Cardiovascular Toxicity of CAR-T Cell Therapy: A Literature Review
ISSN (print) 1997-6933     ISSN (online) 2500-2139
2024-4
PDF_2024-17-4_404-414 (Russian)

Keywords

hematologic malignancies
CAR-T cell therapy
cardio-oncology
cardiovascular toxicity
cytokine release syndrome
diagnosis
therapy
monitoring

How to Cite

1.
Murtuzaliev S.M., Salakheeva E.Y., Kardovskaya S.A., Kirichenko Y.Y., Siderko E.A., Belenkov Y.N., Ilgisonis I.S. Cardiovascular Toxicity of CAR-T Cell Therapy: A Literature Review. Клиническая онкогематология. 2024;17(4):404-414. doi:10.21320/2500-2139-2024-17-4-404-414

Keywords

Abstract

As a result of advances in screening, diagnosis and treatment methods in modern oncology, survival rates of patients with malignant neoplasms have considerably improved. Among the most promising therapeutic trends, emphasis is on the new immunotherapy method with T-cells expressing chimeric antigen receptors (CAR-T). CAR-T cell therapy is most commonly used in oncohematology. However, despite the efficacy of new therapeutic methods, also CAR-T cell therapy, more and more evidence on side effects becomes available. One of the most common complications (in about 1/3 of all cases) is cardiovascular toxicity (CVT) with high mortality. This accounts for an actively developing new interdisciplinary field of research called cardio-oncology that studies cardiovascular complications of chemotherapy and the methods of their monitoring and prevention. This review covers currently known pathophysiologic mechanisms of CVT on CAR-T cell therapy. Additionally, it discusses clinical manifestations, prevention strategy, and programs for monitoring cardiovascular adverse events reported by hematologists.

PDF_2024-17-4_404-414 (Russian)

References

  1. Ritchie H, Spooner F, Roser M, et al. Causes of death. Our World in Data; 2018. Available from: https://ourworldindata.org/causes-of-death (accessed 24.05.2024).
  2. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023–75. doi: 10.1016/S0140-6736(17)33326-3.
  3. Nelson MH, Paulos CM. Novel immunotherapies for hematologic malignancies. Immunol Rev. 2015;263(1):90–105. doi: 10.1111/imr.12245.
  4. Park JH, Riviere I, Wang X, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. doi: 10.1056/NEJMoa1709919.
  5. Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25. doi: 10.1126/scitranslmed.3008226.
  6. Turtle CJ, Hanafi L-A, Berger C, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38. doi: 10.1172/JCI85309.
  7. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48. doi: 10.1056/NEJMoa1709866.
  8. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. doi: 10.1056/NEJMoa1407222.
  9. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. doi: 10.1016/S0140-6736(14)61403-3.
  10. Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–8. doi: 10.1038/nm.4441.
  11. Turtle CJ, Hay KA, Hanafi LA, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol. 2017;35(26):3010–20. doi: 10.1200/JCO.2017.72.8519.
  12. Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. doi: 10.1126/scitranslmed.aac5415.
  13. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. doi: 10.1056/NEJMoa1707447.
  14. Turtle CJ, Hanafi LA, Berger C, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med. 2016;8(355):355ra116. doi: 10.1126/scitranslmed.aaf8621.
  15. Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54. doi: 10.1056/NEJMoa1708566.
  16. Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9. doi: 10.1200/JCO.2014.56.2025.
  17. Ali SA, Shi V, Maric I, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016;128(13):1688–700. doi: 10.1182/blood-2016-04-711903.
  18. Berdeja JG, Lin Y, Raje NS, et al. First-in-human multicenter study of bb2121 anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: updated results. J Clin Oncol. 2017;380(18):1726–37. doi: 10.1200/JCO.2017.35.15_suppl.3010.
  19. Fan F, Zhao WH, Liu J, et al. Durable remissions with BCMA-specific chimeric antigen receptor (CAR)-modified T cells in patients with refractory/relapsed multiple myeloma. J Clin Oncol. 2017;35(18_suppl):LBA3001. doi: 10.1200/JCO.2017.35.18_suppl.LBA3001.
  20. Kuwana Y, Asakura Y, Utsunomiya N, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived c regions. Biochem Biophys Res Commun. 1987;149(3):960–8. doi: 10.1016/0006-291X(87)90502-X.
  21. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-t-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989;86(24):10024–8. doi: 10.1073/pnas.86.24.10024.
  22. Eshhar Z, Waks T, Gross G, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 1993;90(2):720–4. doi: 10.1073/pnas.90.2.720.
  23. Bird RE, Hardman KD, Jacobson JW, et al. Single-chain antigen-binding proteins. Science. 1988;242(4877):423–6. doi: 10.1126/science.3140379.
  24. Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA. 1988;85(16):5879–83. doi: 10.1073/pnas.85.16.5879.
  25. Mchayleh W, Bedi P, Sehgal R, Solh M. Chimeric Antigen Receptor T-Cells: The Future Is Now. J Clin Med. 2019;8(2):207. doi: 10.3390/jcm8020207.
  26. Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol. 2009;21(2):215–23. doi: 10.1016/j.coi.2009.02.009.
  27. Gong MC, Latouche JB, Krause A, et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia. 1999;1(2):123–7. doi: 10.1038/sj.neo.7900018.
  28. Brocker T, Karjalainen K. Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med. 1995;181(5):1653–9. doi: 10.1084/jem.181.5.1653.
  29. Maher J, Brentjens RJ, Gunset G, et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol. 2002;20(1):70–5. doi: 10.1038/nbt0102-70.
  30. Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer 2021;21(3):145–61. doi: 10.1038/s41568-020-00323-z.
  31. Munshi NC, Anderson LD, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705–16. doi: 10.1056/NEJMoa2024850.
  32. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52. doi: 10.1016/ S0140–6736(20)31366–0.
  33. Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):1331–42. doi: 10.1056/NEJMoa1914347.
  34. Frey N, Porter D. Cytokine release syndrome with chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant. 2019;25(4):e123–e127. doi: 10.1016/j.bbmt.2018.12.756.
  35. Giavridis T, van der Stegen SJC, Eyquem J, et al. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731–8. doi: 10.1038/s41591-018-0041-7.
  36. Xiao X, Huang S, Chen S, et al. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. J Exp Clin Cancer Res. 2021;40(1):367. doi: 10.1186/s13046-021-02148-6.
  37. Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25(4):625–38. doi: 10.1016/j.bbmt.2018.12.758.
  38. Hay KA, Hanafi L-A, Li D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130(21):2295–306. doi: 10.1182/blood-2017-06-793141.
  39. Yan Z, Zhang H, Cao J, et al. Characteristics and Risk Factors of Cytokine Release Syndrome in Chimeric Antigen Receptor T Cell Treatment. Front Immunol. 2021;12:611366. doi: 10.3389/fimmu.2021.611366.
  40. Lyon AR, Lopez-Fernandez T, Couch LS, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229–361. doi: 10.1093/eurheartj/ehac244.
  41. Васюк Ю.А., Гендлин Г.Е., Емелина Е.И. и др. Согласованное мнение Российских экспертов по профилактике, диагностике и лечению сердечно-сосудистой токсичности противоопухолевой терапии. Российский кардиологический журнал. 2021;26(9):152–233. doi: 10.15829/1560-4071-2021-4703. [Vasyuk Yu.A., Gendlin G.E., Emelina E.I., et al. Consensus statement of Russian experts on the prevention, diagnosis and treatment of cardiotoxicity of anticancer therapy. Russian journal of cardiology. 2021;26(9):152–233. doi: 10.15829/1560-4071-2021-4703. (In Russ)]
  42. Fitzgerald JC, Weiss SL, Maude SL, et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med. 2017;45(2):e124–5. doi: 10.1097/CCM.0000000000002053.
  43. Burstein DS, Maude S, Grupp S, et al. Cardiac profile of chimeric antigen receptor T cell therapy in children: a single-institution experience. Biol Blood Marrow Transplant. 2018;24(8):1590–5. doi: 10.1016/j.bbmt.2018.05.014.
  44. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56. doi: 10.1056/NEJMoa1804980.
  45. Alvi RM, Frigault MJ, Fradley MG, et al. Cardiovascular events among adults treated with chimeric antigen receptor T-cells (CAR-T). J Am Coll Cardiol. 2019;74(25):3099–108. doi: 10.1016/j.jacc.2019.10.038.
  46. Ganatra S, Redd R, Hayek SS, et al. Chimeric antigen receptor T-cell therapy-associated cardiomyopathy in patients with refractory or relapsed non-Hodgkin lymphoma. Circulation. 2020;142(17):1687–90. doi: 10.1161/CIRCULATIONAHA.120.048100.
  47. Shalabi H, Sachdev V, Kulshreshtha A, et al. Impact of cytokine release syndrome on cardiac function following CD19 CAR-T cell therapy in children and young adults with hematological malignancies. J Immunother Cancer. 2020;8(2):e001159. doi: 10.1136/jitc-2020-001159.
  48. Lefebvre B, Kang Y, Smith AM, et al. Cardiovascular effects of CAR T cell therapy: a retrospective study. JACC Cardio Oncol. 2020;2(2):193–203. doi: 10.1016/j.jaccao.2020.04.012.
  49. Guha A, Addison D, Jain P, et al. Cardiovascular Events Associated with Chimeric Antigen Receptor T Cell Therapy: Cross-Sectional FDA Adverse Events Reporting System Analysis. Biol Blood Marrow Transplant. 2020;26(12):2211–6. doi: 10.1016/j.bbmt.2020.08.036.
  50. Goldman A, Maor E, Bomze D, et al. Adverse cardiovascular and pulmonary events associated with chimeric antigen receptor T-cell therapy. J Am Coll Cardiol. 2021;78(18):1800–13. doi: 10.1016/j.jacc.2021.08.044.
  51. Qi K, Yan Z, Cheng H, et al. An analysis of cardiac disorders associated with chimeric antigen receptor T cell therapy in 126 patients: a single-centre retrospective study. Front Oncol. 2021;11:691064. doi: 10.3389/fonc.2021.691064.
  52. Brammer JE, Braunstein Z, Katapadi A, et al. Early toxicity and clinical outcomes after chimeric antigen receptor T-cell (CAR-T) therapy for lymphoma. J Immunother Cancer. 2021;9(8):e002303. doi: 10.1136/jitc-2020-002303.
  53. Steiner RE, Banchs J, Koutroumpakis E, et al. Cardiovascular events in patients treated with chimeric antigen receptor t-cell therapy for aggressive B-cell lymphoma. Haematologica. 2021;107(7):1555–66. doi: 10.3324/haematol.2021.280009.
  54. Гаврилина О.А., Галстян Г.М., Щекина А.Е. и др. Терапия Т-клетками с химерным антигенным рецептором взрослых больных В-клеточными лимфопролиферативными заболеваниями. Гематология и трансфузиология. 2022;67(1):8–28. doi: 10.35754/0234-5730-2022-67-1-8-28. [Gavrilina O.A., Galstyan G.M., Shchekina A.E., et al. Chimeric antigen receptor T-cell therapy in adult patients with B-cell lymphoproliferative diseases. Russian journal of hematology and transfusiology. 2022;67(1):8–28. doi: 10.35754/0234-5730-2022-67-1-8-28. (In Russ)]
  55. Pathan N, Hemingway CA, Alizadeh AA, et al. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet. 2004;363(9404):203–9. doi: 10.1016/S0140-6736(03)15326-3.
  56. Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 2021;18(6):424–34. doi: 10.1038/s41569-020-00492-2.
  57. Ali A, Boutjdir M, Aromolaran AS. Cardiolipotoxicity, inflammation, and arrhythmias: role for interleukin-6 molecular mechanisms. Front Physiol. 2019;9:1866. doi: 10.3389/fphys.2018.01866.
  58. Linette GP, Stadtmauer EA, Maus MV, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71. doi: 10.1182/blood-2013-03-490565.
  59. Беленков Ю.Н., Ильгисонис И.С., Кириченко Ю.Ю., Муртузалиев Ш.М. Кардиоонкология сегодня: анализ первых европейских клинических рекомендаций 2022 г. Кардиология. 2023;63(7):1–13. doi: 10.18087/cardio.2023.7.n2445. [Belenkov Yu.N., Ilgisonis I.S., Kirichenko Yu.Yu., Murtuzaliev Sh.M. Cardio-oncology today: digest of the first European clinical guidelines (2022). Kardiologiia. 2023;63(7):1–13. doi: 10.18087/cardio.2023.7.n2445. (In Russ)]
  60. Thavendiranathan P, Grant AD, Negishi T, et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61(1):77–84. doi: 10.1016/j.jacc.2012.09.035.
  61. Ghosh AK, Chen DH, Guha A, et al. CAR T Cell Therapy-Related Cardiovascular Outcomes and Management: Systemic Disease or Direct Cardiotoxicity? JACC CardioOncol. 2020;2(1):97–109. doi: 10.1016/j.jaccao.2020.02.011.
  62. Gutierrez C, McEvoy C, Mead E, et al. Management of the Critically Ill Adult Chimeric Antigen Receptor-T Cell Therapy Patient: A Critical Care Perspective. Crit Care Med. 2018;46(9):1402–10. doi: 10.1097/CCM.0000000000003258.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Clinical Oncohematology