Abstract
AIM. To study the baseline condition of the humoral component in the adaptive immune system and its changes in patients with hematologic malignancies who received the standard chemotherapy with and without monoclonal antibodies (mAb) after a COVID-19 infection.
MATERIALS & METHODS. The study enrolled 51 patients with hematologic malignancies (AL, NHL, cHL, MM, CMPN). They were treated at the NN Burdenko Main Military Clinical Hospital. Patients were aged 24–84 years (median 50.6 years); there were 14 women and 37 men. The control group consisted of 16 healthy medical professionals working at the hospital who had had COVID-19. The main group included a subgroup of patients (n = 21) treated with mAb chemotherapy. In all patients, blood serum was tested for anti-SARS-CoV-2 antibodies of different classes.
RESULTS. Significant differences were identified while assessing the level of IgG antibodies to SARS-CoV-2 S1-protein in lymphoma and multiple myeloma patients (median 431 BAU/mL vs. 667 BAU/mL; p < 0.05) as well as in patients with lymphomas and chronic myeloproliferative neoplasms (median 431 BAU/mL vs. 705 BAU/mL; p < 0.05). The juxtaposition of the control (n = 16) and main (n = 51) groups showed that their median levels of anti-SARS-CoV-2 IgG antibodies did not differ and accounted for 15.7 units. In the groups of patients with (n = 21) and without (n = 30) mAb chemotherapy, by the semi-quantitative method, the median levels of IgM/IgG antibodies to the S1-protein receptor-binding domain and SARS-CoV-2 nucleocapsid proteins accounted for 10.1 units vs. 16.1 units (p < 0.05). In the same groups of patients, the quantitative method yielded the median levels of anti-SARS-CoV-2 S1-protein IgG antibodies of 433 BAU/mL and 595 BAU/mL, respectively (p < 0.05).
CONCLUSION. Patients with hematologic malignancies show a decline in the levels of anti-SARS-CoV-2 S-protein IgG antibodies. Non-recipients of mAb chemotherapy have a higher level of anti-SARS-CoV-2 IgG antibodies. Patients with an indication for mAb chemotherapy (rituximab and obinutuzumab) need to be protected from COVID-19 by means of epidemiological preventive measures. One of them is anti-SARS-CoV-2 vaccination prior to mAb chemotherapy onset or post-exposure prophylaxis with recombinant humanized IgG mAbs tixagevimab + cilgavimab.
References
- Maschmeyer G, De Greef J, Mellinghoff SC, Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European conference on infections in leukemia (ECIL). Leukemia. 2019;33(4):844–62. doi: 10.1038/s41375-019-0388-x.
- Зинченко А.В., Лим В.С., Крюков Е.В. и др. COVID-19 в гематологическом стационаре, течение и исходы. Гематология. Трансфузиология. Восточная Европа. 2021;7(2):131–41. doi: 10.34883/PI.2021.7.2.001. [Zinchenko A.V., Lim V.S., Kryukov E.V., et al. COVID-19 in the Hematology Hospital, Course and Outcomes. Hematology. Transfusiology. Eastern Europe. 2021;7(2):131–41. doi: 10.34883/PI.2021.7.2.001. (In Russ)]
- Van Dam P, Huizing M, Mestach G, et al. SARS-CoV-2 and cancer: are they really partners in crime? Canc Treat Rev. 2020;89:102068. doi: 10.1016/j.ctrv.2020.102068.
- Vijenthira A, Gong IY, Fox TA, et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients. Blood. 2020;136(25):2881–92. doi: 10.1182/blood.2020008824.
- Pinato DJ, Tabernero J, Bower M, et al. Prevalence and impact of COVID-19 sequelae on treatment and survival of patients with cancer who recovered from SARS-CoV-2 infection: evidence from the OnCovid retrospective, multicentre registry study. Lancet Oncol. 2021;22(12):1669–80. doi: 10.1016/S1470-2045(21)00573-8.
- Игнатьева Е.В., Зинченко А.В., Казаков С.П. Рукавицын О.А. Особенности состояния клеточного иммунитета у пациентов с заболеваниями крови, перенесших COVID-19. Гематология. Трансфузиология. Восточная Европа. 2022;8(2):110–21. [Ignateva E.V., Zinchenko A.V., Kazakov S.P. Rukavitsyn O.A. Characteristics of cellular immunity status in hematologic patients after COVID-19. Hematology. Transfusiology. Eastern Europe. 2022;8(2):110–21. (In Russ)]
- Herishanu Y, Avivi I, Aharon A, et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood. 2021;137(23):3165–73. doi: 10.1182/blood.2021011568.
- Azumi I, Xiuqiong B, Quynh TN. Neutralizing-antibody response to SARS-CoV-2 for 12 months after the COVID-19 workplace outbreaks in Japan. PLoS One. 2022;17(8):e0273712. doi: 10.1371/journal.pone.0273712.
- Poland GA, Ovsyannikova IG, Kennedy RB. SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet. 2020;396(10262):1595–606. doi: 10.1016/S0140-6736(20)32137-1.
- Zhang J, Lin H, Ye B, et al. One-year sustained cellular and humoral immunities of COVID-19 convalescents. Clin Infect Dis. 2022;75(1):e1072–e1081. doi: 10.1093/cid/ciab884.
- Wang Z, Muecksch F, Schaefer-Babajew D, et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature. 2021;595(7867):426–31. doi: 10.1038/s41586-021-03696-9.
- Vacharathit V, Srichatrapimuk S, Manopwisedjaroen S, et al. SARS-CoV-2 neutralizing antibodies decline after one year and patients with severe COVID-19 pneumonia display a unique cytokine profile. Int J Infect Dis. 2021;112:227–34. doi: 10.1016/j.ijid.2021.09.021.
- Hall VJ, Foulkes S, Charlett A, et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet. 2021;397(10283):1459–69. doi: 10.1016/S0140-6736(21)00675-9.
- Lumley SF, O’Donnell D, Stoesser NE, et al. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. N Engl J Med. 2021;384(6):533–40. doi: 10.1056/NEJMoa2034545.
- Watson J, Richter A, Deeks J. Testing for SARS-CoV-2 antibodies. BMJ. 2020;370:m3325. doi: 10.1136/bmj.m3325.
- Walsh EE, Frenck RW, Falsey AR, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020;383(25):2439–50. doi: 10.1056/NEJMoa2027906.
- Vabret N, Britton GJ, Gruber C, et al. Immunology of COVID-19: current state of the science. Immunity. 2020;52(5):910–41. doi: 10.1016/j.immuni.2020.05.002.
- Hanrath AT, Payne BAI, Duncan CJA. Prior SARS-CoV-2 infection is associated with protection against symptomatic reinfection. J Infect. 2020;82(4):e29–e30. doi: 10.1016/j.jinf.2020.12.023.
- Holmer HK, Mackey K, Fiordalisi CV, Helfand M. Major Update 2: Antibody Response and Risk for Reinfection After SARS-CoV-2 Infection—Final Update of a Living, Rapid Review. Ann Intern Med. 2023;176(1):85–91. doi: 10.7326/M22-1745.
- Казаков С.П., Решетняк Д.В., Давыдова Н.В., Путков С.Б. Оценка эффективности гуморального иммунного ответа после вакцинации «КовиВаком». Медицинский алфавит. 2022;1(6):18–24. doi: 10.33667/2078-5631-2022-6-18-24. [Kazakov S.P., Reshetnyak D.V., Davydova N.V., Putkov S.B. Evaluation of effectiveness of humoral immune response after vaccination with ‘CoviVaс’. Medical alphabet. 2022;1(6):18–24. doi: 10.33667/2078-5631-2022-6-18-24. (In Russ)]
- Казаков С.П., Решетняк Д.В., Давыдова Н.В. и др. Анализ и сравнительная оценка эффективности гуморального иммунного ответа после вакцинации «Спутник V» с использованием различных наборов реагентов. Инфекция и иммунитет. 2023;13(3):469–80. doi: 10.15789/2220-7619-VRK-1977. [Kazakov S.P., Reshetnyak D.V., Davydova N.V., et al. Various reagent kits for comparatively analyzed effectiveness of humoral immune response after vaccination “Sputnik V”. Russian Journal of Infection and Immunity. 2023;13(3):469–80. doi: 10.15789/2220-7619-VRK-1977. (In Russ)]
- Казаков С.П. Вакцины против новой коронавирусной инфекции: механизмы действия, возможности их применения у онкогематологических пациентов. В кн.: Ведение пациентов онкогематологического профиля в период пандемии COVID-19. Под ред. И.В. Поддубной. М.: Экон-Информ, 2022. С. 4–26. [Kazakov S.P. Vaccines against novel coronavirus infection: mechanisms and potentials for oncohematologic patients during the COVID-19 pandemic. In: Poddubnaya I.V., ed. Vedenie patsientov onkogematologicheskogo profilya v period pandemii COVID-19. (Management of oncohematologic patients during the COVID-19 pandemic.) Moscow: Ekon-Inform Publ.; 2022. pp. 4–26. (In Russ)]
- Pinana JL, Lopez-Corral L, Martino R, et al. SARS-CoV-2 vaccine response and rate of breakthrough infection in patients with hematological disorders. J Hematol Oncol. 2022;15(1):54. doi: 10.1186/s13045-022-01275-7.
- Haggenburg S, Hofsink Q, Rutten CE, et al. SARS-CoV-2 vaccine-induced humoral and cellular immunity in patients with hematologic malignancies. Semin Hematol. 2022;59(4):192–7. doi: 10.1053/j.seminhematol.2022.11.001.
- Игнатьева Е.В., Казаков С.П., Рукавицын О.А. Возможности экстренной профилактики новой коронавирусной инфекции COVID-19 у гематологических пациентов. Кремлевская медицина. Клинический вестник. 2023;3:39–45. doi: 10.48612/cgma/t8bt-rbb1-6k9t. [Ignateva E.V., Kazakov S.P., Rukavitsyn O.A. Potentials of emergent prophylactics of new coronavirus infection COVID-19 in hematological patients. Kremlin Medicine Journal. 2023;3:39–45. doi: 10.48612/cgma/t8bt-rbb1-6k9t. (In Russ)]
- McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Rituximab Chimeric Anti-CD20 Monoclonal Antibody Therapy for Relapsed Indolent Lymphoma: Half of Patients Respond to a Four-Dose Treatment Program. J Clin Oncol. 1998;16(8):2825–33. doi: 10.1200/JCO.1998.16.8.2825.
- Van der Kolk LE, Baars JW, Prins MH, van Oers MH. Rituximab Treatment Results in Impaired Secondary Humoral Immune. Blood. 2002;100(6):2257–9. doi: 10.1182/blood.V100.6.2257.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2024 Clinical Oncohematology