Abstract
AIM. To analyze the bone marrow lymphocyte subpopulation based on targeted assessment of PD-1, PD-L1, and LAG-3 marker expression in chronic lymphocytic leukemia (CLL) patients with different responses to chemotherapy.
MATERIALS & METHODS. In 33 CLL patients, PD-1, PD-L1, and LAG-3 antigen expression on В-, Т-, and NK-cells of the bone marrow (BM) was analyzed by flow cytofluorometry prior to treatment and after 6 cycles of chemotherapy with rituximab. Patients were aged 58–68 years (median 64 years); there were 14 women and 19 men. Hematologic response was assessed by measurements of minimal residual disease (MRD). On this basis, patients were divided into two groups: group 1 (n = 20) with satisfactory hematologic response (MRD < 1 %) and group 2 (n = 13) with unsatisfactory hematologic response (MRD ≥ 1 %).
RESULTS. Prior to treatment, the count of PD-1-, LAG-3-, CD38-, and ZAP-70-expressing BM tumor B-cells was lower in patients of group 1 than in those of group 2. After treatment, their decrease was more pronounced in group 1. Prior to treatment, patients in group 1 had a higher count of BM T-lymphocytes with CD3+, CD4+, CD8+, CD8+/CD28+, CD8+/CD28–, and CD8+/CD38+ phenotype including PD-1- but neither PD-L1- nor LAG-3-expressing T-cells.
After treatment, increased T-cells with CD3+, CD4+, CD8+, Treg, CD8+/CD28+, and CD8+/CD28– phenotype including PD-1+ T-lymphocytes were detected in both groups but more pronounced in group 2. In this group, CD3+ и CD4+ T-lymphocytes maintained LAG-3 expression. Prior to treatment, all patients showed decreased NK-cells in BM. After treatment, group 1 showed a higher count of NK-cells with CD3–/CD16+/CD56+ and CD3–/CD16+/CD56+/PD-1+ phenotype and a lower count of NK-cells with CD3–/CD16+/CD56+/LAG-3+ phenotype. PD-L1 expression in NK-cells was not detected, whereas in Т- and В-cells it was moderate prior to treatment and was not identified after hematologic response was achieved.
CONCLUSION. The values determined by the targeted assessment of PD-1 and LAG-3 expression in BM В-, Т-, and NK-cells prior to chemotherapy may well be used in clinical practice as additional prognostic factors in CLL. PD-1 and LAG-3 overexpression in Т-lymphocytes and NK-cells in CLL patients with MRD-positive status after chemotherapy can be regarded as evidence of the functional deficiency of these cells.
References
- Никитин Е.А., Бялик Т.Е., Зарицкий А.Ю. и др. Хронический лимфоцитарный лейкоз/лимфома из малых лимфоцитов. Современная онкология. 2020;22(3):24–44. doi: 10.26442/18151434.2020.3.200385. [Nikitin E.A., Bialik T.E., Zaritskii A.I., et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma. Journal of Modern Oncology. 2020;22(3):24–44. doi: 10.26442/18151434.2020.3.200385. (In Russ)]
- Гуськова Н.К., Селютина О.Н., Новикова И.А. и др. Морфологические и иммунофенотипические особенности моноклональной популяции В-лимфоцитов при хроническом лимфолейкозе. Южно-российский онкологический журнал. 2020;1(3):27–35. doi: 10.37748/2687-0533-2020-1-3-3. [Guskova N.K., Selyutina O.N., Novikova I.A., et al. Morphological and immunophenotypic features of the monoclonal population of B-lymphocytes in chronic lymphocytic leukemia. South Russian Journal of Cancer. 2020;1(3):27–35. doi: 10.37748/2687-0533-2020-1-3-3. (In Russ)]
- Iyer P, Wang L. Emerging Therapies in CLL in the Era of Precision Medicine. Cancers (Basel). 2023;15(5):1583. doi: 10.3390/cancers15051583.
- Shadman M. Diagnosis and Treatment of Chronic Lymphocytic Leukemia: A Review. JAMA. 2023;329(11):918–32. doi: 10.1001/jama.2023.1946.
- Златник Е.Ю., Новикова И.А., Ульянова Е.П. и др. Иммунологическое микроокружение некоторых злокачественных опухолей: биологические и клинические аспекты. Исследования и практика в медицине. 2019;6(S):120. [Zlatnik E.Yu., Novikova I.A., Ulyanova E.P., et al. Immunological microenvironment of some malignancies: biological and clinical aspects. Issledovaniya i praktika v meditsine. 2019;6(S):120. (In Russ)]
- Семенова Н.Ю., Бессмельцев С.С., Ругаль В.И. Роль дефектов кроветворной и лимфоидной ниш в генезе хронического лимфолейкоза. Клиническая онкогематология. 2016;9(2):176–90. doi: 10.21320/2500-2139-2016-9-2-176-190. [Semenova N.Yu., Bessmel’tsev S.S., Rugal’ V.I. Role of Defects of Hematopoietic and Lymphoid Niches in Genesis of Chronic Lymphocytic Leukemia. Clinical oncohematology. 2016;9(2):176–90. doi: 10.21320/2500-2139-2016-9-2-176-190. (In Russ)]
- Starostka D, Kriegova E, Kudelka M, et al. Quantitative assessment of informative immunophenotypic markers increases the diagnostic value of immunophenotyping in mature CD5-positive B-cell neoplasms. Cytometry B Clin Cytom. 2018;94(4):576–87. doi: 10.1002/cyto.b.21607.
- Селютина О.Н., Гуськова Н.К., Лысенко И.Б., Коновальчик М.А. Профиль экспрессии иммунофенотипических маркерных молекул на В-лимфоцитах у больных хроническим лимфолейкозом на этапах иммунохимиотерапии. Южно-Российский онкологический журнал. 2022;3(4):49–57. doi: 10.37748/2686-9039-2022-3-4-5. [Selyutina O.N., Guskova N.K., Lysenko I.B., Konovalchik M.A. Expression profile of immunophenotypic marker molecules on B-lymphocytes in patients with chronic lymphocytic leukemia at the stages of immunochemotherapy. South Russian Journal of Cancer. 2022;3(4):49–57. doi: 10.37748/2686-9039-2022-3-4-5. (In Russ)]
- Manna A, Aulakh S, Jani P, et al. Targeting CD38 Enhances the Antileukemic Activity of Ibrutinib in Chronic Lymphocytic Leukemia. Clin Cancer Res. 2019;25(13):3974–85. doi: 10.1158/1078-0432.CCR-18-3412.
- Funaro A, De Monte LB, Dianzani U, et al. Human CD38 is associated to distinct molecules which mediate transmembrane signaling in different lineages. Eur J Immunol. 1993;23(10):2407–11. doi: 10.1002/eji.1830231005.
- Chen L, Widhopf G, Huynh L, et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2002;100(13):4609–14. doi: 10.1182/blood-2002-06-1683.
- Wiestner A, Rosenwald A, Barry TS, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood. 2003;101(12):4944–51. doi: 10.1182/blood-2002-10-3306.
- Marin-Acevedo JA, Dholaria B, Soyano AE, et al. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11(1):39. doi: 10.1186/s13045-018-0582-8.
- Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PD-L1 и PDL-2 в иммунотерапии опухолей. Онкопедиатрия. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. [Klyuchagina Yu.I., Sokolova Z.A., Baryshnikova M.A. Role of PD1 receptor and its ligands PD-L1 and PD-L2 in cancer immunotherapy. Onkopediatria. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. (In Russ)]
- Purroy N, Wu CJ. Coevolution of Leukemia and Host Immune Cells in Chronic Lymphocytic Leukemia. Cold Spring Harb Perspect Med. 2017;7(4):a026740. doi: 10.1101/cshperspect.a026740.
- Van Attekum MH, Eldering E, Kater AP. Chronic lymphocytic leukemia cells are active participants in microenvironmental cross-talk. Haematologica. 2017;102(9):1469–76. doi: 10.3324/haematol.2016.142679.
- Palma M, Gentilcore G, Heimersson K, et al. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers. Haematologica. 2017;102(3):562–72. doi: 10.3324/haematol.2016.151100.
- Yano M, Byrd JC, Muthusamy N. Natural Killer Cells in Chronic Lymphocytic Leukemia: Functional Impairment and Therapeutic Potential. Cancers (Basel). 2022;14(23):5787. doi: 10.3390/cancers14235787.
- D’Arena G, Laurenti L, Minervini MM, et al. Regulatory T-cell number is increased in chronic lymphocytic leukemia patients and correlates with progressive disease. Leuk Res. 2011;35(3):363–8. doi: 10.1016/j.leukres.2010.08.010.
- Littwitz-Salomon E, Malyshkina A, Schimmer S, Dittmer U. The Cytotoxic Activity of Natural Killer Cells Is Suppressed by IL-10+ Regulatory T Cells During Acute Retroviral Infection. Front Immunol. 2018;9:1947. doi: 10.3389/fimmu.2018.01947.
- Ghiringhelli F, Menard C, Terme M, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med. 2005;202(8):1075–85. doi: 10.1084/jem.20051511.
- Lad D, Hoeppli R, Huang Q, et al. Regulatory T-cells drive immune dysfunction in CLL. Leuk Lymphoma. 2018;59(2):486–9. doi: 10.1080/10428194.2017.1330475.
- Mpakou VE, Ioannidou HD, Konsta E, et al. Quantitative and qualitative analysis of regulatory T cells in B cell chronic lymphocytic leukemia. Leuk Res. 2017;60:74–81. doi: 10.1016/j.leukres.2017.07.004.
- Hadadi L, Hafezi M, Amirzargar AA, et al. Dysregulated Expression of Tim-3 and NKp30 Receptors on NK Cells of Patients with Chronic Lymphocytic Leukemia. Oncol Res Treat. 2019;42(4):202–8. doi: 10.1159/000497208.
- Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, et al. BTLA/HVEM Axis Induces NK Cell Immunosuppression and Poor Outcome in Chronic Lymphocytic Leukemia. Cancers (Basel). 2021;13(8):1766. doi: 10.3390/cancers13081766.
- Buechele C, Baessler T, Wirths S, et al. Glucocorticoid-induced TNFR-related protein (GITR) ligand modulates cytokine release and NK cell reactivity in chronic lymphocytic leukemia (CLL). Leukemia. 2012;26(5):991–1000. doi: 10.1038/leu.2011.313.
- Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, et al. LAG-3 Blockade with Relatlimab (BMS-986016) Restores Anti-Leukemic Responses in Chronic Lymphocytic Leukemia. Cancers (Basel). 2021;13(9):2112. doi: 10.3390/cancers13092112.
- Griggio V, Perutelli F, Salvetti C, et al. Immune Dysfunctions and Immune-Based Therapeutic Interventions in Chronic Lymphocytic Leukemia. Front Immunol. 2020;11:594556. doi: 10.3389/fimmu.2020.594556.
- Long M, Beckwith K, Do P, et al. Ibrutinib treatment improves T cell number and function in CLL patients. J Clin Invest. 2017;127(8):3052–64. doi: 10.1172/JCI89756.
- Кит О.И., Тимофеева С.В., Ситковская А.О. и др. Биобанк ФГБУ «НМИЦ онкологии» Минздрава России как ресурс для проведения исследований в области персонифицированной медицины. Современная онкология. 2022;24(1):6–11. doi: 10.26442/18151434.2022.1.201384. [Kit O.I., Timofeeva S.V., Sitkovskaya A.O., et al. The biobank of the National Medical Research Centre for Oncology as a resource for research in the field of personalized medicine: A review. Journal of Modern Oncology. 2022;24(1):6–11. doi: 10.26442/18151434.2022.1.201384. (In Russ)]
- Rawstron AC, Villamor N, Ritgen M, et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia. 2007;21(5):956–64. doi: 10.1038/sj.leu.2404584.
- Селютина О.Н., Лысенко И. Б., Гуськова Н.К. и др. Экспрессия LAG-3 на В-лимфоцитах как маркер прогноза ответа на терапию у больных хроническим лимфолейкозом. Сибирский онкологический журнал. 2023;22(2):34–42. doi: 10.21294/1814-4861-2023-22-2-34-42. [Selyutina O.N., Lysenko I.B., Guskova N.K., et al. Expression of LAG-3 on B-lymphocytes as a marker for prediction of response to therapy in patients with chronic lymphocytic leukemia. Siberian journal of oncology. 2023;22(2):34–42. doi: 10.21294/1814-4861-2023-22-2-34-42. (In Russ)]
- Селютина О.Н., Лысенко И. Б., Гуськова Н. К. и др. PD-1 и LAG-3 как ранние маркеры прогноза при терапии больных хроническим лимфолейкозом. Онкогематология. 2023;18(4):156–62. doi: 10.17650/1818-8346-2023-18-4-156-162. [Selyutina O.N., Lysenko I.B., Guskova N.K., et al. PD-1 and LAG-3 as early prognostic markers in the treatment of patients with chronic lymphocytic leukemia. Oncohematology. 2023;18(4):156–62. doi: 10.17650/1818-8346-2023-18-4-156-162. (In Russ)]
- Кит О.И., Селютина О.Н., Лысенко И.Б. и др. Способ прогнозирования течения хронического лимфолейкоза. Патент на изобретение № 2788816 C1 от 24.01.2023. [Kit O.I., Selyutina O.N., Lysenko I.B., et al. A method for predicting the course of chronic lymphocytic leukemia. Patent No. 2788816 C1, 24.01.2023. (In Russ)]
- Huard B, Mastrangeli R, Prigent P, et al. Characterization of the major histocompatibility complex class II binding site on LAG-3 protein. Proc Natl Acad Sci USA. 1997;94(11):5744–9. doi: 10.1073/pnas.94.11.5744.
- Graydon CG, Mohideen S, Fowke KR. LAG3’s Enigmatic Mechanism of Action. Front Immunol. 2021;11:615317. doi: 10.3389/fimmu.2020.615317.
- Chen J, Chen Z. The effect of immune microenvironment on the progression and prognosis of colorectal cancer. Med Oncol. 2014;31(8):82. doi: 10.1007/s12032-014-0082-9.
- Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276(1):80–96. doi: 10.1111/imr.12519.
- Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99. doi: 10.1038/nri3862.
- Ruffo E, Wu RC, Bruno TC, et al. Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. Semin Immunol. 2019;42:101305. doi: 10.1016/j.smim.2019.101305.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2024 Clinical Oncohematology