The Prognostic Value of Somatic Mutations of Epigenetic Regulation Genes in Acute Myeloid Leukemias in Real-World Clinical Practice: Results of an Observational Non-Interventional Prospective Interregional Study
ISSN (print) 1997-6933     ISSN (online) 2500-2139
2023-2
PDF_2023-16-2_174-185 (Russian)

Keywords

acute myeloid leukemias
IDH
DNMT3A
ASXL1
epigenetic regulation genes

How to Cite

Shatilova A.A., Budaeva I.G., Petukhov A.V., Silonov S.A., Ershova A.E., Nikulina T.S., Matvienko Y.D., Mirolyubova Y.V., Bogdanov K.V., Anchukova L.V., Neredko Y.S., Tyasko S.Y., Ochirova O.E., Karpova A.G., Vasil’eva E.R., Serdyuk O.D., Yaskulskii D.A., Bukin D.V., Alekseeva Y.A., Lomaia E.G., Girshova L.L. The Prognostic Value of Somatic Mutations of Epigenetic Regulation Genes in Acute Myeloid Leukemias in Real-World Clinical Practice: Results of an Observational Non-Interventional Prospective Interregional Study. Clinical Oncohematology. 2024;(2):174–185. doi:10.21320/2500-2139-2023-16-2-174-185.

Keywords

Abstract

Aim. To assess the rate of DNMT3A, IDH1, IDH2, and ASXL1 gene mutations and their effect on the prognosis both as isolated findings and in combination with well-known chromosomal aberrations and gene mutations in newly diagnosed acute myeloid leukemia (AML) patients from some regions of the Russian Federation.

Materials & Methods. The study enrolled 83 patients with newly diagnosed AML from 22 regions of the Russian Federation, who underwent molecular genetic examination for detecting IDH1 (R132), IDH2 (R140), ASXL1, and DNMT3A gene mutations with droplet digital PCR and Sanger sequencing methods.

Results. The mutation rate in DNMT3A was 16.7 %, in IDH1 (R132) it was 6 %, in IDH2 (R140) it was 9.6 %, and in ASXL1 it was 6 %. The R140 mutation in IDH2 correlated with the older age of patients. The mutations in IDH1 (R132), IDH2 (R140), and DNMT3A showed a significant association with mutated NPM1. The mutations in IDH1 (R132), IDH2 (R140) were reported to occur significantly more often in patients with normal karyotype. The IDH1 (R132) and IDH2 (R140) mutations appeared to have a favorable effect on AML prognosis, which is most likely to be associated with a high rate of their compatibility with NPM1 mutation. The mutated type of DNMT3A had a negative effect on overall survival of patients with NPM1 mutation. The mutation in ASXL1 also appeared to be an unfavorable prognostic factor for overall survival of patients with wild type NPM1.

Conclusion. A high rate of mutation occurrence in epigenetic regulation genes as well as the prognostic potential of these mutations in AML necessitate the need for determining the mutation status of DNMT3A, IDH1, IDH2, and ASXL1 in the context of primary diagnosis in real-world clinical practice.

PDF_2023-16-2_174-185 (Russian)

References

  1. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441. doi: 10.1038/bcj.2016.50.
  2. Cancer Genome Atlas Research Network; Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. doi: 10.1056/NEJMoa1301689.
  3. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi: 10.1182/blood-2016-08-733196.
  4. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325–36. doi: 10.1182/blood-2002-03-0772.
  5. Острые миелоидные лейкозы. Клинические рекомендации. Под ред. А.Д. Каприна. М.: Ассоциация онкологов России, 2020.
  6. [AD Kaprin, ed. Ostrye mieloidnye leikozy. Klinicheskie rekomendatsii. (Acute myeloid leukemias. Clinical guidelines.) Moscow: Assotsiatsiya Onkologov Rossii Publ.; 2020. (In Russ)]
  7. Takahashi S. Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol. 2011;4:36. doi: 10.1186/1756-8722-4-36.
  8. Kishtagari A, Levine RL. The Role of Somatic Mutations in Acute Myeloid Leukemia Pathogenesis. Cold Spring Harb Perspect Med. 2021;11(4):a034975. doi: 10.1101/cshperspect.a034975.
  9. Jiang Y, Dunbar A, Gondek LP, et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood. 2009;113(6):1315–25. doi: 10.1182/blood-2008-06-163246.
  10. Зайкова Е.К., Белоцерковская Е.В., Зайцев Д.В. и др. Молекулярная диагностика мутаций гена FLT3 у пациентов с острыми миелоидными лейкозами. Клиническая онкогематология. 2020;13(2):150–60. doi: 10.21320/2500-2139-2020-13-2-150-160.
  11. [Zaikova EK, Belotserkovskaya EV, Zaytsev DV, et al. Molecular Diagnosis of FLT3 Mutations in Acute Myeloid Leukemia Patients. Clinical oncohematology. 2020;13(2):150–60. doi: 10.21320/2500-2139-2020-13-2-150-160. (In Russ)]
  12. Whitehall VL, Dumenil TD, McKeone DM, et al. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype. Epigenetics. 2014;9(11):1454–60. doi: 10.4161/15592294.2014.971624.
  13. Berenstein R, Blau IW, Kar A, et al. Comparative examination of various PCR-based methods for DNMT3A and IDH1/2 mutations identification in acute myeloid leukemia. J Exp Clin Cancer Res. 2014;33(1):44. doi: 10.1186/1756-9966-33-4.
  14. Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
  15. Shivarov V, Ivanova M, Naumova E. Rapid detection of DNMT3A R882 mutations in hematologic malignancies using a novel bead-based suspension assay with BNA(NC) probes. PLoS One. 2014;9(6):e99769. doi: 10.1371/journal.pone.0099769.
  16. Maiti A, Qiao W, Sasaki K, et al. Venetoclax with decitabine vs intensive chemotherapy in acute myeloid leukemia: A propensity score matched analysis stratified by risk of treatment-related mortality. Am J Hematol. 2021;96(3):282–91. doi: 10.1002/ajh.26061.
  17. Cherry EM, Abbott D, Amaya M, et al. Venetoclax and azacitidine compared with induction chemotherapy for newly diagnosed patients with acute myeloid leukemia. Blood Adv. 2021;5(24):5565–73. doi: 10.1182/bloodadvances.2021005538.
  18. Montalban-Bravo G, DiNardo CD. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018;14(10):979–93. doi: 10.2217/fon-2017-0523.
  19. Kishtagari A, Levine RL. The Role of Somatic Mutations in Acute Myeloid Leukemia Pathogenesis. Cold Spring Harb Perspect Med. 2021;11(4):a034975. doi: 10.1101/cshperspect.a034975.
  20. DiNardo CD, Ravandi F, Agresta S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015;90(8):732–36. doi: 10.1002/ajh.24072.
  21. Zarnegar-Lumley S, Alonzo TA, Othus M, et al. Characteristics and prognostic effects of IDH mutations across the age spectrum in AML: a collaborative analysis from COG, SWOG, and ECOG. Blood. 2020;136(Suppl 1):31–2. doi: 10.1182/blood-2020-134211.
  22. Aref S, Kamel Areida el S, Abdel Aaal MF, et al. Prevalence and Clinical Effect of IDH1 and IDH2 Mutations Among Cytogenetically Normal Acute Myeloid Leukemia Patients. Clin Lymphoma Myeloma Leuk. 2015;15(9):550–5. doi: 10.1016/j.clml.2015.05.009.
  23. Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28(14):2348–55. doi: 10.1200/JCO.2009.27.3730.
  24. Белоцерковская Е.В., Зайкова Е.К., Петухов А.В. и др. Выявление мутаций генов эпигенетической регуляции генома IDH1/2, DNMT3A, ASXL1 и их сочетания с мутациями FLT3, NPM1, RUNX1 у пациентов с острыми миелоидными лейкозами. Клиническая онкогематология. 2021;14(1):13–21. doi: 10.21320/2500-2139-2021-14-1-13-21.
  25. [Belotserkovskaya EV, Zaikova EK, Petukhov AV, et al. Identification of Mutations in IDH1/2, DNMT3A, ASXL1 Genes of Genome Epigenetic Regulation and Their Co-Occurrence with FLT3, NPM1, RUNX1 Mutations in Acute Myeloid Leukemia. Clinical oncohematology. 2021;14(1):13–21. doi: 10.21320/2500-2139-2021-14-1-13-21. (In Russ)]
  26. ElNahass YH, Badawy RH, ElRefaey FA, et al. IDH Mutations in AML Patients; A higher Association with Intermediate Risk Cytogenetics. Asian Pac J Cancer Prev. 2020;21(3):721–5. doi: 10.31557/APJCP.2020.21.3.721.
  27. Molenaar RJ, Thota S, Nagata Y, et al. Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia. 2015;29(11):2134–42. doi: 10.1038/leu.2015.91.
  28. Xu Q, Li Y, Lv N, et al. Correlation Between Isocitrate Dehydrogenase Gene Aberrations and Prognosis of Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Clin Cancer Res. 2017;23(15):4511–22. doi: 10.1158/1078-0432.CCR-16-2628.
  29. Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol. 2019;56(2):84–9. doi: 10.1053/j.seminhematol.2018.08.001.
  30. Park DJ, Kwon A, Cho BS, et al. Characteristics of DNMT3A mutations in acute myeloid leukemia. Blood Res. 2020;55(1):17–26. doi: 10.5045/br.2020.55.1.17.
  31. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. doi: 10.1056/NEJMoa1005143.
  32. Wang M, Yang C, Zhang L, Schaar DG. Molecular Mutations and Their Cooccurrences in Cytogenetically Normal Acute Myeloid Leukemia. Stem Cells Int. 2017;2017:6962379. doi: 10.1155/2017/6962379.
  33. Ostronoff F, Othus M, Ho PA, et al. Mutations in the DNMT3A exon 23 independently predict poor outcome in older patients with acute myeloid leukemia: a SWOG report. Leukemia. 2013;27(1):238–41. doi: 10.1038/leu.2012.168.
  34. Gaidzik VI, Schlenk RF, Paschka P, et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood. 2013;121(23):4769–77. doi: 10.1182/blood-2012-10-461624.
  35. Roller A, Grossmann V, Bacher U, et al. Landmark analysis of DNMT3A mutations in hematological malignancies. Leukemia. 2013;27(7):1573–8. doi: 10.1038/leu.2013.65.
  36. Kihara R, Nagata Y, Kiyoi H, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014;28(8):1586–95. doi: 10.1038/leu.2014.55.
  37. Dunlap JB, Leonard J, Rosenberg M, et al. The combination of NPM1, DNMT3A, and IDH1/2 mutations leads to inferior overall survival in AML. Am J Hematol. 2019;94(8):913–20. doi: 10.1002/ajh.25517.
  38. Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
  39. Asada S, Fujino T, Goyama S, Kitamura T. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci. 2019;76(13):2511–23. doi: 10.1007/s00018-019-03084-7.
  40. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209–21. doi: 10.1056/NEJMoa1516192.
  41. Pratcorona M, Abbas S, Sanders MA, et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica. 2012;97(3):388–92. doi: 10.3324/haematol.2011.051532.
  42. Bohl SR, Bullinger L, Rucker FG. Epigenetic therapy: azacytidine and decitabine in acute myeloid leukemia. Expert Rev Hematol. 2018;11(5):361–71. doi: 10.1080/17474086.2018.1453802.
  43. NCCN Clinical Practice Guidelines in Oncology. Acute Myeloid Leukemia. Version 1.2022. (Internet) Available from: https://www.nccn.org/professionals/physician_gls/pdf/aml_blocks.pdf. (accessed 20.05.2022).
  44. Carter JL, Hege K, Yang J, et al. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther. 2020;5(1):288. doi: 10.1038/s41392-020-00361-x.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.