The Prognostic Value of Cytotoxic CD8-Positive Т-Lymphocytes of the Reactive Tumor Microenvironment in Diffuse Large B-Cell Lymphoma
2024-3
PDF_2024-17-3_266-272 (Russian)

Keywords

diffuse large B-cell lymphoma
reactive tumor microenvironment
Т-lymphocytes
CD8
prognosis

How to Cite

1.
Vaneeva E.V., Rosin V.A., Dyakonov D.A., Glubokovskikh N.V. The Prognostic Value of Cytotoxic CD8-Positive Т-Lymphocytes of the Reactive Tumor Microenvironment in Diffuse Large B-Cell Lymphoma. Клиническая онкогематология. 2024;17(3):266-272. doi:10.21320/2500-2139-2024-17-3-266-272

Keywords

Abstract

AIM. To assess the prognostic value of cytotoxic CD8-positive Т-lymphocytes of the reactive tumor microenvironment in diffuse large B-cell lymphoma (DLBCL).

MATERIALS & METHODS. The study enrolled 124 patients with newly diagnosed DLBCL. All patients received the standard R-CHOP first-line immunochemotherapy. Immunochemistry and morphometry were used to assess the relative count of CD8-positive Т-lymphocytes in the biopsy samples of lymph nodes or other tumor tissues. In each biopsy sample, 20 fields of view were analyzed to assess the mean relative count of CD8-positive Т-lymphocytes in the reactive tumor microenvironment. Т-cells were counted by double-blind technique. Patients were aged 23–80 years (median 59 years); there were 62 women and 62 men.

RESULTS. Obtained by ROC-analysis, the threshold value of the CD8-positive Т-lymphocyte count in the reactive tumor microenvironment was 13 %. The subthreshold relative count of cytotoxic CD8-positive Т-lymphocytes (≤ 13 %) was associated with extranodal lesions in DLBCL patients as well as with the lack of complete response to the R-CHOP first-line therapy and worse progression-free (PFS) and overall survival (OS) rates. In the group with the above-threshold (> 13 %) count of CD8-positive Т-lymphocyte, the 5-year PFS was 60 % (median not reached), in the group with the subthreshold count it was 45.3 % (median 39 months; = 0.036); the 5-year OS was 78.3 % (median not reached) and 45.3 % (median 40 months) in the groups with the above- and subthreshold CD8+ T-cell counts, respectively (= 0.001).

CONCLUSION. The results of the present study clearly indicate the need to assess the count of cytotoxic CD8-positive Т-lymphocytes of the reactive tumor microenvironment in DLBCL patients as early as on diagnosis verification. It is likely that this approach will allow clinicians to more accurately predict the course of DLBCL.

PDF_2024-17-3_266-272 (Russian)

References

  1. Sehn LH, Salles G. Diffuse Large B-cell lymphoma. N Engl J Med. 2021;384(9):842–58. doi: 10.1056/NEJMra2027612.
  2. Alaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 2022;36(7):1720–48. doi: 10.1038/s41375-022-01620-2.
  3. Тумян Г.С. Материалы 13-й Международной конференции по злокачественным лимфомам (июнь 2015 г., Лугано). Клиническая онкогематология. 2015;8(4):455–70. [Tumyan G.S. Proceedings of the 13th International Conference on Malignant Lymphoma (June 2015, Lugano). Clinical oncohematology. 2015;8(4):455–70. (In Russ)]
  4. Campo E, Jaffe E, Cook JR, et al. The international consensus classification of mature lymphoid neoplasms: A report from the clinical advisory committee. Blood. 2022;140(11):1229–53. doi: 10.1182/blood.2022015851.
  5. Alizadeh A, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/35000501.
  6. Rong Sh, Di Fu, Lei D, et al. Simplified algorithm for genetic subtyping in diffuse large B-cell lymphoma. Signal Transduct Target Ther. 2023;8(1):145. doi: 10.1038/s41392-023-01358-y.
  7. Vajavaara H, Leivonen S-K, Jоrgensen J, et al. Low lymphocyte-to-monocyte ratio predicts poor outcome in high-risk aggressive large B-cell lymphoma. EJHaem. 2022;3(3):681–7. doi: 10.1002/jha2.409.
  8. Зибиров Р.Ф., Мозеров С.А. Характеристика клеточного микроокружения. Онкология. Журнал им. П.А. Герцена. 2018;7(2):67–72. doi: 10.17116/onkolog20187267-72. [Zibirov R.F., Mozerov S.A. Characterization of the tumor cell microenvironment. Onkologiya. Zhurnal im. P.A. Gertsena. 2018;7(2):67–72. doi: 10.17116/onkolog20187267-72. (In Russ)]
  9. Autio M, Leivonen S-K, Bruck O, et al. Immune cell constitution in the tumor microenvironment predicts the outcome in diffuse large B-cell lymphoma. Haematologica. 2021;106(3):718729. doi: 10.3324/haematol.2019.243626.
  10. Бурместер Г.-Р., Пецутто А. Наглядная иммунология. Пер. с англ., 8-е изд. М.: Лаборатория знаний, 2022. С. 320. [Burmester G.R., Petsutto A. Visual immunology. 8th edition. (Russ. ed.: Burmester G.R., Petsutto A. Naglyadnaya immunologiya. 8-e izd. Moscow: Laboratoriya znanii Publ.; 2022. pp. 320)]
  11. Zheng S, Ma J, Li J, et al. Lower PTEN may be associated with CD8+ T cell exhaustion in diffuse large B-cell lymphoma. Hum Immunol. 2023;84(10):551–60. doi: 10.1016/j.humimm.2023.07.007.
  12. Ennishi D, Takata K, Beguelin W, et al. Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov. 2019;9(4):546–63. doi: 10.1158/2159-8290.CD-18-1090.
  13. Шолохова Е.Н., Зейналова П.А., Османов Е.А. и др. Клиническое значение клеток опухолевого микроокружения при диффузной В-крупноклеточной лимфоме. Вестник ФГБУН «РОНЦ им. Н.Н. Блохина». 2014;25(3–4):81–5. [Sholokhova E.N., Zeinalova P.A., Osmanov E.A., et al. Clinical significance of tumor microenvironment cells in diffuse large B-cell lymphoma. Vestnik FGBUN «RONTs im. N.N. Blokhina». 2014;25(3–4):81–5. (In Russ)]
  14. Ahearne JM, Bhuller K, Hew R, et al. Expression of PD-1 (CD279) and FoxP3 in diffuse large B-cell lymphoma. Virchows Arch. 2014;465(3):351–8. doi: 10.1007/s00428-014-1615-5.
  15. Rajnai H, Heyning FH, Koens L, et al. The density of CD8+ T-cell infiltration and expression of BCL2 predicts outcome of primary diffuse large B-cell lymphoma of bone. Virchows Archiv. 2014;464(2):229–39. doi: 10.1007/s00428-013-1519-9.
  16. Galand С, Donnou S, Molina TJ, et al. Influence of tumor location on the composition of immune infiltrate and its impact on patient survival. Lessons from DCBCL and animal models. Front Immunol. 2012;4(3):98. doi: 10.3389/fimmu.2012.00098.V.3.
  17. Muris JJF, Meijer CJ, Cillessen S, et al. Prognostic significance of activated cytotoxic T-lymphocytes in primary nodal diffuse large B-cell lymphoma. Leukemia. 2004;18(3):589–96. doi: 10.1038/sj.leu.2403240.
  18. Keane C, Gill D, Vari F, et al. CD4(+) tumor infiltrating lymphocytes are prognostic and independent of R-IPI in patients with DLBCL receiving R-CHOP chemo-immunotherapy. Am J Hematol. 2013;88(4):273–6. doi: 10.1002/ajh.23398.
  19. Wellenstein MD, Visser KE. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity. 2018;48(3):399–416. doi: 10.1016/j.immuni.2018.03.004.
  20. Guan Q, Han M, Guo Q, et al. Strategies to reinvigorate exhausted CD8+ T cells in tumor microenvironment. Front Immunol. 2023;14:1204363. doi: 10.3389/fimmu.2023.1204363.
  21. Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6(6):1792. doi: 10.1038/cddis.2015.162.
  22. Cornel AM, Mimpen IL, Nierkens S. MHC class I downregulation in cancer: Underlying mechanisms and potential targets for cancer immunotherapy. Cancers. 2020;12(7):1760. doi: 10.3390/cancers12071760.
  23. Takahara T, Nakamura Sh, Tsuzuki T, et al. The Immunology of DLBCL. Cancers. 2023;15(3):835. doi: 10.3390/cancers15030835.
  24. Wilkinson ST, Vanpatten KA, Fernandez DR, et al. Partial plasma cell differentiation as a mechanism of lost major histocompatibility complex class II expression in diffuse large B-cell lymphoma. Blood. 2012;119(6):1459–67. doi: 10.1182/blood-2011-07-363820.
  25. Cioroianu AI, Stinga PI, Sticlaru L, et al. Tumor Microenvironment in Diffuse Large B-Cell Lymphoma: Role and Prognosis. Anal Cell Pathol. 2019;2019:8586354. doi: 10.1155/2019/8586354.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Clinical Oncohematology