KRAS/NRAS Gene Mutations and the Efficacy of Bortezomib-Based Triplet Induction Therapy in Patients with Newly Diagnosed Multiple Myeloma
2024-3
PDF_2024-17-3_256-265 (Russian)

Keywords

multiple myeloma
KRAS and NRAS gene mutations
bortezomib-based triplet therapy
CD138+ plasma cells

How to Cite

1.
Sergeeva A.M., Surin V.L., Chabaeva Y.A., et al. KRAS/NRAS Gene Mutations and the Efficacy of Bortezomib-Based Triplet Induction Therapy in Patients with Newly Diagnosed Multiple Myeloma. Клиническая онкогематология. 2024;17(3):256-265. doi:10.21320/2500-2139-2024-17-3-256-265

Keywords

Abstract

AIM. To identify the KRAS and NRAS gene mutations in patients with newly diagnosed multiple myeloma (ММ) and to classify them according to the depth of antitumor response to bortezomib-based triplet induction therapy.

MATERIALS & METHODS. The trial enrolled 89 patients with newly diagnosed MM prior to chemotherapy. Among them, there were 45 women and 44 men aged 30–82 years (median 58.5 years). ММ was diagnosed according to IMWG criteria (2014). Bone marrow (BM) plasma cells were isolated from the aspirate using gradient method with subsequent immunomagnetic CD138 marker selection. The KRAS and NRAS gene mutations in BM CD138+ cells were identified with Sanger sequencing method. The proteomic programs MutationTaster, Polyphen2, and FATHMM-XF were used for mutation analysis in the KRAS and NRAS genes. All patients received bortezomib-based triplet chemotherapy as first-line treatment. The response depth was assessed after completing 6 cycles of PAD and VCD regimens. Antitumor response was evaluated according to IMWG (2016) criteria.

RESULTS. The mutation rate in the gene family RAS was 42 % (37/89). The analysis focused on the data from 33 patients with mutations detected and response identified after 6 cycles of treatment. In 22 out of 33 patients, deep response was not achieved, whereas 11 patients showed complete remission (CR) + very good partial remission (VGPR). In the group of patients without mutations in the gene family RAS, the response to therapy meeting the CR + VGPR criteria was 64 % (27/42). The differences appeared to be significant (= 0.008). The clinical data and the evaluation of primary treatment outcomes provided the basis for distinguishing a group of 9 prognostically unfavorable mutations: NRAS Gly13Asp, Gln61His; KRAS Gly12Ala, Gly12Asp, Gly12Val, Gly13Asp, Gln61Arg, Gln61His, and Ala146Val.

CONCLUSION. The mutations in KRAS and NRAS belonging to the gene family RAS had a negative effect on the efficacy of the bortezomib-based triplet induction therapy. Mutation variants in the RAS family genes differed in prognostic significance. The analysis results helped to identify the mutation variants associated with the worse response to therapy: NRAS Gly13Asp, Gln61His; KRAS Gly12Ala, Gly12Asp, Gly12Val, Gly13Asp, Gln61Arg, Gln61His, and Ala146Val.

PDF_2024-17-3_256-265 (Russian)

References

  1. Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017.
  2. Prior I, Lewis P, Mattos C. A Comprehensive Survey of Ras Mutations in Cancer. Cancer Res. 2012;72(10):2457–67. doi: 10.1158/0008-5472.CAN-11-2612.
  3. Cooper GM. Oncogenes. 2nd edition. Massachusetts: Jones and Bartlett Publishers; 1995.
  4. Barbacid M. Ras genes. Annu Rev Biochem. 1987;56:779–827. doi: 10.1146/annurev.bi.56.070187.004023.
  5. Wang J, Liu Y, Li Z, et al. Endogenous Oncogenic Nras Mutation Initiates Hematopoietic Malignancies in a Dose- and Cell Type-Dependent Manner. Blood. 2011;118(2):368–79. doi: 10.1182/blood-2010-12-326058.
  6. Neri A, Knowlest DM, Greco A, et al. Analysis of RAS Oncogene Mutations in Human Lymphoid Malignancies. Proc Natl Acad Sci USA. 1988;85(23):9268–72. doi: 10.1073/pnas.85.23.9268.
  7. Hancock JF. Ras Proteins: Different Signals from Different Locations. Nat Rev Mol Cell Biol. 2003;4(5):373–84. doi: 10.1038/nrm1105.
  8. Bos J, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129(5):865–77. doi: 10.1016/j.cell.2007.05.018.
  9. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci Signal. 2013;6(269):11. doi: 10.1126/scisignal.2004088.
  10. Forbes SA, Beare D, Gunasekaran P, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(Database issue):D805–D811. doi: 10.1093/nar/gku1075.
  11. Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016;129(7):1287–92. doi: 10.1242/jcs.182873.
  12. Zhang J, Wang J, Liu Y, et al. Oncogenic Kras-induced leukemogeneis: hematopoietic stem cells as the initial target and lineage-specific progenitors as the potential targets for final leukemic transformation. Blood. 2009;113(6):1304–14. doi: 10.1182/blood-2008-01-134262.
  13. Manier S, Park J, Capelletti M, et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018;9(1):1691. doi: 10.1038/s41467-018-04001-5.
  14. Neri A, Murphy JP, Cro L, et al. Ras Oncogene Mutation in Multiple Myeloma. J Exp Med. 1989;170(5):1715–25. doi: 10.1084/jem.170.5.1715.
  15. Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of Genomic Evolution and Mutational Profiles in Multiple Myeloma. Nat Commun. 2014;5:2997. doi: 10.1038/ncomms3997.
  16. Walker BA, Boyle EM, Wardell CP, et al. Europe PMC Funders Group Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol. 2015;33(33):3911–20. doi: 10.1200/JCO.2014.59.1503.
  17. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32(12):2604–16. doi: 10.1038/s41375-018-0037-9.
  18. Kumar A, Adhikari S, Kankainen M, Heckman CA. Comparison of Structural and Short Variants Detected by Linked-Read and Whole-Exome Sequencing in Multiple Myeloma. Cancers (Basel). 2021;13(6):1212. doi: 10.3390/cancers13061212.
  19. Bezieau S, Devilder MC, Avet-Loiseau H, et al. High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat. 2001;18(3):212–24. doi: 10.1002/humu.1177.
  20. Johnson JC, Burkhart DL, Haigis KM. Classification of KRAS-Activating Mutations and the Implications for Therapeutic Intervention. Cancer Discov. 2022;12(4):913–23. doi: 10.1158/2159-8290.CD-22-0035.
  21. Raponi M, Winkler H, Dracopoli NC. KRAS mutations predict response to EGFR inhibitors. Curr Opin Pharmacol. 2008;8(4):413–8. doi: 10.1016/j.coph.2008.06.006.
  22. Ihle NT, Byers LA, Kim ES, et al. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst. 2012;104(3):228–39. doi: 10.1093/jnci/djr523.
  23. Ke N, Albers A, Claassen G, et al. One-week 96-well soft agar growth assay for cancer target validation. Biotechniques. 2004;36(5):826–33. doi: 10.2144/04365ST07.
  24. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11–22. doi: 10.1038/nrc969.
  25. Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS, KRAS, and HRAS exhibit different leukemogenic potentials in mice. Cancer Res. 2007;67(15):7139–46. doi: 10.1158/0008-5472.CAN-07-0778.
  26. Smith MJ, Neel BG, Ikura M. NMR-based functional profiling of RASopathies and oncogenic RAS mutations. Proc Natl Acad Sci USA. 2013;110(12):4574–9. doi: 10.1073/pnas.1218173110.
  27. Clark GJ, Cox AD, Graham SM, Der CJ. Biological assays for Ras transformation. Methods Enzymol. 1995;255:395–412. doi: 10.1016/s0076-6879(95)55042-9.
  28. Ostrem JM, Shokat KM. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat Rev Drug Discov. 2016;15(11):771–85. doi: 10.1038/nrd.2016.139.
  29. Rowley M, Van Ness B. Activation of N-ras and K-ras induced by interleukin-6 in a myeloma cell line: implications for disease progression and therapeutic response. Oncogene. 2002;21(57):8769–75. doi: 10.1038/sj.onc.1205387.
  30. Billadeau D, Jelinek DF, Shah N, et al. Introduction of an activated N-ras oncogene alters the growth characteristics of the interleukin 6-dependent myeloma cell line ANBL6. Cancer Res. 1995;55(16):3640–6.
  31. Hamad NM, Elconin JH, Karnoub AE, et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 2002;16(16):2045–57. doi: 10.1101/gad.993902.
  32. Wen Z, Rajagopalan A, Flietner ED, et al. Expression of NrasQ61R and MYC transgene in germinal center B cells induces a highly malignant multiple myeloma in mice. Blood. 2021;137(1):61–74. doi: 10.1182/blood.2020007156.
  33. Li Q, Haigis KM, McDaniel A, et al. Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. Blood. 2011;117(6):2022–32. doi: 10.1182/blood-2010-04-280750.
  34. Prideaux SM, Conway O’Brien E, Chevassut TJ. The genetic architecture of multiple myeloma. Adv Hematol. 2014;2014:864058. doi: 10.1155/2014/864058.
  35. Mulligan G, Lichter DI, Di Bacco A, et al. Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy. Blood. 2014;123(5):632–9. doi: 10.1182/blood-2013-05-504340.
  36. Gebauer N, Biersack H, Czerwinska AC, et al. Favorable prognostic impact of RAS mutation status in multiple myeloma treated with high-dose melphalan and autologous stem cell support in the era of novel agents: a single center perspective. Leuk Lymphoma. 2016;57(1):226–9. doi: 10.3109/10428194.2015.1046863.
  37. Steinbrunn T, Stuhmer T, Gattenlohner S, et al. Mutated RAS and constitutively activated Akt delineate distinct oncogenic pathways, which independently contribute to multiple myeloma cell survival. Blood. 2011;117(6):1998–2004. doi: 10.1182/blood-2010-05-284422.
  38. Chng WJ, Gonzalez-Paz N, Price-Troska T, et al. Clinical and biological significance of RAS mutations in multiple myeloma. Leukemia. 2008;22(12):2280–4. doi: 10.1038/leu.2008.142.
  39. Rasmussen T, Kuehl M, Lodahl M, et al. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood. 2005;105(1):317–23. doi: 10.1182/blood-2004-03-0833.
  40. Leich E, Steinbrunn T. RAS mutations – for better or for worse in multiple myeloma?. Leuk Lymphoma. 2016;57(1):8–9. doi: 10.3109/10428194.2015.1065984.
  41. Kim Y, Park SS, Min CK, et al. KRAS, NRAS, and BRAF mutations in plasma cell myeloma at a single Korean institute. Blood Res. 2020;55(3):159–68. doi: 10.5045/br.2020.2020137.
  42. Weiss BM, Abadie J, Verma P, et al. A monoclonal gammopathy precedes multiple myeloma in most patients. Blood. 2009;113(22):5418–22. doi: 10.1182/blood-2008-12-195008.
  43. Chng WJ, Glebov O, Bergsagel PL, Kuehl WM. Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol. 2007;20(4):571–96. doi: 10.1016/j.beha.2007.08.004.
  44. Bustoros M, Sklavenitis-Pistofidis R, Park J, et al. Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. J Clin Oncol. 2020;38(21):2380–9. doi: 10.1200/JCO.20.00437.
  45. Greenberg AJ, Rajkumar SV, Vachon CM. Familial monoclonal gammopathy of undetermined significance and multiple myeloma: epidemiology, risk factors, and biological characteristics. Blood. 2012;119(23):5359–66. doi: 10.1182/blood-2011-11-387324.
  46. Mikulasova A, Wardell CP, Murison A, et al. The spectrum of somatic mutations in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape than that in multiple myeloma. Haematologica. 2017;102(9):1617–25. doi: 10.3324/haematol.2017.163766.
  47. Downward J. RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize?. Clin Cancer Res. 2015;21(8):1802–9. doi: 10.1158/1078-0432.CCR-14-2180.
  48. John L, Krauth MT, Podar K, Raab MS. Pathway-Directed Therapy in Multiple Myeloma. Cancers (Basel). 2021;13(7):1668. doi: 10.3390/cancers13071668.
  49. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7(8):575–6. doi: 10.1038/nmeth0810-575.
  50. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9. doi: 10.1038/nmeth0410-248.
  51. Shihab HA, Gough J, Cooper DN, et al. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics. 2013;29(12):1504–10. doi: 10.1093/bioinformatics/btt182.
  52. Kerr ID, Cox HC, Moyes K, et al. Assessment of in silico protein sequence analysis in the clinical classification of variants in cancer risk genes. J Community Genet. 2017;8(2):87–95. doi: 10.1007/s12687-016-0289-x.
  53. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e346. doi: 10.1016/S1470-2045(16)30206-6.
  54. Сергеева А.М., Абрамова Т.В., Сурин В.Л. и др. Сравнение молекулярно-генетической структуры опухолевых клеток до лечения и после констатации рецидива множественной миеломы (краткий обзор и описание клинического случая). Гематология и трансфузиология. 2019;64(3):362–74. doi: 10.35754/0234-5730-2019-64-3-362-374. [Sergeeva A.M., Abramova T.V., Surin V.L., et al. Molecular Genetic Structure of Multiple Myeloma Tumour Cells Prior to Treatment and at the Time of Relapse: Short Review and Case Report. Russian journal of hematology and transfusiology. 2019;64(3):362–74. doi: 10.35754/0234-5730-2019-64-3-362-374. (In Russ)]
  55. Tuveson DA, Shaw AT, Willis NA, et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell. 2004;5(4):375–87. doi: 10.1016/s1535-6108(04)00085-6.
  56. Silva TC, Colaprico A, Olsen C, et al. TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages. F1000Res. 2016;5:1542. doi: 10.12688/f1000research.8923.2.
  57. Chng WJ, Gonzalez-Paz N, Price-Troska T, et al. Clinical and biological significance of RAS mutations in multiple myeloma. Leukemia. 2008;22(12):2280–4. doi: 10.1038/leu.2008.142.
  58. Нарейко М.В. Особенности экспрессии генов C-MYC, CCND1, MMSET и мутационный статус генов семейства RAS при множественной миеломе: Дис. … канд. мед. наук. М., 2017. 128 с. [Nareiko M.V. Osobennosti ekspressii genov C-MYC, CCND1, MMSET i mutatsionnyi status genov semeistva RAS pri mnozhestvennoi mielome. (Characteristic features of the C-MYC, CCND1, and MMSET gene expression and mutation status in the gene family RAS in multiple myeloma.) [dissertation] Moscow; 2017. 128 p. (In Russ)]
  59. Janakiraman M, Vakiani E, Zeng Z, et al. Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res. 2010;70(14):5901–11. doi: 10.1158/0008-5472.CAN-10-0192.
  60. Jones JR, Weinhold N, Ashby C, et al. Clonal evolution in myeloma: the impact of maintenance lenalidomide and depth of response on the genetics and sub-clonal structure of relapsed disease in uniformly treated newly diagnosed patients. Haematologica. 2019;104(7):1440–50. doi: 10.3324/haematol.2018.202200.
  61. Cercek A, Braghiroli MI, Chou JF, et al. Clinical Features and Outcomes of Patients with Colorectal Cancers Harboring NRAS Mutations. Clin Cancer Res. 2017;23(16):4753–60. doi: 10.1158/1078-0432.CCR-17-0400.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Clinical Oncohematology