Bone Marrow Lymphocyte Subpopulation in Chronic Lymphocytic Leukemia Patients with Different Responses to Chemotherapy
ISSN (print) 1997-6933     ISSN (online) 2500-2139
2024-4
PDF_2024-17-4_376-383 (Russian)

Keywords

chronic lymphocytic leukemia
bone marrow
PD-1
PD-L1
LAG-3
hematologic response
minimal residual disease

How to Cite

Selyutina O.N., Zlatnik E.Y., Guskova N.K., Novikova I.A., Lysenko I.B., Sagakyants A.B., Pushkareva T.F., Vladimirova L.Y. Bone Marrow Lymphocyte Subpopulation in Chronic Lymphocytic Leukemia Patients with Different Responses to Chemotherapy. Clinical Oncohematology. 2024;(4):376–383. doi:10.21320/2500-2139-2024-17-4-376-383.

Keywords

Abstract

AIM. To analyze the bone marrow lymphocyte subpopulation based on targeted assessment of PD-1, PD-L1, and LAG-3 marker expression in chronic lymphocytic leukemia (CLL) patients with different responses to chemotherapy.

MATERIALS & METHODS. In 33 CLL patients, PD-1, PD-L1, and LAG-3 antigen expression on В-, Т-, and NK-cells of the bone marrow (BM) was analyzed by flow cytofluorometry prior to treatment and after 6 cycles of chemotherapy with rituximab. Patients were aged 58–68 years (median 64 years); there were 14 women and 19 men. Hematologic response was assessed by measurements of minimal residual disease (MRD). On this basis, patients were divided into two groups: group 1 (n = 20) with satisfactory hematologic response (MRD < 1 %) and group 2 (n = 13) with unsatisfactory hematologic response (MRD ≥ 1 %).

RESULTS. Prior to treatment, the count of PD-1-, LAG-3-, CD38-, and ZAP-70-expressing BM tumor B-cells was lower in patients of group 1 than in those of group 2. After treatment, their decrease was more pronounced in group 1. Prior to treatment, patients in group 1 had a higher count of BM T-lymphocytes with CD3+, CD4+, CD8+, CD8+/CD28+, CD8+/CD28–, and CD8+/CD38+ phenotype including PD-1- but neither PD-L1- nor LAG-3-expressing T-cells.

After treatment, increased T-cells with CD3+, CD4+, CD8+, Treg, CD8+/CD28+, and CD8+/CD28– phenotype including PD-1+ T-lymphocytes were detected in both groups but more pronounced in group 2. In this group, CD3+ и CD4+ T-lymphocytes maintained LAG-3 expression. Prior to treatment, all patients showed decreased NK-cells in BM. After treatment, group 1 showed a higher count of NK-cells with CD3–/CD16+/CD56+ and CD3–/CD16+/CD56+/PD-1+ phenotype and a lower count of NK-cells with CD3–/CD16+/CD56+/LAG-3+ phenotype. PD-L1 expression in NK-cells was not detected, whereas in Т- and В-cells it was moderate prior to treatment and was not identified after hematologic response was achieved.

CONCLUSION. The values determined by the targeted assessment of PD-1 and LAG-3 expression in BM В-, Т-, and NK-cells prior to chemotherapy may well be used in clinical practice as additional prognostic factors in CLL. PD-1 and LAG-3 overexpression in Т-lymphocytes and NK-cells in CLL patients with MRD-positive status after chemotherapy can be regarded as evidence of the functional deficiency of these cells.

PDF_2024-17-4_376-383 (Russian)

References

  1. Никитин Е.А., Бялик Т.Е., Зарицкий А.Ю. и др. Хронический лимфоцитарный лейкоз/лимфома из малых лимфоцитов. Современная онкология. 2020;22(3):24–44. doi: 10.26442/18151434.2020.3.200385. [Nikitin E.A., Bialik T.E., Zaritskii A.I., et al. Chronic lymphocytic leukemia/small lymphocytic lymphoma. Journal of Modern Oncology. 2020;22(3):24–44. doi: 10.26442/18151434.2020.3.200385. (In Russ)]
  2. Гуськова Н.К., Селютина О.Н., Новикова И.А. и др. Морфологические и иммунофенотипические особенности моноклональной популяции В-лимфоцитов при хроническом лимфолейкозе. Южно-российский онкологический журнал. 2020;1(3):27–35. doi: 10.37748/2687-0533-2020-1-3-3. [Guskova N.K., Selyutina O.N., Novikova I.A., et al. Morphological and immunophenotypic features of the monoclonal population of B-lymphocytes in chronic lymphocytic leukemia. South Russian Journal of Cancer. 2020;1(3):27–35. doi: 10.37748/2687-0533-2020-1-3-3. (In Russ)]
  3. Iyer P, Wang L. Emerging Therapies in CLL in the Era of Precision Medicine. Cancers (Basel). 2023;15(5):1583. doi: 10.3390/cancers15051583.
  4. Shadman M. Diagnosis and Treatment of Chronic Lymphocytic Leukemia: A Review. JAMA. 2023;329(11):918–32. doi: 10.1001/jama.2023.1946.
  5. Златник Е.Ю., Новикова И.А., Ульянова Е.П. и др. Иммунологическое микроокружение некоторых злокачественных опухолей: биологические и клинические аспекты. Исследования и практика в медицине. 2019;6(S):120. [Zlatnik E.Yu., Novikova I.A., Ulyanova E.P., et al. Immunological microenvironment of some malignancies: biological and clinical aspects. Issledovaniya i praktika v meditsine. 2019;6(S):120. (In Russ)]
  6. Семенова Н.Ю., Бессмельцев С.С., Ругаль В.И. Роль дефектов кроветворной и лимфоидной ниш в генезе хронического лимфолейкоза. Клиническая онкогематология. 2016;9(2):176–90. doi: 10.21320/2500-2139-2016-9-2-176-190. [Semenova N.Yu., Bessmel’tsev S.S., Rugal’ V.I. Role of Defects of Hematopoietic and Lymphoid Niches in Genesis of Chronic Lymphocytic Leukemia. Clinical oncohematology. 2016;9(2):176–90. doi: 10.21320/2500-2139-2016-9-2-176-190. (In Russ)]
  7. Starostka D, Kriegova E, Kudelka M, et al. Quantitative assessment of informative immunophenotypic markers increases the diagnostic value of immunophenotyping in mature CD5-positive B-cell neoplasms. Cytometry B Clin Cytom. 2018;94(4):576–87. doi: 10.1002/cyto.b.21607.
  8. Селютина О.Н., Гуськова Н.К., Лысенко И.Б., Коновальчик М.А. Профиль экспрессии иммунофенотипических маркерных молекул на В-лимфоцитах у больных хроническим лимфолейкозом на этапах иммунохимиотерапии. Южно-Российский онкологический журнал. 2022;3(4):49–57. doi: 10.37748/2686-9039-2022-3-4-5. [Selyutina O.N., Guskova N.K., Lysenko I.B., Konovalchik M.A. Expression profile of immunophenotypic marker molecules on B-lymphocytes in patients with chronic lymphocytic leukemia at the stages of immunochemotherapy. South Russian Journal of Cancer. 2022;3(4):49–57. doi: 10.37748/2686-9039-2022-3-4-5. (In Russ)]
  9. Manna A, Aulakh S, Jani P, et al. Targeting CD38 Enhances the Antileukemic Activity of Ibrutinib in Chronic Lymphocytic Leukemia. Clin Cancer Res. 2019;25(13):3974–85. doi: 10.1158/1078-0432.CCR-18-3412.
  10. Funaro A, De Monte LB, Dianzani U, et al. Human CD38 is associated to distinct molecules which mediate transmembrane signaling in different lineages. Eur J Immunol. 1993;23(10):2407–11. doi: 10.1002/eji.1830231005.
  11. Chen L, Widhopf G, Huynh L, et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2002;100(13):4609–14. doi: 10.1182/blood-2002-06-1683.
  12. Wiestner A, Rosenwald A, Barry TS, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood. 2003;101(12):4944–51. doi: 10.1182/blood-2002-10-3306.
  13. Marin-Acevedo JA, Dholaria B, Soyano AE, et al. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11(1):39. doi: 10.1186/s13045-018-0582-8.
  14. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PD-L1 и PDL-2 в иммунотерапии опухолей. Онкопедиатрия. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. [Klyuchagina Yu.I., Sokolova Z.A., Baryshnikova M.A. Role of PD1 receptor and its ligands PD-L1 and PD-L2 in cancer immunotherapy. Onkopediatria. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. (In Russ)]
  15. Purroy N, Wu CJ. Coevolution of Leukemia and Host Immune Cells in Chronic Lymphocytic Leukemia. Cold Spring Harb Perspect Med. 2017;7(4):a026740. doi: 10.1101/cshperspect.a026740.
  16. Van Attekum MH, Eldering E, Kater AP. Chronic lymphocytic leukemia cells are active participants in microenvironmental cross-talk. Haematologica. 2017;102(9):1469–76. doi: 10.3324/haematol.2016.142679.
  17. Palma M, Gentilcore G, Heimersson K, et al. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers. Haematologica. 2017;102(3):562–72. doi: 10.3324/haematol.2016.151100.
  18. Yano M, Byrd JC, Muthusamy N. Natural Killer Cells in Chronic Lymphocytic Leukemia: Functional Impairment and Therapeutic Potential. Cancers (Basel). 2022;14(23):5787. doi: 10.3390/cancers14235787.
  19. D’Arena G, Laurenti L, Minervini MM, et al. Regulatory T-cell number is increased in chronic lymphocytic leukemia patients and correlates with progressive disease. Leuk Res. 2011;35(3):363–8. doi: 10.1016/j.leukres.2010.08.010.
  20. Littwitz-Salomon E, Malyshkina A, Schimmer S, Dittmer U. The Cytotoxic Activity of Natural Killer Cells Is Suppressed by IL-10+ Regulatory T Cells During Acute Retroviral Infection. Front Immunol. 2018;9:1947. doi: 10.3389/fimmu.2018.01947.
  21. Ghiringhelli F, Menard C, Terme M, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med. 2005;202(8):1075–85. doi: 10.1084/jem.20051511.
  22. Lad D, Hoeppli R, Huang Q, et al. Regulatory T-cells drive immune dysfunction in CLL. Leuk Lymphoma. 2018;59(2):486–9. doi: 10.1080/10428194.2017.1330475.
  23. Mpakou VE, Ioannidou HD, Konsta E, et al. Quantitative and qualitative analysis of regulatory T cells in B cell chronic lymphocytic leukemia. Leuk Res. 2017;60:74–81. doi: 10.1016/j.leukres.2017.07.004.
  24. Hadadi L, Hafezi M, Amirzargar AA, et al. Dysregulated Expression of Tim-3 and NKp30 Receptors on NK Cells of Patients with Chronic Lymphocytic Leukemia. Oncol Res Treat. 2019;42(4):202–8. doi: 10.1159/000497208.
  25. Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, et al. BTLA/HVEM Axis Induces NK Cell Immunosuppression and Poor Outcome in Chronic Lymphocytic Leukemia. Cancers (Basel). 2021;13(8):1766. doi: 10.3390/cancers13081766.
  26. Buechele C, Baessler T, Wirths S, et al. Glucocorticoid-induced TNFR-related protein (GITR) ligand modulates cytokine release and NK cell reactivity in chronic lymphocytic leukemia (CLL). Leukemia. 2012;26(5):991–1000. doi: 10.1038/leu.2011.313.
  27. Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, et al. LAG-3 Blockade with Relatlimab (BMS-986016) Restores Anti-Leukemic Responses in Chronic Lymphocytic Leukemia. Cancers (Basel). 2021;13(9):2112. doi: 10.3390/cancers13092112.
  28. Griggio V, Perutelli F, Salvetti C, et al. Immune Dysfunctions and Immune-Based Therapeutic Interventions in Chronic Lymphocytic Leukemia. Front Immunol. 2020;11:594556. doi: 10.3389/fimmu.2020.594556.
  29. Long M, Beckwith K, Do P, et al. Ibrutinib treatment improves T cell number and function in CLL patients. J Clin Invest. 2017;127(8):3052–64. doi: 10.1172/JCI89756.
  30. Кит О.И., Тимофеева С.В., Ситковская А.О. и др. Биобанк ФГБУ «НМИЦ онкологии» Минздрава России как ресурс для проведения исследований в области персонифицированной медицины. Современная онкология. 2022;24(1):6–11. doi: 10.26442/18151434.2022.1.201384. [Kit O.I., Timofeeva S.V., Sitkovskaya A.O., et al. The biobank of the National Medical Research Centre for Oncology as a resource for research in the field of personalized medicine: A review. Journal of Modern Oncology. 2022;24(1):6–11. doi: 10.26442/18151434.2022.1.201384. (In Russ)]
  31. Rawstron AC, Villamor N, Ritgen M, et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia. 2007;21(5):956–64. doi: 10.1038/sj.leu.2404584.
  32. Селютина О.Н., Лысенко И. Б., Гуськова Н.К. и др. Экспрессия LAG-3 на В-лимфоцитах как маркер прогноза ответа на терапию у больных хроническим лимфолейкозом. Сибирский онкологический журнал. 2023;22(2):34–42. doi: 10.21294/1814-4861-2023-22-2-34-42. [Selyutina O.N., Lysenko I.B., Guskova N.K., et al. Expression of LAG-3 on B-lymphocytes as a marker for prediction of response to therapy in patients with chronic lymphocytic leukemia. Siberian journal of oncology. 2023;22(2):34–42. doi: 10.21294/1814-4861-2023-22-2-34-42. (In Russ)]
  33. Селютина О.Н., Лысенко И. Б., Гуськова Н. К. и др. PD-1 и LAG-3 как ранние маркеры прогноза при терапии больных хроническим лимфолейкозом. Онкогематология. 2023;18(4):156–62. doi: 10.17650/1818-8346-2023-18-4-156-162. [Selyutina O.N., Lysenko I.B., Guskova N.K., et al. PD-1 and LAG-3 as early prognostic markers in the treatment of patients with chronic lymphocytic leukemia. Oncohematology. 2023;18(4):156–62. doi: 10.17650/1818-8346-2023-18-4-156-162. (In Russ)]
  34. Кит О.И., Селютина О.Н., Лысенко И.Б. и др. Способ прогнозирования течения хронического лимфолейкоза. Патент на изобретение № 2788816 C1 от 24.01.2023. [Kit O.I., Selyutina O.N., Lysenko I.B., et al. A method for predicting the course of chronic lymphocytic leukemia. Patent No. 2788816 C1, 24.01.2023. (In Russ)]
  35. Huard B, Mastrangeli R, Prigent P, et al. Characterization of the major histocompatibility complex class II binding site on LAG-3 protein. Proc Natl Acad Sci USA. 1997;94(11):5744–9. doi: 10.1073/pnas.94.11.5744.
  36. Graydon CG, Mohideen S, Fowke KR. LAG3’s Enigmatic Mechanism of Action. Front Immunol. 2021;11:615317. doi: 10.3389/fimmu.2020.615317.
  37. Chen J, Chen Z. The effect of immune microenvironment on the progression and prognosis of colorectal cancer. Med Oncol. 2014;31(8):82. doi: 10.1007/s12032-014-0082-9.
  38. Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276(1):80–96. doi: 10.1111/imr.12519.
  39. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99. doi: 10.1038/nri3862.
  40. Ruffo E, Wu RC, Bruno TC, et al. Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. Semin Immunol. 2019;42:101305. doi: 10.1016/j.smim.2019.101305.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Clinical Oncohematology