Classic and Activating Chimeric Antigen Receptors PD-1 as an Element of Multi-Target Approach to the Treatment of Hematological and Solid Neoplasms
2023-3
PDF_2023-16-3_268-279 (Russian)

Keywords

CAR-T cell therapy
PD-1
anti-PD-L1 CAR-T effectors
tumor microenvironment
multi-targeted immunotherapy

How to Cite

1.
Levchuk K.A., Goldaev A.A., Stolyarova E.A., et al. Classic and Activating Chimeric Antigen Receptors PD-1 as an Element of Multi-Target Approach to the Treatment of Hematological and Solid Neoplasms. Клиническая онкогематология. 2024;16(3):268-279. doi:10.21320/2500-2139-2023-16-3-268-279

Keywords

Abstract

Aim. To generate anti-PD-L1 CAR-T effectors carrying extracellular domain PD-1 as antigen-recognizing site and to study their cytolytic activity as well as to functionally assess the anti-PD-L1 CAR-T effectors in vitro with a view to apply them in multi-targeted tumor therapy.

Materials & MethodsChimeric antigen receptor PD-1 was constructed using molecular cloning of PD-1 antigen-recognizing region (12–170 amino acids) into mammalian expression plasmid vector adding activation and co-stimulatory domains. Primary Т-lymphocytes of healthy donor peripheral blood mononuclear fraction were derived by expanding monoclonal antibody combination on surface markers CD3/CD28. Anti-PD-L1 CAR-T effectors were obtained by lentiviral transduction of primary T-lymphocyte genome of a healthy donor. Chimeric antigen receptor PD-1 expression and transduction efficiency were assessed by flow cytofluorometry. Specific cytotoxicity of the anti-PD-L1 CAR-T effectors was analyzed in vitro by means of real-time cytotoxicity assay (RTCA) with HeLa_PD-L1 target cell line co-cultivation. The level of cytokines IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ, and IL-17A was assessed by flow cytofluorometry using Human Th1/Th2/Th17 CBA Kit (BD, USA).

Results. The efficiency of lentiviral transduction and the proportion of the anti-PD-L1 CAR-T effectors were 42 %. The specificity of cytotoxic response of the anti-PD-L1 CAR-T effectors with a low effector/tumor ratio (1:20) was verified during HeLa_PD-L1 co-cultivation by a 1.5-fold decrease in the cell index (CI = 0.738) versus control (CI = 1.0645). The increase in synthesis of cytokines IL-2 (1000 pg/mL), IL-6 (438.5 pg/mL), TNF-α (44 pg/mL), and IFN-γ (1034 pg/mL) during HeLa_PD-L1 target cell line co-cultivation confirms the functionality of the analyzed effector cells.

Conclusion. Anti-PD-L1 chimeric antigen receptor was constructed and tested in vitro. Anti-PD-L1 CAR-T lymphocytes specifically recognize and promote the cytolysis of tumor target cells by increased secretion of pro-inflammatory cytokines IFN-γ, TNF-α, IL-6, and IL-2. Chimeric antigen receptor PD-1 can be modified into chimeric switch receptor (CSR) by deleting CD3ζ-domain and can be used together with other CARs without predicted non-specific toxicity.

PDF_2023-16-3_268-279 (Russian)

References

  1. Cerrano M, Ruella M, Perales M-A, et al. The Advent of CAR T-Cell Therapy for Lymphoproliferative Neoplasms: Integrating Research Into Clinical Practice. Front Immunol. 2020;11:888. doi: 10.3389/fimmu.2020.00888.
  2. Lohr J, Knoechel B, Abbas AK. Regulatory T cells in the periphery. Immunol Rev. 2006;212(1):149–62. doi: 10.1111/j.0105-2896.2006.00414.x.
  3. Kershaw MH, Westwood JA, Parker LL, et al. A Phase I Study on Adoptive Immunotherapy Using Gene-Modified T Cells for Ovarian Cancer. Clin Cancer Res. 2006;12(20):6106–15. doi: 10.1158/1078-0432.CCR-06-1183.
  4. Park JR, DiGiusto DL, Slovak M, et al. Adoptive Transfer of Chimeric Antigen Receptor Re-directed Cytolytic T Lymphocyte Clones in Patients with Neuroblastoma. Mol Ther. 2007;15(4):825–33. doi: 10.1038/sj.mt.6300104.
  5. Jafarzadeh L, Masoumi E, Fallah-Mehrjardi K, et al. Prolonged Persistence of Chimeric Antigen Receptor (CAR) T Cell in Adoptive Cancer Immunotherapy: Challenges and Ways Forward. Front Immunol. 2020;11:702. doi: 10.3389/fimmu.2020.00702.
  6. Amini L, Silbert SK, Maude SL, et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat Rev Clin Oncol. 2022;19(5):342–55. doi: 10.1038/s41571-022-00607-3.
  7. Mahadeo KM, Khazal SJ, Abdel-Azim H, et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat Rev Clin Oncol. 2019;16(1):45–63. doi: 10.1038/s41571-018-0075-2.
  8. Ren X, Guo S, Guan X, et al. Immunological Classification of Tumor Types and Advances in Precision Combination Immunotherapy. Front Immunol. 2022;13:790113. doi: 10.3389/fimmu.2022.790113.
  9. Watanabe K, Kuramitsu S, Posey AD, June CH. Expanding the Therapeutic Window for CAR T Cell Therapy in Solid Tumors: The Knowns and Unknowns of CAR T Cell Biology. Front Immunol. 2018;9:2486. doi: 10.3389/fimmu.2018.02486.
  10. Bent EH, Millan-Barea LR, Zhuang I, et al. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy. Nat Commun. 2021;12(1):6218. doi: 10.1038/s41467-021-26407-4.
  11. Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell. 2021;184(1):149–168.e17. doi: 10.1016/j.cell.2020.11.025.
  12. Patel SJ, Sanjana NE, Kishton RJ, et al. Identification of essential genes for cancer immunotherapy. Nature. 2017;548(7669):537–42. doi: 10.1038/nature23477.
  13. Kearney CJ, Vervoort SJ, Hogg SJ, et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci Immunol. 2018;3(23):eaar3451. doi: 10.1126/sciimmunol.aar3451.
  14. Han P, Dai Q, Fan L, et al. Genome-Wide CRISPR Screening Identifies JAK1 Deficiency as a Mechanism of T-Cell Resistance. Front Immunol. 2019;10:251. doi: 10.3389/fimmu.2019.00251.
  15. Larson RC, Kann MC, Bailey SR, et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature. 2022;604(7906):563–70. doi: 10.1038/s41586-022-04585-5.
  16. Mimura K, Teh JL, Okayama H, et al. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci. 2018;109(1):43–53. doi: 10.1111/cas.13424.
  17. Chen S, Crabill GA, Pritchard TS, et al. Mechanisms regulating PD-L1 expression on tumor and immune cells. J Immunother Cancer. 2019;7(1):305. doi: 10.1186/s40425-019-0770-2.
  18. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия. 2017;4(1):49–55. doi: 10.15690/onco.v4i1684.
  19. [Klyuchagina YI, Sokolova ZA, Baryshnikova MA. Role of PD-1 receptor and its ligands PD-L1 and PD-L2 in cancer immunotherapy. Oncopediatrics. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. (In Russ)]
  20. Liu J, Chen Z, Li Y, et al. PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Front Pharmacol. 2021;12:731798. doi: 10.3389/fphar.2021.731798.
  21. Zhulai G, Oleinik E. Targeting regulatory T cells in anti-PD-1/PD-L1 cancer immunotherapy. Scand J Immunol. 2022;95(3):e13129. doi: 10.1111/sji.13129.
  22. Wu M, Huang Q, Xie Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 2022;15(1):24. doi: 10.1186/s13045-022-01242-2.
  23. Jia Q, Wang A, Yuan Y, et al. Heterogeneity of the tumor immune microenvironment and its clinical relevance. Exp Hematol Oncol. 2022;11(1):24. doi: 10.1186/s40164-022-00277-y.
  24. Zhao Y, Liu L, Weng L. Comparisons of Underlying Mechanisms, Clinical Efficacy and Safety Between Anti-PD-1 and Anti-PD-L1 Immunotherapy: The State-of-the-Art Review and Future Perspectives. Front Pharmacol. 2021;12:714483. doi: 10.3389/fphar.2021.714483.
  25. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642–62. doi: 10.1038/nrd4663.
  26. Liu Y-T, Sun Z-J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021;11(11):5365–86. doi: 10.7150/thno.58390.
  27. Rao SG, Jackson JG. SASP: Tumor Suppressor or Promoter? Yes! Trends in Cancer. 2016;2(11):676–87. doi: 10.1016/j.trecan.2016.10.001.
  28. Schmitt CA, Wang B, Demaria M. Senescence and cancer – role and therapeutic opportunities. Nat Rev Clin Oncol. 2022;19(10):619–36. doi: 10.1038/s41571-022-00668-4.
  29. Wang B, Kohli J, Demaria M. Senescent Cells in Cancer Therapy: Friends or Foes? Trends in Cancer. 2020;6(10):838–57. doi: 10.1016/j.trecan.2020.05.004.
  30. Chen C, Gu Y-M, Zhang F, et al. Construction of PD1/CD28 chimeric-switch receptor enhances anti-tumor ability of c-Met CAR-T in gastric cancer. Oncoimmunology. 2021;10(1):1901434. doi: 10.1080/2162402X.2021.1901434.
  31. Biopharma dealmakers. Using immunology to bring new paradigms to oncology therapies (Internet). Available from: https://www.nature.com/articles/d43747-020-00780-3 (accessed 29.032023).
  32. Liu H, Lei W, Zhang C, et al. A phase I trial using CD19 CAR-T expressing PD-1/CD28 chimeric switch-receptor for refractory or relapsed B-cell lymphoma. J Clin Oncol. 2019;37(15_suppl):7557. doi: 10.1200/JCO.2019.37.15_suppl.7557.
  33. Ma Q, He X, Zhang B, et al. A PD-L1-targeting chimeric switch receptor enhances efficacy of CAR-T cell for pleural and peritoneal metastasis. Signal Transduct Target Ther. 2022;7(1):380. doi: 10.1038/s41392-022-01198-2.
  34. Неклесова М.В., Смирнов С.В., Шатилова А.А. и др. Получение специфичных к антигену CD87 CAR T-лимфоцитов и оценка их функциональной активности in vitro. Клиническая онкогематология. 2022;15(4):340–8. doi: 10.21320/2500-2139-2022-15-4-340-348.
  35. [Neklesova MV, Smirnov SV, Shatilova AA, et al. Production of CD87 Antigen-Specific CAR-T Lymphocytes and Assessment of Their In Vitro Functional Activity. Clinical oncohematology. 2022;15(4):340–8. doi: 10.21320/2500-2139-2022-15-4-340-348. (In Russ)]
  36. Зайкова Е.К., Левчук К.A., Поздняков Д.Ю. и др. Эффективная трансдукция Т-лимфоцитов лентивирусными частицами в онкоиммунологических исследованиях. Клиническая онкогематология. 2020;13(3):295–306. doi: 10.21320/2500-2139-2020-13-3-295-306.
  37. [Zaikova EK, Levchuk KA, Pozdnyakov DYu, et al. Efficient Transduction of T-Lymphocytes by Lentiviral Particles in Oncoimmunological Studies. Clinical oncohematology. 2020;13(3):295–306. doi: 10.21320/2500-2139-2020-13-3-295-306. (In Russ)]
  38. Zak KM, Kitel R, Przetocka S, et al. Structure of the Complex of Human Programmed Death 1, PD-1, and Its Ligand PD-L1. Structure. 2015;23(12):2341–8. doi: 10.1016/j.str.2015.09.010.
  39. Tan S, Zhang H, Chai Y, et al. An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nat Commun. 2017;8(1):14369. doi: 10.1038/ncomms14369.
  40. Na Z, Yeo SP, Bharath SR, et al. Structural basis for blocking PD-1-mediated immune suppression by therapeutic antibody pembrolizumab. Cell Res. 2017;27(1):147–50. doi: 10.1038/cr.2016.77.
  41. Левчук К.A., Осипова С.А., Онопченко А.В. и др. Экспериментальное исследование функциональной активности химерного антигенного рецептора NKG2D in vitro и in vivo. Клиническая онкогематология. 2022;15(4):327–39. doi: 10.21320/2500-2139-2022-15-4-327-339.
  42. [Levchuk KA, Osipova SA, Onopchenko AV, et al. Experimental Study of the In Vitro and In Vivo Functional Activity of NKG2D Chimeric Antigen Receptor. Clinical oncohematology. 2022;15(4):327–39. doi: 10.21320/2500-2139-2022-15-4-327-339. (In Russ)]
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.