bohl SR, Bullinger L, Rucker FG. Epigenetic therapy: azacytidine and decitabine in acute myeloid leukemia. Expert Rev Hematol. 2018;11(5):361–71. doi: 10.1080/17474086.2018.1453802.
- NCCN Clinical Practice Guidelines in Oncology. Acute Myeloid Leukemia. Version 1.2022. (Internet) Available from: https://www.nccn.org/professionals/physician_gls/pdf/aml_blocks.pdf. (accessed 20.05.2022).
- Carter JL, Hege K, Yang J, et al. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther. 2020;5(1):288. doi: 10.1038/s41392-020-00361-x.