Clinical Profile of Adults with Inherited Bone Marrow Failure Syndromes: Results of an Ambispective Clinical Single-Center Study
ISSN (print) 1997-6933     ISSN (online) 2500-2139
2024-3
PDF_2024-17-3_213-224 (Russian)

Keywords

inherited bone marrow failure
aplastic anemia
myelodysplastic syndrome
differential diagnosis
inherited diseases
genetic diagnostics

How to Cite

Kuznetsov Y.N., Golubovskaya I.K., Klimova O.U., Marchenko M.V., Tcvetkov N.Y., Kulagin E.A., Osipova A.A., Bykova T.A., Sadykov A.M., Barkhatov I.M., Bug D.S., Baykov V.V., Kulagin A.D. Clinical Profile of Adults with Inherited Bone Marrow Failure Syndromes: Results of an Ambispective Clinical Single-Center Study. Clinical Oncohematology. 2024;(3):213–224. doi:10.21320/2500-2139-2024-17-3-213-224.

Keywords

Abstract

BACKGROUND. Inherited bone marrow failure syndromes (IBMFS) is a heterogenous group of rare genetically determined diseases with variable hematologic and nonhematologic manifestations. The implementation of highly specific methods of genetic diagnosis advanced the understanding of IBMFS and allowed its application also beyond pediatrics. That presupposes an awareness of clinical features and reference points for recognizing IBMFS in adults.

AIM. To describe the clinical profile of adult IBMFS patients.

MATERIALS & METHODS. This ambispective single-center study enrolled 35 patients (10 women and 25 men) with IBMFS. Patients were aged 18–51 years (median 26 years). The following IBMFS were identified: congenital dyskeratosis (n = 10; 28 %), Diamond-Blackfan anemia (n = 9; 26 %), Fanconi anemia (n = 7; 20 %), GATA2 deficiency (n = 3; 8 %), Shwachman-Diamond syndrome (n = 1; 3 %), GATA2 deficiency (n = 1; 3 %), amegakaryocytic thrombocytopenia (n = 1; 3 %), bone marrow failure syndrome type 3 (n = 1; 3 %), severe congenital neutropenia (n = 1; 3 %), bone marrow failure with SAMD9 mutation (n = 1; 3 %). These diseases were analyzed in terms of hematologic and nonhematologic manifestations as well as main diagnosis stages and factors that contribute to recognizing IBMFS.

RESULTS. Monolinear cytopenia, bilinear cytopenia, and pancytopenia were identified at hematologic onset in 18 (52 %), 6 (17 %), and 11 (31 %) patients, respectively. The median age of patients by hematologic onset was 15 years (range 0–43 years), in 14 (40 %) patients cytopenia was newly diagnosed at the age of > 18 years. In 23 (63 %) patients hypocellular bone marrow was reported, 7 (20 %) and 5 (14 %) patients had pure red cell aplasia and multilineage myelodysplasia, respectively. Chromosomal aberrations were identified in 2 patients. Paroxysmal nocturnal hemoglobinuria clone was detected in none of 27 examined patients. In 12 (34 %) patients, the criteria for non-severe aplastic anemia were met. Temporary partial or complete spontaneous hematologic recovery was observed in 6 (17 %) patients. Abnormalities with partial or complete organ dysfunctions were identified in 14 patients, whereas all patients showed minor congenital defects. All 7 Fanconi anemia patients and 9 out of 10 congenital dyskeratosis patients demonstrated organ damage specific to these diseases. Family history predominantly showing malignant neoplasms in relatives was reported in 15 (43 %) patients. Initial hematological examination yielded suspect of IBMFS in 12 (34 %) patients with the median time to diagnosis of 6 months. In 23 (66 %) patients, hematologic defects with cytopenia were erroneously accounted for by various acquired diseases, which led to a delayed correct diagnosis (median 7 years). The key factors in suspecting IBMFS were organ abnormalities and positive family history. The IBMFS diagnosis was verified by the next-generation sequencing (NGS) in 29 (83 %) patients and by other specific methods in 4 (11 %) patients. In 2 patients, the diagnosis was established on the basis of complete clinical criteria alone.

CONCLUSION. IBMFS is a matter of current concern and a difficult-to-recognize clinical challenge in adult hematology patients. Differential diagnosis of acquired and congenital bone marrow failure needs to be performed irrespective of patient’s age. A detailed physical examination of patients, family history, and critical analysis of clinical profile and disease course allow for early suspicion of IBMFS. Suspected IBMFS is an indication for referral of patients to specialized centers and performing genetic diagnostics including NGS.

PDF_2024-17-3_213-224 (Russian)

References

  1. Wegman-Ostrosky T, Savage SA. The genomics of inherited bone marrow failure: from mechanism to the clinic. Br J Haematol. 2017;177(4):526–42. doi: 10.1111/bjh.14535.
  2. Dokal I, Vulliamy T. Inherited bone marrow failure syndromes. Haematologica. 2010;95(8):1236–40. doi: 10.3324/haematol.2010.025619.
  3. Groarke EM, Young NS, Calvo KR. Distinguishing constitutional from acquired bone marrow failure in the hematology clinic. Best Pract Res Clin Haematol. 2021;34(2):101275. doi: 10.1016/j.beha.2021.101275.
  4. Galvez E, Vallespin E, Arias-Salgado EG, et al. Next-generation Sequencing in Bone Marrow Failure Syndromes and Isolated Cytopenias: Experience of the Spanish Network on Bone Marrow Failure Syndromes. Hemasphere. 2021;5(4):e539. doi: 10.1097/HS9.0000000000000539.
  5. Kim HY, Kim HJ, Kim SH. Genetics and genomics of bone marrow failure syndrome. Blood Res. 2022;57(Suppl 1):86–92. doi: 10.5045/br.2022.2022056.
  6. Wilson DB, Link DC, Mason PJ, Bessler M. Inherited bone marrow failure syndromes in adolescents and young adults. Ann Med. 2014;46(6):353–63. doi: 10.3109/07853890.2014.915579
  7. Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematology Am Soc Hematol Educ Program. 2007:29–39. doi: 10.1182/asheducation-2007.1.29.
  8. Alter BP, Hogan W, Giri N, et al. Diagnosis of Fanconi anemia in an asymptomatic adult with mosaicism and a molecular explanation. Blood. 2009;114(22):4213. doi: 10.1182/blood.V114.22.4213.4213.
  9. Марченко М.В., Кузнецов Ю.Н., Лапина А.В. и др. WHIM-синдром: обзор литературы и описание двух собственных клинических наблюдений в одной семье. Клиническая онкогематология. 2023;16(1):14–26. doi: 10.21320/2500-2139-2023-16-1-14-26. [Marchenko M.V., Kuznetsov Yu.N, Lapina A.V., et al. WHIM Syndrome: A Literature Review and a Report of Two Cases in One Family. Clinical oncohematology. 2023;16(1):14–26. doi: 10.21320/2500-2139-2023-16-1-14-26. (In Russ)]
  10. Лучкин А.В., Михайлова Е.А., Фидарова З.Т. и др. Семейный случай врожденного дискератоза. Клиническое наблюдение. Терапевтический архив. 2021;93(7):818–25. doi: 10.26442/00403660.2021.07.200955. [Luchkin A.V., Mikhailova E.A., Fidarova Z.T., et al. A case report of familial dyskeratosis congenital. Case report. Terapevticheskii arkhiv. 2021;93(7):818–25. doi: 10.26442/00403660.2021.07.200955. (In Russ)]
  11. Doval D, Choudhary D, Sharma SK, et al. Hematopoietic Stem Cell Transplantation for Fanconi Anemia: A Single Center Experience from India. Indian J Hematol Blood Transfus. 2020;36(3):565–8. doi: 10.1007/s12288-020-01254-3.
  12. Strahm B, Loewecke F, Niemeyer CM, et al. Favorable outcomes of hematopoietic stem cell transplantation in children and adolescents with Diamond-Blackfan anemia. Blood Adv. 2020;4(8):1760–9. doi: 10.1182/bloodadvances.2019001210.
  13. Diaz-de-Heredia C, Bresters D, Faulkner L, et al. Recommendations on hematopoietic stem cell transplantation for patients with Diamond–Blackfan anemia. On behalf of the Pediatric Diseases and Severe Aplastic Anemia Working Parties of the EBMT. Bone Marrow Transplant. 2021;56(12):2956–63. doi: 10.1038/s41409-021-01449-w.
  14. Bonfim C, Nichele S, Loth G, et al. Transplantation for Fanconi anaemia: lessons learned from Brazil. Lancet Haematol. 2022;9(3):e228–e236. doi: 10.1016/S2352-3026(22)00032-1.
  15. West AH, Churpek JE. Old and new tools in the clinical diagnosis of inherited bone marrow failure syndromes. Hematology Am Soc Hematol Educ Program. 2017;2017(1):79–87. doi: 10.1182/asheducation-2017.1.79.
  16. Tuysuz G, Guler E, Ozel D, Kupesiz A. Results of Allogenic Hematopoietic Stem Cell Transplantation in Fanconi Anemia Caused by Bone Marrow Failure: Single-Regimen, Single-Center Experience of 14 Years. Biol Blood Marrow Transplant. 2019;25(10):2017–23. doi: 10.1016/j.bbmt.2019.05.039.
  17. Воробьев П.А. Анемический синдром в клинической практике. М.: Ньюдиамед, 2001. 168 с. [Vorob’ev P.A. Anemicheskii sindrom v klinicheskoi praktike. (Anemic syndrome in clinical practice.) Moscow: Nyudiamed Publ.; 2001. 168 p. (In Russ)]
  18. Деордиева Е.А., Щербина А.Ю. Нейтропении в практике детского гематолога/онколога. Онкогематология. 2015;10(1):46–52. doi: 10.17650/1818-8346-2015-1-46-52. [Deordieva E.A., Shcherbina A.Yu. Neutropenia in pediatric hematology/oncology practice. Oncohematology. 2015;10(1):46–52. doi: 10.17650/1818-8346-2015-1-46-52. (In Russ)]
  19. Кулагин А.Д., Лисуков И.А., Козлов В.А. Апластическая анемия: иммунопатогенез, клиника, диагностика, лечение. Новосибирск: Наука, 2008. 236 с. [Kulagin A.D., Lisukov I.A., Kozlov V.A. Aplasticheskaya anemiya: immunopatogenez, klinika, diagnostika, lechenie. (Aplastic anemia: immunopathogenesis, clinical picture, diagnosis, and therapy.) Novosibirsk: Nauka Publ.; 2008. 236 p. (In Russ)]
  20. Долгов В.В., Меньшиков В.В. Клиническая лабораторная диагностика. Национальное руководство. М.: ГЭОТАР-Медиа, 2016. С. 688. [Dolgov V.V., Menshikov V.V. Klinicheskaya laboratornaya diagnostika. Natsionalnoe rukovodstvo. (Clinical laboratory diagnosis. National guidelines.) Moscow: GEOTAR-Media Publ.; 2016. pp. 688 (In Russ)]
  21. Killick SB, Bown N, Cavenagh J, et al. Guidelines for the diagnosis and management of adult aplastic anaemia. Br J Haematol. 2016;172(2):187–207. doi: 10.1111/bjh.13853.
  22. Ковригина А.М., Глинкина С.А., Байков В.В. Принципы патоморфологической дифференциальной диагностики миелодиспластических синдромов. Клиническая онкогематология. 2015;8(1):62–8. doi: 10.21320/2500-2139-2015-8-1-62-68. [Kovrigina A.M., Glinkina S.A., Baikov V.V. Principles of Pathomorphological Differential Diagnosis of Myelodysplastic Syndromes. Clinical oncohematology. 2015;8(1):62–8. doi: 10.21320/2500-2139-2015-8-1-62-68. (In Russ)]
  23. Vlachos A, Ball S, Dahl N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol. 2008;142(6):859–76. doi: 10.1111/j.1365-2141.2008.07269.x.
  24. Цаур Г.А., Ольшанская Ю.В., Обухова Т.Н. и др. Цитогенетическая и молекулярно-генетическая диагностика онкогематологических заболеваний: позиция Организации молекулярных генетиков в онкологии и онкогематологии. Гематология и трансфузиология. 2023;68(1):129–43. doi: 10.35754/0234-5730-2023-68-1-129-143. [Tsaur G.А., Olshanskaya Yu.V., Obukhova T.N., et al. Cytogenetic and molecular genetic diagnostics in oncohematological disorders: a position paper of the Organization of Molecular Geneticists in Oncology and Oncohematology. Russian journal of hematology and transfusiology. 2023;68(1):129–43. doi: 10.35754/0234-5730-2023-68-1-129-143. (In Russ)]
  25. Sipol AA, Babenko EV, Borisov VI, et al. An inter-laboratory comparison of PNH clone detection by high-sensitivity flow cytometry in a Russian cohort. Hematology. 2015;20(1):31–8. doi: 10.1179/1607845414Y.0000000162.
  26. Adam M, Hudgins L. The importance of minor anomalies in the evaluation of the newborn. NeoReviews. 2003;4(4):e99–e103. doi: 10.1542/NEO.4-4-E99.
  27. Bodurtha J. Assessment of the newborn with dysmorphic features. Neonatal Netw. 1999;18(2):27–30. doi: 10.1891/0730-0832.
  28. Al-Dewik N, Samara M, Younes S, et al. Prevalence, predictors, and outcomes of major congenital anomalies: A population-based register study. Sci Rep. 2023;13(1):2198. doi: 10.1038/s41598-023-27935-3.
  29. Tobin DJ, Paus R. Graying: Gerontobiology of the hair follicle pigmentary unit. Exp Gerontol. 2001;36(1):29–54. doi: 10.1016/s0531-5565(00)00210-2.
  30. Genetic Alliance; The New York-Mid-Atlantic Consortium for Genetic and Newborn Screening Services. Understanding Genetics: A New York, Mid-Atlantic Guide for Patients and Health Professionals. Washington: Genetic Alliance; 2009.
  31. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica. 2018;103(1):30–9. doi: 10.3324/haematol.2017.178111.
  32. Wang YM, Loveless M, Miller E, et al. Phenotypes of adults with Fanconi anaemia. Br J Haematol. 2023;201(1):133–9. doi: 10.1111/bjh.18603.
  33. Vlachos A, Ball S, Dahl N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol. 2008;142(6):859–76. doi: 10.1111/j.1365-2141.2008.07269.x
  34. Dokal I. Dyskeratosis congenita. Hematology Am Soc Hematol Educ Program. 2011;2011:480–6. doi: 10.1182/asheducation-2011.1.480.
  35. Agarwal S. Evaluation and Management of Hematopoietic Failure in Dyskeratosi Congenita. Hematol Oncol Clin North Am. 2018;32(4):669–85. doi: 10.1016/j.hoc.2018.04.003.
  36. Кузнецов Ю.Н., Голубовская И.К., Кулагин А.Д. Теломеропатии как мультидисциплинарная проблема. Обзор литературы. Вестник гематологии. 2021;17(4):15–23. [Kuznetsov Yu.N., Golubovskaya I.K., Kulagin A.D. Telomeropathies as a multidisciplinary problem. A literature review. Vestnik gematologii. 2021;17(4):15–23. (In Russ)]
  37. Oostra AB, Nieuwint AWМ, Joenje H, de Winter JP. Diagnosis of Fanconi anemia: chromosomal breakage analysis. Anemia. 2012;2012:238731. doi: 10.1155/2012/238731.
  38. Dokal I, Vulliamy T, Mason P, Bessler M. Clinical utility gene card for: Dyskeratosis congenita – update 2015. Eur J Hum Genet. 2015;23(4). doi: 10.1038/ejhg.2014.170.
  39. Kivioja T, Vaharautio A, Karlsson K, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 2011;9(1):72–4. doi: 10.1038/nmeth.1778.
  40. O’Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–D745. doi: 10.1093/nar/gkv1189.
  41. Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39(Database issue):D945–D950. doi: 10.1093/nar/gkq929.
  42. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43. doi: 10.1038/s41586-020-2308-7.
  43. Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062–D1067. doi: 10.1093/nar/gkx1153.
  44. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8. doi: 10.1038/bmt.2012.244.
  45. Bierings M, Bonfim C, Peffault De Latour R, et al. Transplant results in adults with Fanconi anaemia. Br J Haematol. 2018;180(1):100–9. doi: 10.1111/bjh.15006.
  46. Barbaro P, Vedi A. Survival after Hematopoietic Stem Cell Transplant in Patients with Dyskeratosis Congenita: Systematic Review of the Literature. Biol Blood Marrow Transplant. 2016;22(7):1152–8. doi: 10.1016/j.bbmt.2016.03.001.
  47. Flores Ballester E, Gil-Fernandez JJ, Vazquez Blanco M, et al. Adult-onset Diamond-Blackfan anemia with a novel mutation in the exon 5 of RPL11: too late and too rare. Clin Case Rep. 2015;3(6):392–5. doi: 10.1002/ccr3.240.
  48. Narita A, Miwata S, Imaya M, et al. Minor PNH clones do not distinguish inherited bone marrow failure syndromes from immune-mediated aplastic anemia. Blood Adv. 2022;6(8):2517–9. doi: 10.1182/bloodadvances.2021006044.
  49. DeZern AE, Symons HJ, Resar LS, et al. Detection of paroxysmal nocturnal hemoglobinuria clones to exclude inherited bone marrow failure syndromes. Eur J Haematol. 2014;92(6):467–70. doi: 10.1111/ejh.12299.
  50. Shah YB, Priore SF, Li Y, et al. The predictive value of PNH clones, 6p CN-LOH, and clonal TCR gene rearrangement for aplastic anemia diagnosis. Blood Adv. 2021;5(16):3216–26. doi: 10.1182/bloodadvances.2021004201.
  51. Кулагин А.Д., Климова О.У., Добронравов А.В. и др. Пароксизмальная ночная гемоглобинурия у детей и взрослых: сравнительный клинический профиль и долгосрочный прогноз. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2018;17(3):11–21. doi: 10.24287/1726-1708-2018-17-3-11-21. [Kulagin A.D., Klimova O.U., Dobronravov A.V., et al. Paroxysmal nocturnal hemoglobinuria in children and adults: comparative clinical profile and long-term prognosis. Pediatric Hematology/Oncology and Immunopathology. 2018;17(3):11–21. doi: 10.24287/1726-1708-2018-17-3-11-21. (In Russ)]
  52. Кулагин А.Д., Климова О.У., Добронравов А.В. и др. Клиническая манифестация и ошибки диагностики классической пароксизмальной ночной гемоглобинурии: анализ 150 наблюдений. Клиническая онкогематология. 2017;10(3):333–41. doi: 10.21320/2500-2139-2017-10-3-333-341. [Kulagin A.D., Klimova O.U., Dobronravov A.V., et al. Clinical Manifestation and Errors in the Diagnosis of Classical Paroxysmal Nocturnal Hemoglobinuria: A case series of 150 patients. Clinical oncohematology. 2017;10(3):333–41. doi: 10.21320/2500-2139-2017-10-3-333-341. (In Russ)]
  53. Gutierrez-Rodrigues F, Munger E, Ma X, et al. Differential diagnosis of bone marrow failure syndromes guided by machine learning. Blood. 2023;141(17):2100–13. doi: 10.1182/blood.2022017518.
  54. Alter BP, Rosenberg PS, Day T, et al. Genetic regulation of fetal haemoglobin in inherited bone marrow failure syndromes. Br J Haematol. 2013;162(4):542–6. doi: 10.1111/bjh.12399.
  55. Keel SB, Scott A, Sanchez-Bonilla M, et al. Genetic features of myelodysplastic syndrome and aplastic anemia in pediatric and young adult patients. Haematologica. 2016;101(11):1343–50. doi: 10.3324/haematol.2016.149476.
  56. Shimamura A. Clinical approach to marrow failure. Hematology Am Soc Hematol Educ Program. 2009:329–37. doi: 10.1182/asheducation-2009.1.329.
  57. Imi T, Mizumaki H, Hosomichi K, et al. Familial immune-mediated aplastic anaemia in six different families. EJHaem. 2023;4(3):714–8. doi: 10.1002/jha2.722.
  58. Parry EM, Alder JK, Qi X, et al. Syndrome complex of bone marrow failure and pulmonary fibrosis predicts germline defects in telomerase. Blood. 2011;117(21):5607–11. doi: 10.1182/blood-2010-11-322149.
  59. Uria-Oficialdegui ML, Navarro S, Murillo-Sanjuan L, et al. Dyskeratosis congenita: natural history of the disease through the study of a cohort of patients diagnosed in childhood. Front Pediatr. 2023;11:1182476. doi: 10.3389/fped.2023.1182476.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Clinical Oncohematology