Theoretical and Practical Aspects of Studying the Fractions of BAALC-Expressing Hematopoietic Stem Cells in Acute Myeloid Leukemia Patients with FLT3 Mutations
ISSN (print) 1997-6933     ISSN (online) 2500-2139
2025-1
PDF_2025-18-1-73-85 (Russian)

Keywords

acute myeloid leukemias
mutations in FLT3/NPM1
leukemic hematopoietic stem cells
overexpression of BAALC
WT1 and EVI1

How to Cite

Mamaev N.N., Kanunnikov M.M., Shakirova A.I., Barkhatov I.M., Sadykov A.M., Ayubova B.I., Gindina T.L., Vlasova J.J., Bondarenko S.N. Theoretical and Practical Aspects of Studying the Fractions of BAALC-Expressing Hematopoietic Stem Cells in Acute Myeloid Leukemia Patients with FLT3 Mutations. Clinical Oncohematology. 2025;(1):73–85. doi:10.21320/2500-2139-2025-18-1-73-85.

Keywords

Abstract

AIM. To study the fractions of BAALC-expressing (BAALC-e) leukemic hematopoietic stem cells (LHSCs) in acute myeloid leukemia (AML) patients with isolated mutations in the FLT3 gene as well as their combinations with the mutations in the NPM1 gene.

MATERIALS & METHODS. The study enrolled adult AML patients with the common element of having isolated FLT3 mutations in the genome (n = 25). The control group (n = 21) consisted of AML patients with mutations in both FLT3 and NPM1. The patients (n = 46) were aged 18–84 years (median 52 years), there were 26 women and 20 men. Non-random chromosomal aberrations, including those of a complex nature (≥ 3 lesions per metaphase), were identified in 13 patients with isolated FLT3 mutation and in 1 patient with both FLT3 and NPM1 mutations. Quantitative real-time PCR was used to measure the level of BAALC, WT1, and EVI1 expressions by the cells in bone marrow aspirate. Thresholds for distinguishing between high and low levels of BAALC and EVI1 expression were considered to be 31 % and 10 %, respectively, and the thresholds for WT1 and FLT3 allele ratio were 250 copies/104 ABL1 copies and 0.5, respectively.

РЕЗУЛЬТАТЫ. An increased BAALC expression level roughly reflecting the fraction size of BAALC-e LHSCs was detected in 20/25 (80 %) patients with isolated FLT3 mutations. This was observed together with an increased level of WT1 (n = 22) and EVI1 (n = 7) expression. In all patients with both FLT3 and NPM1 mutations (control group, n = 21), the BAALC and EVI1 expression levels were below the threshold, which did not affect WT1 expression. This observation suggests to question the random nature of the identified decrease of BAALC and EVI1 expressions, which can be hypothetically accounted for by a low count of CD34-positive LHSCs in the bone marrow of AML patients with NPM1 mutations. Serial measurements of these molecular parameters under therapy for AML with FLT3 +/– NPM1 mutations show the feasibility of their use in assessing the therapy efficacy or the need for its correction, if required.

CONCLUSION. The data presented in this paper clearly indicate that clinical trials need to intensively apply serial analysis of the fractions of BAALC-expressing leukemic HSCs in AML patients with FLT3 mutations. This approach allows for better molecular monitoring of the therapy efficacy for this challenging category of AML patients.

PDF_2025-18-1-73-85 (Russian)

References

  1. 1. Demir D. Insights into the New Molecular Updates in Acute Myeloid Leukemia Pathogenesis. Genes. 2023;14(7):1424. doi: 10.3390/genes14071424.
  2. 2. Kayser S, Levis MJ. The clinical impact of the molecular landscape of acute leukemia. Haematologica. 2023;108(2):308–30. doi: 10.3324/haematol.2022.280801.
  3. 3. Nitika, Wei J, Hui AM. Role of Biomarkers in FLT3 AML. Cancers (Basel). 2022;14(5):1164. doi: 10.3390/cancers14051164.
  4. 4. Dӧhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi: 10.1182/blood-2016-08-733196.
  5. 5. Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood. 2017;129(12):1577–85. doi: 10.1182/blood-2016-10-696054.
  6. 6. Capelli D. FLT3-Mutated Leukemic Stem Cells: Mechanisms of Resistance and New Therapeutic Targets. Cancers (Basel). 2024;16(10):1819. doi: 10.3390/cancers16101819.
  7. 7. Kayser S, Levis MJ. Updates on targeted therapies for acute myeloid leukemia. Br J Haematol. 2022;196(2):316–28. doi: 10.1111 bjh.17746.
  8. 8. Jalte M, Abbassi M, El Mouhi H, et al. FLT3 Mutations in Acute Myeloid Leukemia: Unraveling the Molecular Mechanisms and Implications for Targeted Therapies. Cureus. 2023;15(9):e45765. doi: 10.7759/cureus.45765.
  9. 9. Bystrom R, Levis MJ. An Update on FLT3 in Acute Myeloid Leukemia: Pathophysiology and Therapeutic Landscape. Curr Oncol Rep. 2023;25(4):369–78. doi: 10.1007/s11912-023-01389-2
  10. 10. Fedorov K, Maiti A, Konopleva M. Targeting FLT3 Mutation in Acute Myeloid Leukemia: Current Strategies and Future Directions. Cancers (Basel). 2023;18(8):2312. doi: 10.3390/cancers15082312.
  11. 11. Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299–312. doi: 10.1038/s41375-018-0357-9.
  12. 12. Mamaev NN, Shakirova AI, Kanunnikov MM. BAALC-expressing Cells in Acute Leukemia and Myelodysplastic Syndromes: Present and Future. Generis Publishing; 2022. 95 p.
  13. 13. Мамаев Н.Н., Шакирова А.И., Бархатов И.М. и др. Ведущая роль BAALC-экспрессирующих клеток-предшественниц в возникновении и развитии посттрансплантационных рецидивов у больных острыми миелоидными лейкозами. Клиническая онкогематология. 2020;13(1):75–88. doi: 10.21320/2500-2139-2020-13-1-75-88. [Mamaev N.N., Shakirova A.I., Barkhatov I.M., et al. Crucial Role of BAALC-Expressing Progenitor Cells in Emergence and Development of Post-Transplantation Relapses in Patients with Acute Myeloid Leukemia. Clinical oncohematology. 2020;13(1):75–88. doi: 10.21320/2500-2139-2020-13-1-75-88. (In Russ)]
  14. 14. Канунников М.М., Мамаев Н.Н., Гиндина Т.Л. и др. BAALC-экспрессирующие лейкозные гемопоэтические стволовые клетки и их место в изучении CBF-позитивных острых миелоидных лейкозов у взрослых и детей. Клиническая онкогематология. 2023;16(4):387–98. doi: 10.21320/2500-2139-2023-16-4-387-398. [Kanunnikov M.M., Mamaev N.N., Gindina T.L., et al. BAALC-Expressing Leukemia Hematopoietic Stem Cells and Their Place in the Study of CBF-Positive Acute Myeloid Leukemias in Children and Adults. Clinical oncohematology. 2023;16(4):387–98. doi: 10.21320/2500-2139-2023-16-4-387-398. (In Russ)]
  15. 15. Tanner SM, Austin JL, Leone G, et al. BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hematopoiesis and acute leukemia. Proc Natl Acad Sci USA. 2001;98(24):13901–6. doi: 10.1073/pnas.241525498.
  16. 16. Baldus CD, Tanner SM, Ruppert AS, et al. BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B Study. Blood. 2003;102(5):1613–8. doi: 10.1182/blood-2003-02-0351.
  17. 17. Baldus CD, Thiele C, Soucek S, et al. BAALC Expression and FLT3 Internal Tandem Duplication Mutations in Acute Myeloid Leukemia Patients with Normal Cytogenetics: Prognostic Implications. J Clin Oncol. 2006;24(6):790–7. doi: 10.1200/JCO.2005.01.6253.
  18. 18. Mamaev NN, Shakirova AI, Gindina TL, et al. Quantitative study of BAALC- and WT1-expressing cell precursors in the patients with different cytogenetic and molecular AML variants treated with gemtuzumab ozogamycin and hematopoietic stem cell transplantation. Cell Ther Transplant. 2021;10(1):55–62. doi: 10.18620/ctt-1866-8836-2021-10-1-55-62.
  19. 19. Mamaev NN, Shakirova AI, Barkhatov IM, et al. Evaluation of BAALC- and WT1-expressing leukemic cells precursors in pediatric and adult patients with EVI1-positive AML by means of quantitative real-time polymerase chain reaction (RT-qPCR). Cell Ther Transplant. 2021;10(2):54–9. doi: 10.18620/ctt-1866-8836-2021-10-2-54-59.
  20. 20. Yoon J-H, Kim J, Shin S-H, et al. Implication of higher BAALC expression in combination with other gene mutations in adult cytogenetically normal acute myeloid leukemia. Leuk Lymphoma. 2014;55(1):110–20. doi: 10.3109/10428194.2013.800869.
  21. 21. Metzeler KH, Dufour A, Benthaus T, et al. ERG expression is an independent prognostic factor and allows refined risk stratification in cytogenetically normal acute myeloid leukemia: a comprehensive analysis of ERG, MN1, and BAALC transcript levels using oligonucleotide microarrays. J Clin Oncol. 2009;27(30):5031–8. doi: 10.1200/JCO.2008.20.5328.
  22. 22. Schwind S, Marcucci G, Maharry K, et al. BAALC and ERG expression levels are associated with outcome and distinct gene and microRNA expression profiles in older patients with de novo cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. Blood. 2010;116(25):5660–9. doi: 10.1182/blood-2010-06-290536.
  23. 23. Marjanovic I, Karan-Djurasevic T, Kostic T, et al. Prognostic significance of combined BAALC and MN1 gene expression level in acute myeloid leukemia with normal karyotype. Int J Lab Hematol. 2020;43(3):433–40. doi: 10.1111/ijlh.13405.
  24. 24. Hasan SK, Pakar N, Rajamanickam, et al. Over expression of brain and acute leukemia, cytoplasmic and ETS-related gene is associated with poor outcome in acute myeloid leukemia. Hematol Oncol. 2020;38(5):808–16. doi: 10.1002/hon.2800.
  25. 25. Verma D, Kumar R, Ali MS, et al. BAALC gene expression tells a serious patient outcome tale in NPMI-wild type/FLT3-ITD negative cytogenetically normal-acute myeloid leukemia in adults. Blood Cells Mol Dis. 2022;95:102662. doi: 10.1016/j.bcmd.2022.102662.
  26. 26. Kennedy VE, Smith CC. FLT3 Mutations in Acute Myeloid Leukemia: Key Concepts and Emerging Controversies. Front Oncol. 2020;10:612880. doi: 10.3389/fonc.2020.612880.
  27. 27. Roskoski R. The role of small molecule Flt3 receptor protein-tyrosine kinase inhibitors in the treatment of Flt3-positive acute myelogenous leukemias. Pharmacol Res. 2020;155:104725. doi: 10.1016/j.phrs.2020.104725.
  28. 28. Pratz KW, Sato T, Murphy KM, et al. FLT3-mutant allelic burden and clinical status and predictive of response to FLT3 inhibitors in AML. Blood. 2010;115(7):1425–32. doi: 10.1182/blood-2009-09-242859.
  29. 29. Tarver TC, Hill JE, Rahmat L, et al. Gilteritinib is a clinically active FLT3 inhibitor with broad activity against FLT3 kinase domain mutations. Blood Adv. 2020;4(3):514–24. doi: 10.1182/bloodadvances.2019000919.
  30. 30. Levis M. FLT3 dancing on the stem cells. J Exp Med. 2017;214(7):1857–9. doi: 10.1084/jem.20171056.
  31. 31. Шатилова А.А., Будаева И.Г., Прокопьев И.Е. и др. Гилтеритиниб — новая возможность в лечении рецидивов и рефрактерных острых миелоидных лейкозов с мутацией в гене FLT3: обзор литературы и описание трех собственных клинических наблюдений. Клиническая онкогематология. 2023;16(1):69–79. doi: 10.21320/2500-2139-2023-16-1-69-79. [Shatilova A.A., Budaeva I.G., Prokop’ev I.E. et al. Gilteritinib as a New Option for the Treatment of Relapsed/Refractory Acute Myeloid Leukemias with FLT3 Gene Mutation: A Literature Review and Three Case Reports. Clinical oncohematology. 2023;16(1):69–79. doi: 10.21320/2500-2139-2023-16-1-69-79. (In Russ)]
  32. 32. Бондаренко С.Н., Смирнова А.Г., Аюбова Б.И. и др. Эффективность и безопасность мидостаурина в сочетании с химиотерапией при впервые выявленном остром миелоидном лейкозе с мутацией FLT3. Клиническая онкогематология. 2022;15(2):167–75. doi: 10.21320/2500-2139-2022-15-2-167-175. [Bondarenko S.N., Smirnova A.G., Ayubova B.I., et al. Efficacy and Safety of Midostaurin Combined with Chemotherapy in Newly Diagnosed Acute Myeloid Leukemia with FLT3 Mutation. Clinical oncohematology. 2022;15(2):167–75. doi: 10.21320/2500-2139-2022-15-2-167-175. (In Russ)]
  33. 33. Oran B, Cortes J, Beitinjaneh A, et al. Allogeneic transplantation in first remission improves outcomes irrespective of FLT-ITD allelic ratio in FLT3-ITD-positive acute myelogenous leukemia. Biol Blood Marrow Transplant. 2016;22(7):1218–26. doi: 10.1016/j.bbmt.2016.03.027.
  34. 34. Ho AD, Schetelig J, Bochtler T, et al. Allogeneic stem cell transplantation improves survival in patients with acute myeloid leukemia characterized by a high allelic ratio of mutant FLT3-ITD. Biol Blood Marrow Transplant. 2016;22(3):462–9. doi: 10.1016/j.bbmt.2015.10.023.
  35. 35. Juliusson G, Jadersten M, Deneberg S, et al. The prognostic impact of FLT3-ITD and NPM1 mutation in adult AML is age-dependent in the population-based setting. Blood Adv. 2020;4(6):1094–101. doi: 10.1182/bloodadvances.2019001335.
  36. 36. Nguyen CH, Grandits AM, Vassiliou GS, et al. EVI1 Counteracts Anti-Leukemic and Stem Cell Inhibitory Effects of All-Trans Retinoic Acid on Flt3-ITD/Npm1c-Driven Acute Myeloid Leukemia Cells. Biomedicines. 2020;8(10):385. doi: 10.3390/biomedicines8100385.
  37. 37. Perry M, Bertoli S, Rocher C, et al. FLT3-TKD Mutations Associated With NPM1 Mutations Define a Favorable-risk Group in Patients With Acute Myeloid Leukemia. Clin Lymphoma Myeloma Leuk. 2018;18(12):e545–e550. doi: 10.1016/j.clml.2018.06.006.
  38. 38. Sakaguchi M, Yamaguchi H, Najima Y, et al. Prognostic impact of low allelic ratio FLT3-ITD and NPM1 mutation in acute myeloid leukemia. Blood Adv. 2018;2(20):2744–54. doi: 10.1182/bloodadvances.2018020305.
  39. 39. Гиршова Л.Л., Будаева И.Г., Овсянникова Е.Г. и др. Прогностическое значение и корреляция динамики гиперэкспрессии гена WT1 и мутации гена NPM1 у пациентов с острым миелобластным лейкозом. Клиническая онкогематология. 2017;10(4):485–93. doi: 10.21320/2500-2139-2017-10-4-485-493. [Girshova L.L., Budaeva I.G., Ovsyannikova E.G., et al. Prognostic Value and Correlation Between WT1 Overexpression and NPM1 Mutation in Patients with Acute Myeloblastic Leukemia. Clinical oncohematology. 2017;10(4):485–93. doi: 10.21320/2500-2139-2017-10-4-485-493. (In Russ)]
  40. 40. Lazenby M, Gilkes AF, Marrin C, et al. The prognostic relevance of flt3 and NPM1 mutations on older patients treated intensively or non-intensively: a study of 1312 patients in the UK NCRI AML16 trial. Leukemia. 2014;28(10):1953–9. doi: 10.1038/leu.2014.90.
  41. 41. McGowan-Jordan J, Hastings RJ, Moore S. (eds.) An International System for Human Cytogenomic Nomenclature. Basel; 2020. 170 p.
  42. 42. Shakirova AI, Mamaev NN, Barkhatov IM, et al. Clinical significance of BAALC overexpression for prediction post-transplant relapses in acute myeloid leukemia. Cell Ther Transplant. 2019;8(2):45–57. doi: 10.18620/ctt-1866-8836-02019-8-2-45-57.
  43. 43. Dӧhner H, Wei AH, Roboz GJ, et al. Prognostic impact of NPM1 and FLT3 mutations in patients with AML in first remission treated with oral azacitidine. Blood. 2022;140(15):1674–85. doi: 10.1182/blood.2022016293.
  44. 44. Ashouri K, Chennapan K, Martynova A, et al. Post-stem cell transplant maintenance in FLT3mut acute myeloid leukemia – A retrospective analysis: Outcomes are improved with midostaurin but not with gilteritinib. EJHaem. 2024;5(2):423–7. doi: 10.1002/jha2.885.
  45. 45. Levis MJ, Hamadani M, Logan B, et al. Gilteritinib as Post-Transplant Maintenance for Acute Myeloid Leukemia With Internal Tandem Duplication Mutation of FLT3. J Clin Oncol. 2024;42(15):1766–75. doi: 10.1200/JCO.23.02474.
  46. 46. Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–64. doi: 10.1056/NEJMoa1614359.
  47. 47. Gajendra S, Gupta R, Thakra D, et al. CD34 negative HLA-DR negative acute myeloid leukemias: A higher association with NPM1 and FLT3-ITD mutations. Int J Lab Hematol. 2023;45(2):221–8. doi: 10.1111/ijlh.14007.
  48. 48. Sun J, Ning S, Feng R, et al. Acute myeloid leukemia with cup-like blasts and FLT3-ITD and NPM1 mutations mimics features of acute promyelocytic leukemia: a case of durable remission after sorafenib and low-dose cytarabine. Anticancer Drugs. 2022;33(1):e813–e817. doi: 10.1097/CAD.0000000000001228.
  49. 49. Pepper M, Tan B. Acute myeloid leukemia with NPM1 and FLT3 ITD human member of a novel mammalian mimicking acute promyelocytic leukemia. Blood. 2020;136(12):1467. doi: 10.1182/blood.2020007198.
  50. 50. Falini B, Brunetti, L, Sportoletti P, Martelli MP. NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood. 2020;136(15):1707–21. doi: 10.1182/blood.2019004226.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Clinical Oncohematology