Диагностический потенциал регуляторных не кодирующих белок РНК при хроническом лимфоцитарном лейкозе
PDF_2024-17-2_154-165

Ключевые слова

регуляторные не кодирующие белок РНК
хронический лимфолейкоз
молекулярно-генетическая диагностика

Как цитировать

1.
Ольховский ИА. Диагностический потенциал регуляторных не кодирующих белок РНК при хроническом лимфоцитарном лейкозе. Клиническая онкогематология. 2024;17(2):154-165. doi:10.21320/2500-2139-2024-17-2-154-165

Ключевые слова

Аннотация

В обзоре обобщены современные данные об участии регуляторных не кодирующих белок РНК (нкРНК) в патогенезе хронического лимфолейкоза (ХЛЛ) и их потенциальных возможностях в качестве диагностических маркеров. Разнообразие клинического течения, отсутствие у 20 % пациентов выявляемых хромосомных аберраций или соматических мутаций определяют интерес к исследованию эпигенетических аспектов патогенеза. В этой связи нкРНК представляются одними из перспективных диагностических маркеров, поскольку их экспрессия, как правило, тканеспецифическая и они достаточно стабильны в жидкостях организма. Среди регуляторных нкРНК, вовлеченных в патогенез ХЛЛ, наиболее изучены микроРНК, длинные (lncRNA) и, в меньшей степени, кольцевые (циркуляторные) нкРНК (circRNA). Аномальная экспрессия нкРНК может послужить причиной резистентного течения ХЛЛ при отсутствии выявленных нарушений генома. Биоинформационный анализ баз данных секвенирования РНК позволяет выделять новые нкРНК молекулы-кандидаты, в т. ч. связанные с подавлением транспозонов с помощью РНК, взаимодействующих с белками Piwi. Предложены новые независимые прогностические модели, основанные на оценке экспрессии одновременно 2 (LNC-KIA1755-4, LNC-IRF2-32-LNCRNA), 4 (miR-125b, miR-15b, miR-181c, miR-412) и 6 (PRKCQ, TRG.AS1, LNC00467, LNC01096, PCAT6, SBF2.AS1) различных нкРНК. Поскольку разграничение гематологических злокачественных опухолей по группам риска и стадиям заболевания выполняется с учетом не только клинических, но и молекулярно-генетических маркеров, мониторинг уровня экспрессии регуляторных нкРНК может стать дополнительным инструментом более эффективной стратификации больных. В настоящем обзоре отражены существующие методические проблемы выполнения аналитических процедур, которые являются основным сдерживающим фактором широкого использования лабораторных тестов по определению нкРНК.

PDF_2024-17-2_154-165

Библиографические ссылки

  1. Хронический лимфолейкоз. Современная диагностика и лечение. Руководство для клиницистов. Под ред. Е.А. Никитина. М.: Буки-Веди, 2021. 436 с. [Nikitin EA, ed. Khronicheskii limfoleikoz. Sovremennaya diagnostika i lechenie. Rukovodstvo dlya klinitsistov. (Chronic lymphocytic leukemia. Current methods of diagnosis and treatment. A Clinician’s Manual.) Moscow: Buki-Vedi Publ.; 2021. 436 p. (In Russ)]
  2. Lingua MF, Carra G, Maffeo B, Morotti A. Non-Coding RNAs: The “Dark Side Matter” of the CLL Universe. Pharmaceuticals. 2021;14(2):168. doi: 10.3390/ph14020168.
  3. Lugassy G, Boussiotis VA, Ruchlemer R, et al. Chronic Lymphocytic Leukemia in Young Adults: Report of Six Cases Under the Age of 30 Years. Leuk Lymphoma. 1991;5(Suppl 1):179–82. doi: 10.3109/10428199109103402.
  4. Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745–60. doi: 10.1182/blood-2017-09-806398.
  5. Liu Y, Wang Y, Yang J, et al. ZAP-70 in chronic lymphocytic leukemia: A meta-analysis. Clin Chim Acta. 2018;483:82–8. doi: 10.1016/j.cca.2018.04.026.
  6. Почтарь Е.В., Луговская С.А., Наумова Е.В. и др. Экспрессия ROR-1 в диагностике и мониторинге минимальной остаточной болезни при хроническом лимфолейкозе. Клиническая онкогематология. 2022;15(2):148–55. doi: 10.21320/2500-2139-2022-15-2-148-155. [Pochtar EV, Lugovskaya SA, Naumova EV, et al. ROR-1 Expression in the Diagnosis and Monitoring of Minimal Residual Disease in Chronic Lymphocytic Leukemia. Clinical oncohematology. 2022;15(2):148–55. doi: 10.21320/2500-2139-2022-15-2-148-155. (In Russ)]
  7. Горбенко А.С., Столяр М.А., Бахтина В.И. и др. Разработка метода определения мРНК гена ROR1 в лейкоцитах крови. Лабораторная служба. 2021;10(1):32–7. doi: 10.17116/labs20211001132. [Gorbenko AS, Stolyar MA, Bakhtina VI, et al. Development of a method for determining of the mRNA ROR1 in blood leukocytes. Laboratornaya sluzhba. 2021;10(1):32–7. doi: 10.17116/labs20211001132. (In Russ)]
  8. Бидерман Б.В., Судариков А.Б. Гены иммуноглобулинов и стереотипные антигенные рецепторы при хроническом лимфолейкозе и других лимфопролиферативных заболеваниях. Гематология и трансфузиология. 2023;68(1):70–9. doi: 10.35754/0234-5730-2023-68-1-70-79. [Biderman BV, Sudarikov AB. Immunoglobulin genes and stereotyped antigenic receptors in chronic lymphocytic leukemia and other lymphoproliferative diseases. Russian journal of hematology and transfusiology. 2023;68(1):70–9. doi: 10.35754/0234-5730-2023-68-1-70-79. (In Russ)]
  9. Gaidano G, Rossi D. The mutational landscape of chronic lymphocytic leukemia and its impact on prognosis and treatment. Hematology. 2017;2017(1):329–37. doi: 10.1182/asheducation-2017.1.329.
  10. Rossi D, Gaidano G. Richter syndrome: pathogenesis and management. Semin Oncol. 2016;43(2):311–9. doi: 10.1053/j.seminoncol.2016.02.012.
  11. Buccheri V, Barreto WG, Fogliatto LM, et al. Prognostic and therapeutic stratification in CLL: focus on 17p deletion and p53 mutation. Ann Hematol. 2018;97(12):2269–78. doi: 10.1007/s00277-018-3503-6.
  12. Arruga F, Deaglio S. Mechanisms of Resistance to Targeted Therapies in Chronic Lymphocytic Leukemia. Handb Exp Pharmacol. 2018;249:203–29. doi: 10.1007/164_2017_12.
  13. Xanthopoulos C, Kostareli E. Advances in Epigenetics and Epigenomics in Chronic Lymphocytic Leukemia. Curr Genet Med Rep. 2019;7(4):214–26. doi: 10.1007/s40142-019-00178-3.
  14. Mustafin RN, Khusnutdinova EK. Epigenetics of carcinogenesis. Creat Surg Oncol. 2017;7(3):60–7. doi: 10.24060/2076-3093-2017-7-3-60-67.
  15. Lee SH, Singh I, Tisdale S, et al. Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature. 2018;561(7721):127–31. doi: 10.1038/s41586-018-0465-8.
  16. Ольховский И.А., Комина А.В., Столяр М.А., Горбенко А.С. Молекулярно-генетические нарушения при острых лейкозах как основа разработки диагностических тестов (обзор литературы). Лабораторная служба. 2020;9(4):26–45. doi: 10.17116/labs2020904126. [Olkhovskiy IA, Komina AV, Stolyar MA, Gorbenko AS. Molecular genetic disorders in acute leukemia as a basis for the development of diagnostic tests (literature review). Laboratornaya sluzhba. 2020;9(4):26–45. doi: 10.17116/labs2020904126. (In Russ)]
  17. Robbe P, Ridout KE, Vavoulis DV, et al. Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features. Nat Genet. 2022;54(11):1675–89. doi: 10.1038/s41588-022-01211-y.
  18. Gao C, Zhou C, Zhuang J, et al. Identification of key candidate genes and miRNA-mRNA target pairs in chronic lymphocytic leukemia by integrated bioinformatics analysis. Mol Med Rep. 2019;19(1):362–74. doi: 10.3892/mmr.2018.9636.
  19. Fabris L, Juracek J, Calin G. Non-Coding RNAs as Cancer Hallmarks in Chronic Lymphocytic Leukemia. Int J Mol Sci. 2020;21(18):6720. doi: 10.3390/ijms21186720.
  20. Van Roosbroeck K, Calin GA. MicroRNAs in chronic lymphocytic leukemia: miRacle or miRage for prognosis and targeted therapies? Semin Oncol. 2016;43(2):209–14. doi: 10.1053/j.seminoncol.2016.02.015.
  21. Uppaluri KR, Challa HJ, Gaur A, et al. Unlocking the potential of non-coding RNAs in cancer research and therapy. Transl Oncol. 2023;35:101730. doi: 10.1016/j.tranon.2023.101730.
  22. Smolarz B, Durczynski A, Romanowicz H, et al. miRNAs in Cancer (Review of Literature). Int J Mol Sci. 2022;23(5):2805. doi: 10.3390/ijms23052805.
  23. Аушев В.Н. МикроРНК: малые молекулы с большим значением. Клиническая онкогематология. 2015;8(1):1–12. doi: 10.21320/2500-2139-2015-8-1-1-12. [Aushev VN. MicroRNA: Small Molecules of Great Significance. Clinical oncohematology. 2015;8(1):1–12. doi: 10.21320/2500-2139-2015-8-1-1-12. (In Russ)]
  24. Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015;87:3–14. doi: 10.1016/j.addr.2015.05.001.
  25. Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA. 2003;9(3):277–9. doi: 10.1261/rna.2183803.
  26. Stamatopoulos B, Van Damme M, Crompot E, et al. Opposite Prognostic Significance of Cellular and Serum Circulating MicroRNA-150 in Patients with Chronic Lymphocytic Leukemia. Mol Med. 2015;21(1):123–33. doi: 10.2119/molmed.2014.00214.
  27. Mirzaei H, Fathullahzadeh S, Khanmohammadi R, et al. State of the art in microRNA as diagnostic and therapeutic biomarkers in chronic lymphocytic leukemia. J Cell Physiol. 2018;233(2):888–900. doi: 10.1002/jcp.25799.
  28. Cui B, Chen L, Zhang S, et al. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood. 2014;124(4):546–54. doi: 10.1182/blood-2014-03-559690.
  29. Ferracin M, Zagatti B, Rizzotto L, et al. MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia. Mol Cancer. 2010;9(1):123. doi: 10.1186/1476-4598-9-123.
  30. Alharthi A, Beck D, Howard DR, et al. An increased fraction of circulating miR-363 and miR-16 is particle bound in patients with chronic lymphocytic leukaemia as compared to normal subjects. BMC Res Notes. 2018;11(1):280. doi: 10.1186/s13104-018-3391-9.
  31. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524–9. doi: 10.1073/pnas.242606799.
  32. Li S, Moffett HF, Lu J, et al. MicroRNA Expression Profiling Identifies Activated B Cell Status in Chronic Lymphocytic Leukemia Cells. PLoS ONE. 2011;6(3):e16956. doi: 10.1371/journal.pone.0016956.
  33. Zenz T, Mohr J, Eldering E, et al. Mir-34a as Part of the Chemotherapy Resistance Network in Chronic Lymphocytic Leukemia. Blood. 2008;112(11):1209. doi: 10.1182/blood.V112.11.1209.1209.
  34. Visone R, Veronese A, Rassenti LZ, et al. miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia. Blood. 2011;118(11):3072–9. doi: 10.1182/blood-2011-01-333484.
  35. Chocholska S, Zarobkiewicz M, Szymanska A, et al. Prognostic Value of the miR-17~92 Cluster in Chronic Lymphocytic Leukemia. Int J Mol Sci. 2023;24(2):1705. doi: 10.3390/ijms24021705.
  36. Duroux-Richard I, Gagez AL, Alaterre E, et al. miRNA profile at diagnosis predicts treatment outcome in patients with B-chronic lymphocytic leukemia: A FILO study. Front Immunol. 2022;13:983771. doi: 10.3389/fimmu.2022.983771.
  37. Moussay E, Wang K, Cho JH, et al. MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2011;108(16):6573–8. doi: 10.1073/pnas.1019557108.
  38. Fathullahzadeh S, Mirzaei H, Honardoost MA, et al. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther. 2016;23(10):327–32. doi: 10.1038/cgt.2016.34.
  39. Grenda A, Filip A, Wasik-Szczepanek E. Inside the chronic lymphocytic leukemia cell: miRNA and chromosomal aberrations. Mol Med Rep. 2022;25(2):65. doi: 10.3892/mmr.2022.12581.
  40. Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013;20(12):1603–14. doi: 10.1038/cdd.2013.125.
  41. Palamarchuk A, Yan PS, Zanesi N, et al. Tcl1 protein functions as an inhibitor of de novo DNA methylation in B-cell chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci USA. 2012;109(7):2555–60. doi: 10.1073/pnas.1200003109.
  42. Pekarsky Y, Santanam U, Cimmino A, et al. Tcl1 Expression in Chronic Lymphocytic Leukemia Is Regulated by miR-29 and miR-181. Cancer Res. 2006;66(24):11590–3. doi: 10.1158/0008-5472.CAN-06-3613.
  43. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17(2):193–9. doi: 10.1038/cdd.2009.56.
  44. Rossi S, Shimizu M, Barbarotto E, et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood. 2010;116(6):945–52. doi: 10.1182/blood-2010-01-263889.
  45. Balatti V, Acunzo M, Pekarky Y, Croce CM. Novel Mechanisms of Regulation of miRNAs in CLL. Trends Cancer. 2016;2(3):134–43. doi: 10.1016/j.trecan.2016.02.005.
  46. Vargova K, Pesta M, Obrtlikova P, et al. MiR-155/miR-150 network regulates progression through the disease phases of chronic lymphocytic leukemia. Blood Cancer J. 2017;7(7):e585. doi: 10.1038/bcj.2017.63.
  47. Ferrajoli A, Shanafelt TD, Ivan C, et al. Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood. 2013;122(11):1891–9. doi: 10.1182/blood-2013-01-478222.
  48. Fonte E, Apollonio B, Scarfo L, et al. In Vitro Sensitivity of CLL Cells to Fludarabine May Be Modulated by the Stimulation of Toll-like Receptors. Clin Cancer Res. 2013;19(2):367–79. doi: 10.1158/1078-0432.CCR-12-1922.
  49. Rassenti LZ, Balatti V, Ghia EM, et al. MicroRNA dysregulation to identify therapeutic target combinations for chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2017;114(40):10731–6. doi: 10.1073/pnas.1708264114.
  50. Gorbenko A, Stolyar M, Bakhtina V, et al. Potential capabilities of mRNA ROR1 and miR-155 for MRD assessment in CLL. Hemashere. 2021;5(52):291.
  51. Wu X, Pan Y, Fang Y, et al. The Biogenesis and Functions of piRNAs in Human Diseases. Mol Ther Nucleic Acids. 2020;21:108–20. doi: 10.1016/j.omtn.2020.05.023.
  52. Mai D, Zheng Y, Guo H, et al. Serum piRNA-54265 is a new biomarker for early detection and clinical surveillance of human colorectal cancer. Theranostics. 2020;10(19):8468–78. doi: 10.7150/thno.46241.
  53. Ruhela V, Gupta A, Sriram K, et al. A Unified Computational Framework for a Robust, Reliable, and Reproducible Identification of Novel miRNAs From the RNA Sequencing Data. Front Bioinforma. 2022;2:842051. doi: 10.3389/fbinf.2022.842051.
  54. ENCODE portal. Available from: https://www.encodeproject.org/ (accessed 21.08.2023).
  55. Gasic V, Karan-Djurasevic T, Pavlovic D, et al. Diagnostic and Therapeutic Implications of Long Non-Coding RNAs in Leukemia. Life. 2022;12(11):1770. doi: 10.3390/life12111770.
  56. Bhattacharya M, Gutti RK. Non-coding RNAs: are they the protagonist or antagonist in the regulation of leukemia? Am J Transl Res. 2022;14(3):1406–32.
  57. Garding A, Bhattacharya N, Claus R, et al. Epigenetic upregulation of lncRNAs at 13q14.3 in leukemia is linked to the In Cis downregulation of a gene cluster that targets NF-kB. PLoS Genet. 2013;9(4):e1003373. doi: 10.1371/journal.pgen.1003373.
  58. Xu Z, Pan B, Li Y, et al. Identification and Validation of Ferroptosis-Related LncRNAs Signature as a Novel Prognostic Model for Chronic Lymphocytic Leukemia. Int J Gen Med. 2023;16:1541–53. doi: 10.2147/IJGM.S399629.
  59. Blume CJ, Hotz-Wagenblatt A, Hullein J, et al. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia. 2015;29(10):2015–23. doi: 10.1038/leu.2015.119.
  60. Gao J, Wang F, Wu P, et al. Aberrant LncRNA Expression in Leukemia. J Cancer. 2020;11(14):4284–96. doi: 10.7150/jca.42093.
  61. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353(17):1793–801. doi: 10.1056/NEJMoa050995.
  62. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102(39):13944–9. doi: 10.1073/pnas.0506654102.
  63. Dal Bo M, Rossi FM, Rossi D, et al. 13q14 deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia. Genes Chromosomes Cancer. 2011;50(8):633–43. doi: 10.1002/gcc.20885.
  64. Ahmadi A, Kaviani S, Yaghmaie M, et al. Altered expression of MALAT1 lncRNA in chronic lymphocytic leukemia patients, correlation with cytogenetic findings. Blood Res. 2018;53(4):320–4. doi: 10.5045/br.2018.53.4.320.
  65. Sattari A, Siddiqui H, Moshiri F, et al. Upregulation of long noncoding RNA MIAT in aggressive form of chronic lymphocytic leukemias. Oncotarget. 2016;7(34):54174–82. doi: 10.18632/oncotarget.11099.
  66. Wang LQ, Wong KY, Li ZH, Chim CS. Epigenetic silencing of tumor suppressor long non-coding RNA BM742401 in chronic lymphocytic leukemia. Oncotarget. 2016;7(50):82400–10. doi: 10.18632/oncotarget.12252.
  67. Miller CR, Ruppert AS, Fobare S, et al. The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget. 2017;8(16):25942–54. doi: 10.18632/oncotarget.15401.
  68. Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19. doi: 10.1016/j.cell.2010.06.040.
  69. Chen S, Liang H, Yang H, et al. LincRNa-p21: function and mechanism in cancer. Med Oncol. 2017;34(5):98. doi: 10.1007/s12032-017-0959-5.
  70. Dimitrova N, Zamudio JR, Jong RM, et al. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 2014;54(5):777–90. doi: 10.1016/j.molcel.2014.04.025.
  71. Adriaens C, Standaert L, Barra J, et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med. 2016;22(8):861–8. doi: 10.1038/nm.4135.
  72. Bomben R, Roisman A, D’Agaro T, et al. Expression of the transcribed ultraconserved region 70 and the related long non-coding RNA AC092652.2-202 has prognostic value in Chronic Lymphocytic Leukaemia. Br J Haematol. 2019;184(6):1045–50. doi: 10.1111/bjh.15237.
  73. Ni J, Hong J, Li Q, et al. Long non-coding RNA CRNDE suppressing cell proliferation is regulated by DNA methylation in chronic lymphocytic leukemia. Leuk Res. 2021;105:106564. doi: 10.1016/j.leukres.2021.106564.
  74. Jing Z, Gao L, Wang H, et al. Long non-coding RNA GAS5 regulates human B lymphocytic leukaemia tumourigenesis and metastasis by sponging miR-222. Cancer Biomark Sect Dis Markers. 2019;26(3):385–92. doi: 10.3233/cbm-190246.
  75. Erdfelder F, Hertweck M, Filipovich A, et al. High lymphoid enhancer-binding factor-1 expression is associated with disease progression and poor prognosis in chronic lymphocytic leukemia. Hematol Rep. 2010;2(1):e3. doi: 10.4081/hr.2010.e3.
  76. Ronchetti D, Manzoni M, Agnelli L, et al. lncRNA profiling in early-stage chronic lymphocytic leukemia identifies transcriptional fingerprints with relevance in clinical outcome. Blood Cancer J. 2016;6(9):e468. doi: 10.1038/bcj.2016.77.
  77. Tang X, Ren H, Guo M, et al. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J. 2021;19:910–28. doi: 10.1016/j.csbj.2021.01.018.
  78. Li Q, Ren X, Wang Y, Xin X. CircRNA: a rising star in leukemia. Peer J. 2023;11:e15577. doi: 10.7717/peerj.15577.
  79. Rajappa A, Banerjee S, Sharma V, Khandelia P. Circular RNAs: Emerging Role in Cancer Diagnostics and Therapeutics. Front Mol Biosci. 2020;7:577938. doi: 10.3389/fmolb.2020.577938.
  80. Li J, Sun D, Pu W, et al. Circular RNAs in Cancer: Biogenesis, Function, and Clinical Significance. Trends Cancer. 2020;6(4):319–36. doi: 10.1016/j.trecan.2020.01.012.
  81. Schneider T, Bindereif A. Circular RNAs: Coding or noncoding? Cell Res. 2017;27(6):724–5. doi: 10.1038/cr.2017.70.
  82. Singh V, Uddin MH, Zonder JA, et al. Circular RNAs in acute myeloid leukemia. Mol Cancer. 2021;20(1):149. doi: 10.1186/s12943-021-01446-z.
  83. Cao HX, Miao CF, Sang LN, et al. Circ_0009910 promotes imatinib resistance through ULK1-induced autophagy by sponging miR-34a-5p in chronic myeloid leukemia. Life Sci. 2020;243:117255. doi: 10.1016/j.lfs.2020.117255.
  84. Pan Y, Lou J, Wang H, et al. CircBA9.3 supports the survival of leukaemic cells by up-regulating c-ABL1 or BCR-ABL1 protein levels. Blood Cells Mol Dis. 2018;73:38–44. doi: 10.1016/j.bcmd.2018.09.002.
  85. Verduci L, Strano S, Yarden Y, Blandino G. The circ RNA–micro RNA code: emerging implications for cancer diagnosis and treatment. Mol Oncol. 2019;13(4):669–80. doi: 10.1002/1878-0261.12468.
  86. Deng W, Chao R, Zhu S. Emerging roles of circRNAs in leukemia and the clinical prospects: An update. Immun Inflamm Dis. 2022;11(1):e725. doi: 10.1002/iid3.725.
  87. Wu W, Wu Z, Xia Y, et al. Downregulation of circ_0132266 in chronic lymphocytic leukemia promoted cell viability through miR-337–3p/PML axis. Aging. 2019;11(11):3561–73. doi: 10.18632/aging.101997.
  88. Xia L, Wu L, Bao J, et al. Circular RNA circ-CBFB promotes proliferation and inhibits apoptosis in chronic lymphocytic leukemia through regulating miR-607/FZD3/Wnt/β-catenin pathway. Biochem Biophys Res Commun. 2018;503(1):385–90. doi: 10.1016/j.bbrc.2018.06.045.
  89. Wu Z, Sun H, Liu W, et al. Circ-RPL15: a plasma circular RNA as novel oncogenic driver to promote progression of chronic lymphocytic leukemia. Leukemia. 2020;34(3):919–23. doi: 10.1038/s41375-019-0594-6.
  90. Wu Z, Sun H, Wang C, et al. Mitochondrial Genome-Derived circRNA mc-COX2 Functions as an Oncogene in Chronic Lymphocytic Leukemia. Mol Ther Nucleic Acids. 2020;20:801–11. doi: 10.1016/j.omtn.2020.04.017.
  91. Li S, Chen J, Fan Y, et al. circZNF91 Promotes the Malignant Phenotype of Chronic Lymphocytic Leukemia Cells by Targeting the miR-1283/WEE1 Axis. BioMed Res Int. 2022;2022:2855394. doi: 10.1155/2022/2855394.
  92. Li WJ, Wang Y, Liu R, et al. MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Front Cell Dev Biol. 2021;9:640587. doi: 10.3389/fcell.2021.640587.
  93. Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122(11):1630–7. doi: 10.1038/s41416-020-0802-1.
  94. Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature. 2009;457(7228):405–12. doi: 10.1038/nature07755.
  95. miRagen Therapeutics, Inc. SOLAR: Efficacy and Safety of Cobomarsen (MRG-106) vs. Active Comparator in Subjects With Mycosis Fungoides (SOLAR). ClinicalTrials.gov (Internet). Bethesda (MD): National Library of Medicine (US); 2022. Available from: https://clinicaltrials.gov/study/NCT03713320 (accessed 24.08.2023).
  96. Kasar S, Underbayev C, Yuan Y, et al. Therapeutic implications of activation of the host gene (Dleu2) promoter for miR-15a/16-1 in chronic lymphocytic leukemia. Oncogene. 2014;33(25):3307–15. doi: 10.1038/onc.2013.291.
  97. Qu X, Cao YX, Xing YX, et al. Deleted in lymphocytic leukemia 2 (DLEU2): a possible biomarker that holds promise for future diagnosis and treatment of cancer. Clin Transl Oncol. 2023;25(10):2772–82. doi: 10.1007/s12094-023-03149-x.
  98. Kim T, Croce CM. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med. 2023;55(7):1314–21. doi: 10.1038/s12276-023-01050-9.
  99. Seijo LM, Peled N, Ajona D, et al. Biomarkers in Lung Cancer Screening: Achievements, Promises, and Challenges. J Thorac Oncol. 2019;14(3):343–57. doi: 10.1016/j.jtho.2018.11.023.
  100. Takahashi K, Yokota S, Tatsumi N, et al. Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects. Toxicol Appl Pharmacol. 2013;272(1):154–60. doi: 10.1016/j.taap.2013.05.018.
  101. Witwer KW. XenomiRs and miRNA homeostasis in health and disease: Evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. RNA Biol. 2012;9(9):1147–54. doi: 10.4161/rna.21619.
  102. Precazzini F, Detassis S, Imperatori AS, et al. Measurements Methods for the Development of MicroRNA-Based Tests for Cancer Diagnosis. Int J Mol Sci. 2021;22(3):1176. doi: 10.3390/ijms22031176.
  103. Jiang Z, Lu Y, Shi M, et al. Effects of storage temperature, storage time, and hemolysis on the RNA quality of blood specimens: A systematic quantitative assessment. Heliyon. 2023;9(6):e16234. doi: 10.1016/j.heliyon.2023.e16234.
  104. Brunet-Vega A, Pericay C, Quilez ME, et al. Variability in microRNA recovery from plasma: Comparison of five commercial kits. Anal Biochem. 2015;488:28–35. doi: 10.1016/j.ab.2015.07.018.
  105. Yang L, Yang S, Ren C, et al. Deciphering the roles of miR-16-5p in malignant solid tumors. Biomed Pharmacother. 2022;148:112703. doi: 10.1016/j.biopha.2022.112703.
  106. Kok MGM, Halliani A, Moerland PD, et al. Normalization panels for the reliable quantification of circulating microRNAs by RT-qPCR. FASEB J. 2015;29(9):3853–62. doi: 10.1096/fj.15-271312.
  107. Mi Z, Zhongqiang C, Caiyun J, et al. Circular RNA detection methods: A minireview. Talanta. 2022;238:123066. doi: 10.1016/j.talanta.2021.123066.
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.

Copyright (c) 2024 Клиническая онкогематология