Аннотация
Благодаря совершенствованию скрининга, диагностики и методов лечения в современной онкологии значительно улучшились показатели выживаемости пациентов со злокачественными новообразованиями. Среди наиболее перспективных направлений в лечении выделяется новый метод иммунотерапии T-клетками, экспрессирующими химерные антигенные рецепторы (Chimeric Antigen Receptor T-cell, CAR T). Наиболее активно CAR T-клеточная терапия используется в онкогематологии. Однако, несмотря на эффективность новых методов лечения, в т. ч. CAR T-клеточной терапии, все больше накапливается данных о побочных эффектах. Одним из наиболее частых осложнений (около 1/3 всех больных) является кардиоваскулярная токсичность (КВТ), которая характеризуется высокими показателями летальности. Этим объясняется активное развитие нового междисциплинарного направления — кардиоонкологии, в рамках которой изучаются сердечно-сосудистые осложнения противоопухолевой терапии, методы их мониторинга и профилактики. В данном обзоре представлены известные к настоящему времени патофизиологические механизмы развития КВТ на фоне CAR T-клеточной терапии. Кроме того, обсуждаются клинические проявления, превентивная тактика и программы мониторинга кардиоваскулярных нежелательных явлений, встречающихся в практике гематолога.
Библиографические ссылки
- Ritchie H, Spooner F, Roser M, et al. Causes of death. Our World in Data; 2018. Available from: https://ourworldindata.org/causes-of-death (accessed 24.05.2024).
- Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023–75. doi: 10.1016/S0140-6736(17)33326-3.
- Nelson MH, Paulos CM. Novel immunotherapies for hematologic malignancies. Immunol Rev. 2015;263(1):90–105. doi: 10.1111/imr.12245.
- Park JH, Riviere I, Wang X, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. doi: 10.1056/NEJMoa1709919.
- Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25. doi: 10.1126/scitranslmed.3008226.
- Turtle CJ, Hanafi L-A, Berger C, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38. doi: 10.1172/JCI85309.
- Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48. doi: 10.1056/NEJMoa1709866.
- Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. doi: 10.1056/NEJMoa1407222.
- Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. doi: 10.1016/S0140-6736(14)61403-3.
- Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–8. doi: 10.1038/nm.4441.
- Turtle CJ, Hay KA, Hanafi LA, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol. 2017;35(26):3010–20. doi: 10.1200/JCO.2017.72.8519.
- Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. doi: 10.1126/scitranslmed.aac5415.
- Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. doi: 10.1056/NEJMoa1707447.
- Turtle CJ, Hanafi LA, Berger C, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med. 2016;8(355):355ra116. doi: 10.1126/scitranslmed.aaf8621.
- Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54. doi: 10.1056/NEJMoa1708566.
- Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9. doi: 10.1200/JCO.2014.56.2025.
- Ali SA, Shi V, Maric I, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016;128(13):1688–700. doi: 10.1182/blood-2016-04-711903.
- Berdeja JG, Lin Y, Raje NS, et al. First-in-human multicenter study of bb2121 anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: updated results. J Clin Oncol. 2017;380(18):1726–37. doi: 10.1200/JCO.2017.35.15_suppl.3010.
- Fan F, Zhao WH, Liu J, et al. Durable remissions with BCMA-specific chimeric antigen receptor (CAR)-modified T cells in patients with refractory/relapsed multiple myeloma. J Clin Oncol. 2017;35(18_suppl):LBA3001. doi: 10.1200/JCO.2017.35.18_suppl.LBA3001.
- Kuwana Y, Asakura Y, Utsunomiya N, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived c regions. Biochem Biophys Res Commun. 1987;149(3):960–8. doi: 10.1016/0006-291X(87)90502-X.
- Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-t-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989;86(24):10024–8. doi: 10.1073/pnas.86.24.10024.
- Eshhar Z, Waks T, Gross G, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 1993;90(2):720–4. doi: 10.1073/pnas.90.2.720.
- Bird RE, Hardman KD, Jacobson JW, et al. Single-chain antigen-binding proteins. Science. 1988;242(4877):423–6. doi: 10.1126/science.3140379.
- Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA. 1988;85(16):5879–83. doi: 10.1073/pnas.85.16.5879.
- Mchayleh W, Bedi P, Sehgal R, Solh M. Chimeric Antigen Receptor T-Cells: The Future Is Now. J Clin Med. 2019;8(2):207. doi: 10.3390/jcm8020207.
- Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol. 2009;21(2):215–23. doi: 10.1016/j.coi.2009.02.009.
- Gong MC, Latouche JB, Krause A, et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia. 1999;1(2):123–7. doi: 10.1038/sj.neo.7900018.
- Brocker T, Karjalainen K. Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med. 1995;181(5):1653–9. doi: 10.1084/jem.181.5.1653.
- Maher J, Brentjens RJ, Gunset G, et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol. 2002;20(1):70–5. doi: 10.1038/nbt0102-70.
- Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer 2021;21(3):145–61. doi: 10.1038/s41568-020-00323-z.
- Munshi NC, Anderson LD, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705–16. doi: 10.1056/NEJMoa2024850.
- Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52. doi: 10.1016/ S0140–6736(20)31366–0.
- Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):1331–42. doi: 10.1056/NEJMoa1914347.
- Frey N, Porter D. Cytokine release syndrome with chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant. 2019;25(4):e123–e127. doi: 10.1016/j.bbmt.2018.12.756.
- Giavridis T, van der Stegen SJC, Eyquem J, et al. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731–8. doi: 10.1038/s41591-018-0041-7.
- Xiao X, Huang S, Chen S, et al. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. J Exp Clin Cancer Res. 2021;40(1):367. doi: 10.1186/s13046-021-02148-6.
- Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25(4):625–38. doi: 10.1016/j.bbmt.2018.12.758.
- Hay KA, Hanafi L-A, Li D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130(21):2295–306. doi: 10.1182/blood-2017-06-793141.
- Yan Z, Zhang H, Cao J, et al. Characteristics and Risk Factors of Cytokine Release Syndrome in Chimeric Antigen Receptor T Cell Treatment. Front Immunol. 2021;12:611366. doi: 10.3389/fimmu.2021.611366.
- Lyon AR, Lopez-Fernandez T, Couch LS, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229–361. doi: 10.1093/eurheartj/ehac244.
- Васюк Ю.А., Гендлин Г.Е., Емелина Е.И. и др. Согласованное мнение Российских экспертов по профилактике, диагностике и лечению сердечно-сосудистой токсичности противоопухолевой терапии. Российский кардиологический журнал. 2021;26(9):152–233. doi: 10.15829/1560-4071-2021-4703. [Vasyuk Yu.A., Gendlin G.E., Emelina E.I., et al. Consensus statement of Russian experts on the prevention, diagnosis and treatment of cardiotoxicity of anticancer therapy. Russian journal of cardiology. 2021;26(9):152–233. doi: 10.15829/1560-4071-2021-4703. (In Russ)]
- Fitzgerald JC, Weiss SL, Maude SL, et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med. 2017;45(2):e124–5. doi: 10.1097/CCM.0000000000002053.
- Burstein DS, Maude S, Grupp S, et al. Cardiac profile of chimeric antigen receptor T cell therapy in children: a single-institution experience. Biol Blood Marrow Transplant. 2018;24(8):1590–5. doi: 10.1016/j.bbmt.2018.05.014.
- Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56. doi: 10.1056/NEJMoa1804980.
- Alvi RM, Frigault MJ, Fradley MG, et al. Cardiovascular events among adults treated with chimeric antigen receptor T-cells (CAR-T). J Am Coll Cardiol. 2019;74(25):3099–108. doi: 10.1016/j.jacc.2019.10.038.
- Ganatra S, Redd R, Hayek SS, et al. Chimeric antigen receptor T-cell therapy-associated cardiomyopathy in patients with refractory or relapsed non-Hodgkin lymphoma. Circulation. 2020;142(17):1687–90. doi: 10.1161/CIRCULATIONAHA.120.048100.
- Shalabi H, Sachdev V, Kulshreshtha A, et al. Impact of cytokine release syndrome on cardiac function following CD19 CAR-T cell therapy in children and young adults with hematological malignancies. J Immunother Cancer. 2020;8(2):e001159. doi: 10.1136/jitc-2020-001159.
- Lefebvre B, Kang Y, Smith AM, et al. Cardiovascular effects of CAR T cell therapy: a retrospective study. JACC Cardio Oncol. 2020;2(2):193–203. doi: 10.1016/j.jaccao.2020.04.012.
- Guha A, Addison D, Jain P, et al. Cardiovascular Events Associated with Chimeric Antigen Receptor T Cell Therapy: Cross-Sectional FDA Adverse Events Reporting System Analysis. Biol Blood Marrow Transplant. 2020;26(12):2211–6. doi: 10.1016/j.bbmt.2020.08.036.
- Goldman A, Maor E, Bomze D, et al. Adverse cardiovascular and pulmonary events associated with chimeric antigen receptor T-cell therapy. J Am Coll Cardiol. 2021;78(18):1800–13. doi: 10.1016/j.jacc.2021.08.044.
- Qi K, Yan Z, Cheng H, et al. An analysis of cardiac disorders associated with chimeric antigen receptor T cell therapy in 126 patients: a single-centre retrospective study. Front Oncol. 2021;11:691064. doi: 10.3389/fonc.2021.691064.
- Brammer JE, Braunstein Z, Katapadi A, et al. Early toxicity and clinical outcomes after chimeric antigen receptor T-cell (CAR-T) therapy for lymphoma. J Immunother Cancer. 2021;9(8):e002303. doi: 10.1136/jitc-2020-002303.
- Steiner RE, Banchs J, Koutroumpakis E, et al. Cardiovascular events in patients treated with chimeric antigen receptor t-cell therapy for aggressive B-cell lymphoma. Haematologica. 2021;107(7):1555–66. doi: 10.3324/haematol.2021.280009.
- Гаврилина О.А., Галстян Г.М., Щекина А.Е. и др. Терапия Т-клетками с химерным антигенным рецептором взрослых больных В-клеточными лимфопролиферативными заболеваниями. Гематология и трансфузиология. 2022;67(1):8–28. doi: 10.35754/0234-5730-2022-67-1-8-28. [Gavrilina O.A., Galstyan G.M., Shchekina A.E., et al. Chimeric antigen receptor T-cell therapy in adult patients with B-cell lymphoproliferative diseases. Russian journal of hematology and transfusiology. 2022;67(1):8–28. doi: 10.35754/0234-5730-2022-67-1-8-28. (In Russ)]
- Pathan N, Hemingway CA, Alizadeh AA, et al. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet. 2004;363(9404):203–9. doi: 10.1016/S0140-6736(03)15326-3.
- Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 2021;18(6):424–34. doi: 10.1038/s41569-020-00492-2.
- Ali A, Boutjdir M, Aromolaran AS. Cardiolipotoxicity, inflammation, and arrhythmias: role for interleukin-6 molecular mechanisms. Front Physiol. 2019;9:1866. doi: 10.3389/fphys.2018.01866.
- Linette GP, Stadtmauer EA, Maus MV, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71. doi: 10.1182/blood-2013-03-490565.
- Беленков Ю.Н., Ильгисонис И.С., Кириченко Ю.Ю., Муртузалиев Ш.М. Кардиоонкология сегодня: анализ первых европейских клинических рекомендаций 2022 г. Кардиология. 2023;63(7):1–13. doi: 10.18087/cardio.2023.7.n2445. [Belenkov Yu.N., Ilgisonis I.S., Kirichenko Yu.Yu., Murtuzaliev Sh.M. Cardio-oncology today: digest of the first European clinical guidelines (2022). Kardiologiia. 2023;63(7):1–13. doi: 10.18087/cardio.2023.7.n2445. (In Russ)]
- Thavendiranathan P, Grant AD, Negishi T, et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61(1):77–84. doi: 10.1016/j.jacc.2012.09.035.
- Ghosh AK, Chen DH, Guha A, et al. CAR T Cell Therapy-Related Cardiovascular Outcomes and Management: Systemic Disease or Direct Cardiotoxicity? JACC CardioOncol. 2020;2(1):97–109. doi: 10.1016/j.jaccao.2020.02.011.
- Gutierrez C, McEvoy C, Mead E, et al. Management of the Critically Ill Adult Chimeric Antigen Receptor-T Cell Therapy Patient: A Critical Care Perspective. Crit Care Med. 2018;46(9):1402–10. doi: 10.1097/CCM.0000000000003258.
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.
Copyright (c) 2024 Клиническая онкогематология