ПЭТ-КТ при гематологических злокачественных опухолях: что достигнуто и к чему стремиться
PDF_2024-17-2_109-128

Ключевые слова

ПЭТ-КТ
радиофармпрепарат
лимфома
множественная миелома
тераностика
иммуно-ПЭТ

Как цитировать

1.
Субботин АС, Пронин АИ, Гелиашвили ТМ, et al. ПЭТ-КТ при гематологических злокачественных опухолях: что достигнуто и к чему стремиться. Клиническая онкогематология. 2024;17(2):109-128. doi:10.21320/2500-2139-2024-17-2-109-128

Ключевые слова

Аннотация

ПЭТ-КТ стала неотъемлемым элементом ведения пациентов с большинством гематологических злокачественных опухолей. Метод обеспечивает эффективное стадирование заболевания, отражает состояние опухолевой ткани в процессе и после завершения лечения, позволяет исключить или подтвердить рецидив опухоли. Однако на современном этапе своего развития ПЭТ-КТ как перспективное диагностическое направление обладает гораздо большими возможностями, значимыми для клинических специалистов. ПЭТ-КТ позволяет заменить другие методы визуализации, стратифицировать пациентов на прогностические группы, применяется для навигации по клиническим решениям, касающимся терапии и т. д. Перечисленные направления формируются и развиваются чрезвычайно быстро и не могут быть в полной мере охвачены в одном обзоре. Цель данной работы заключается в освещении основных возможностей и перспективных направлений развития ПЭТ-КТ с потенциальной клинической значимостью.

PDF_2024-17-2_109-128

Библиографические ссылки

  1. Paul R. Comparison of fluorine-18-2-fluorodeoxyglucose and gallium-67-citrate imaging for detection of lymphoma. J Nucl Med. 1987;28(3):2889.
  2. Barrington SF, Mikhaeel GN, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2016;34(21):2562. doi: 10.1200/JCO.2013.53.5229.
  3. Vassilakopoulos TP, Prassopoulos V, Rondogianni P, et al. Role of FDG-PET/CT in staging and first line treatment of Hodgkin and aggressive B-cell lymphomas. MEMO. 2015;8:105–14. doi: 10.1053/j.semnuclmed.2017.09.004.
  4. Hutchings M. How does PET/CT help in selecting therapy for patients with Hodgkin lymphoma? Hematology Am Soc Hematol Educ Programm Book. 2012:2012:322–7. doi: 10.1182/asheducation-2012.1.322.
  5. Janikova A, Bolcak K, Pavlik T, et al. Value of [18F]fluorodeoxyglucose positron emission tomography in the management of follicular lymphoma: the end of a dilemma? Clin Lymphoma Myeloma. 2008;8(5):287–93. doi: 10.3816/CLM.2008.n.040.
  6. Wirth A, Foo M, Seymour JF, et al. Impact of [18f] fluorodeoxyglucose positron emission tomography on staging and management of early-stage follicular non-Hodgkin lymphoma. Int J Radiat Oncol Biol Phys. 2008;71(1):213–9. doi: 10.1016/j.ijrobp.2007.09.051.
  7. Le Dortz L, De Guibert S, Bayat S, et al. Diagnostic and prognostic impact of 18F-FDG PET/CT in follicular lymphoma. Eur J Nucl Med Mol Imaging. 2010;37(12):2307–14. doi: 10.1007/s00259-010-1539-5.
  8. Hosein PJ, Pastorini VH, Paes FM, et al. Utility of positron emission tomography scans in mantle cell lymphoma. Am J Hematol. 2011;86(10):841–5. doi: 10.1002/ajh.22126.
  9. Salar A, Juanpere N, Bellosillo B, et al. Gastrointestinal involvement in mantle cell lymphoma: a prospective clinical, endoscopic, and pathological study. Am J Surg Pathol. 2006;30(10):1274–80. doi: 10.1097/01.pas.0000208899.15859.cb.
  10. Romaguera JE, Medeiros LJ, Hagemeister FB, et al. Frequency of gastrointestinal involvement and its clinical significance in mantle cell lymphoma. Cancer. 2003;97(3):586–91. doi: 10.1002/cncr.11096.
  11. McKay P, Leach M, Jackson R, et al. Guidelines for the investigation and management of mantle cell lymphoma. Br J Haematol. 2012;159(4):405–26. doi: 10.1111/bjh.12046.
  12. Bodet-Milin C, Touzeau C, Leux C, et al. Prognostic impact of 18F-fluoro-deoxyglucose positron emission tomography in untreated mantle cell lymphoma: a retrospective study from the GOELAMS group. Eur J Nucl Med Mol Imaging. 2010;37(9):1633–42. doi: 10.1007/s00259-010-1469-2.
  13. Casulo C, Schoder H, Feeney J, et al. 18F-fluorodeoxyglucose positron emission tomography in the staging and prognosis of T cell lymphoma. Leuk Lymphoma. 2013;54(10):2163–7. doi: 10.3109/10428194.2013.767901.
  14. Cohen D, Perry C, Hazut-Krauthammer S, et al. Is There a Role for [18F]FDG PET-CT in Staging MALT Lymphoma? Cancers. 2022;14(3):750. doi: 10.3390/cancers14030750.
  15. Adams HJ, Kwee TC, de Keizer B, et al. Systematic review and meta-analysis on the diagnostic performance of FDG-PET/CT in detecting bone marrow involvement in newly diagnosed Hodgkin lymphoma: is bone marrow biopsy still necessary? Ann Oncol. 2014;25(5):921–7. doi: 10.1093/annonc/mdt533.
  16. El-Galaly TC, d’Amore F, Mylam KJ, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol. 2012;30(36):4508–14. doi: 10.1200/JCO.2012.42.4036.
  17. Cerci JJ, Gyorke T, Fanti S, et al. Combined PET and biopsy evidence of marrow involvement improves prediction in diffuse large B-cell lymphoma. J Nucl Med. 2014;55(10):1591–7. doi: 10.2967/jnumed.113.134486.
  18. Sehn LH, Scott DW, Chhanabhai M, et al. Impact of concordant and discordant bone marrow involvement on outcome in diffuse large B-cell lymphoma treated with R-CHOP. J Clin Oncol. 2011;29(11):1452–7. doi: 10.1200/JCO.2010.33.3419.
  19. Rodenas-Quinonero I, Tzu Chen-Liang, Martin-Santos T, et al. Accuracy and prognostic impact of FDG PET/CT and biopsy in bone marrow assessment of follicular lymphoma at diagnosis: A Nation-Wide cohort study. Cancer Med. 2023;12(6):6536–46. doi: 10.1002/cam4.5424.
  20. Triumbari EKA, Gatta R, Maiolo E, et al. Baseline 18F-FDG PET/CT Radiomics in Classical Hodgkin’s Lymphoma: The Predictive Role of the Largest and the Hottest Lesions. Diagnostics. 2023;13(8):1391. doi: 10.3390/diagnostics13081391.
  21. Ceriani L, Martelli M, Zinzani PL, et al. Utility of baseline 18FDG PET/CT functional parameters in defining prognosis of primary mediastinal (thymic) large B-cell lymphoma. Blood. 2015;126(8):950–6. doi: 10.1182/blood-2014-12-616474.
  22. Hu L, Luo N, Li L, et al. A preliminary investigation of the relationship between 18F-FDG PET/CT metabolic parameters and prognosis in angioimmunoblastic T-cell lymphoma. Front Oncol. 2023;13:1171048. doi: 10.3389/fonc.2023.1171048.
  23. Takahashi MES, Mosci C, Souza EM, et al. Proposal for a Quantitative 18F-FDG PET/CT Metabolic Parameter to Assess the Intensity of Bone Involvement in Multiple Myeloma. Sci Rep. 2019;9(1):16429. doi: 10.1038/s41598-019-52740-2.
  24. Takahashi MES, Mosci C, Duarte GO, et al. Intensity of bone involvement: A quantitative 18F-FDG PET/CT evaluation for monitoring outcome of multiple myeloma. Nucl Med Commun. 2021;42(12):1375–81. doi: 10.1097/MNM.0000000000001470.
  25. Falchi L, Keating MJ, Marom EM, et al. Correlation between FDG/PET, histology, characteristics, and survival in 332 patients with chronic lymphoid leukemia. Blood. 2014;123(18):2783–90. doi: 10.1182/blood-2013-11-536169.
  26. Zamagni E, Patriarca F, Nanni C, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118(23):5989–95. doi: 10.1182/blood-2011-06-361386.
  27. Umit EG, Korkmaz U, Baysal M, et al. Evaluation of Sarcopenia with F-18 FDG PET/CT and relation with disease outcomes in patients with multiple myeloma. Eur J Cancer Care. 2020;29(6):e13318. doi: 10.1111/ecc.13318.
  28. Albano D, Treglia, G, Dondi F, et al. 18F-FDG PET/CT Maximum Tumor Dissemination (Dmax) in Lymphoma: A New Prognostic Factor? Cancers. 2023;15(9):2494. doi: 10.3390/cancers15092494.
  29. Surbone A, Longo DL, DeVita VT, et al. Residual abdominal masses in aggressive non-Hodgkin’s lymphoma after combination chemotherapy: significance and management. J Clin Oncol. 1988;6(12):1832–7. doi: 10.1200/JCO.1988.6.12.1832.
  30. Ibrahim F, Gabelloni M, Faggioni L, et al. Are Semiquantitative Methods Superior to Deauville Scoring in the Monitoring Therapy Response for Pediatric Hodgkin Lymphoma? J Pers Med. 2023;13(3):445. doi: 10.3390/jpm13030445.
  31. Meignan M, Gallamini A, Haioun C, Polliack A. Report on the Second International Workshop on interim positron emission tomography in lymphoma held in Menton, France, 8–9 April 2010. Leuk Lymphoma. 2010;51(12):2171–80. doi: 10.3109/10428194.2010.529208.
  32. Casasnovas RO, Meignan M, Berriolo A, et al. SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma. Blood. 2011;118(1):37–43. doi: 10.1182/blood-2010-12-327767.
  33. Duarte S, Roque A, Saraiva T, et al. Interim FDG18-PET SUVmax Variation Adds Prognostic Value to Deauville 5-Point Scale in the Identification of Patients with Ultra-High-Risk Diffuse Large B Cell Lymphoma. Clin Lymphoma Myeloma Leuk. 2023;23(2):e107–e116. doi: 10.1016/j.clml.2022.11.009.
  34. Sehn LH, Hardy ELG, Gill KK, et al. Phase 2 trial of interim PET scan-tailored therapy in patients with advanced stage diffuse large B-cell lymphoma (DLBCL) in British Columbia (BC). Blood. 2014;124: Abstract 392.
  35. Moskowitz CH, Schoder H, Teruya-Feldstein J, et al. Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in advanced stage diffuse large B-cell lymphoma. J Clin Oncol. 2010;28(11):1896–903. doi: 10.1200/JCO.2009.26.5942.
  36. Moskowitz C, Hamlin PA, Maragulia J, et al. Sequential dose-dense RCHOP followed by ICE consolidation (MSKCC protocol 01-142) without radiotherapy for patients with primary mediastinal large B-cell lymphoma. Blood. 2010;116: Abstract 420.
  37. Trotman J, Fournier M, Lamy T, et al. Positron emission tomography-computed tomography (PET-CT) after induction therapy is highly predictive of patient outcome in follicular lymphoma: analysis of PET-CT in a subset of PRIMA trial participants. J Clin Oncol. 2011;29(23):3194–200. doi: 10.1200/JCO.2011.35.0736.
  38. Dupuis J, Berriolo-Riedinger A, Julian A, et al. Impact of [18F]fluorodeoxyglucose positron emission tomography response evaluation in patients with high-tumor burden follicular lymphoma treated with immunochemotherapy: a prospective study from the groupe d’Etudes des lymphomas de l’Adulte and GOELAMS. J Clin Oncol. 2012;30(35):4317–22. doi: 10.1200/JCO.2012.43.0934.
  39. Merryman RW, Michaud L, Redd R, et al. Interim Positron Emission Tomography During Frontline Chemoimmunotherapy for Follicular Lymphoma. HemaSphere. 2023;7(2):e826. doi: 10.1097/HS9.0000000000000826.
  40. Cahu X, Bodet-Milin C, Brissot E, et al. 18F-fluorodeoxyglucose-positron emission tomography before, during and after treatment in mature T/NK lymphomas: a study from the GOELAMS group. Ann Oncol. 2011;22(3):705–11. doi: 10.1093/annonc/mdq415.
  41. Tomita N, Hattori Y, Fujisawa S, et al. Posttherapy 18F-fluorodeoxyglucose positron emission tomography for predicting outcome in patients with peripheral T cell lymphoma. Ann Hematol. 2015;94(3):431–6. doi: 10.1007/s00277-014-2227-5.
  42. Li YJ, Li ZM, Xia XY, et al. Prognostic value of interim and posttherapy 18F-FDG PET/CT in patients with mature T-cell and natural killer cell lymphomas. J Nucl Med. 2013;54(4):507–15. doi: 10.2967/jnumed.112.110262.
  43. Jung S-H, Ahn J-S, Kim Y-K, et al. Prognostic significance of interim PET/CT based on visual, SUV- based, and MTV-based assessment in the treatment of peripheral T-cell lymphoma. BMC Cancer. 2015;15:198–206. doi: 10.1186/s12885-015-1193-1.
  44. Cheson BD, Ansell S, Schwartz L, et al. Refinement of the Lugano Classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128(21):2489–96. doi: 10.1182/blood-2016-05-718528.
  45. Younes A, Hilden P, Coiffier B, et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann Oncol. 2017;28(7):1436–47. doi: 10.1093/annonc/mdx097.
  46. Kraeber-Bodere F, Zweegman S, Perrot A, et al. Prognostic value of positron emission tomography/computed tomography in transplant-eligible newly diagnosed multiple myeloma patients from CASSIOPEIA: the CASSIOPET study. Haematologica. 2023;108(2):621–6. doi: 10.3324/haematol.2021.280051.
  47. Rasche L, Alapat D, Kumar M, et al. Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma. Leukemia. 2019;33(7):1713–22. doi: 10.1038/s41375-018-0329-0.
  48. Zheng S, Gupta K, Goyal P, et al. Outcomes of Patients with Positive Interim Positron Emission Tomography (PET) Continuing ABVD in the Clinical Setting. Cancers. 2023;15(6):1760. doi: 10.3390/cancers15061760.
  49. Radford J, Illidge T, Counsell N, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med. 2015;372(17):1598–607. doi: 10.1056/NEJMoa1408648.
  50. Raemaekers JM, Andre MP, Federico M, et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2014;32(12):1188–94. doi: 10.1200/JCO.2013.51.9298.
  51. Johnson P, Federico M, Kirkwood A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med. 2016;374(25):2419–29. doi: 10.1056/NEJMoa1510093.
  52. Press OW, Li H, Schoder H, et al. US intergroup trial of response-adapted therapy for stage III to IV Hodgkin lymphoma using early interim fluorodeoxyglucose-positron emission tomography imaging: Southwest Oncology Group S0816. J Clin Oncol. 2016;34(17):2020–7. doi: 10.1200/JCO.2015.63.1119.
  53. Gallamini A, Rossi A, Patti C, et al. Interim PET-adapted chemotherapy in advanced Hodgkin lymphoma (HL): results of the second interim analysis of the Italian GITIL/FIL HD0607 trial. Hematol Oncol. 2015;33s:163.
  54. Duehrsen U, Huttmann A, Muller S, et al. Positron emission tomography (PET) guided therapy of aggressive lymphomas – a randomized controlled trial comparing different treatment approaches based on interim PET results (PETAL Trial). Blood. 2014;124:391.
  55. Swinnen LJ, Li H, Quon A, et al. Response-adapted therapy and predictive value of mid-treatment PET scanning for diffuse large B-cell lymphoma. ECOG study E3404. Hematol Oncol. 2013;31:138.
  56. Dann EJ, Berkahn L, Mashiach T, et al. Hodgkin lymphoma patients in first remission: routine positron emission tomography/computerized tomography imaging is not superior to clinical follow-up for patients with no residual mass. Br J Haematol. 2014;164(5):694–700. doi: 10.1111/bjh.12687.
  57. Fischer T, Zing NPC, Chiattone CS, et al. Transformed follicular lymphoma. Ann Hematol. 2018;97(1):17–29. doi: 10.1007/s00277-017-3151-2.
  58. Federico M, Caballero-Barrigon MD, Marcheselli L, et al. Rituximab and the risk of transformation of follicular lymphoma: a retrospective pooled analysis. Lancet Haematol. 2018;5(8):e359–e367. doi: 10.1016/S2352-3026(18)30090-5.
  59. Rajamaki A, Kuitunen H, Sorigue M, et al. FDG-PET/CT-guided rebiopsy may find clinically unsuspicious transformation of follicular lymphoma. Cancer Med. 2023;12(1):407–11. doi: 10.1002/cam4.4924.
  60. Mir F, Barrington SF, Brown H, et al. Baseline SUVmax did not predict histological transformation in follicular lymphoma in the phase 3 GALLIUM study. Blood. 2020;135(15):1214–8. doi: 10.1182/blood.2019001091.
  61. Alsayed Y, Ngo H, Runnels J, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109(7):2708–17. doi: 10.1182/blood-2006-07-035857.
  62. Lapa C, Luckerath K, Kircher S, et al. Potential influence of concomitant chemotherapy on CXCR4 expression in receptor directed endoradiotherapy. Br J Haematol. 2019;184(3):440–3. doi: 10.1111/bjh.15096.
  63. Lapa C, Schreder M, Schirbel A, et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma – Comparison to [18F]FDG and laboratory values. Theranostics. 2017;7(1):205–12. doi: 10.7150/thno.16576.
  64. Lapa C, Garcia-Velloso MJ, Luckerath K, et al. (11)C-Methionine-PET in multiple myeloma: a combined study from two different institutions. Theranostics. 2017;7(11):2956–64. doi: 10.7150/thno.20491.
  65. Hammerton K, Cooper DA, Duckett M, Penny R. Biosynthesis of immunoglobulin in human immunoproliferative diseases. Kinetics of synthesis and secretion of immunoglobulin and protein by bone marrow cells in myeloma. J Immunol. 1978;121(2):409–17.
  66. Morales-Lozano MI, Rodriguez-Otero P, Sancho L, et al. 11C-Methionine PET/CT in Assessment of Multiple Myeloma Patients: Comparison to 18F-FDG PET/CT and Prognostic Value. Int J Mol Sci. 2022;23(17):9895. doi: 10.3390/ijms23179895.
  67. Barre L, Hovhannisyan N, Bodet-Milin C, et al. [18F]-Fludarabine for Hematological Malignancies. Front Med. 2019;6:77. doi: 10.3389/fmed.2019.00077.
  68. Hovhannisyan N, Dhilly M, Fidalgo M, et al. [18F]Fludarabine-PET in a murine model of multiple myeloma PLoS ONE. 2017;12(5):e0177125. doi: 10.1371/journal.pone.0177125.
  69. Nanni C, Zamagni E, Cavo M, et al. 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol. 2007;5:68. doi: 10.1186/1477-7819-5-68.
  70. Cassou-Mounat T, Balogova S, Nataf V, et al. 18F-fluorocholine versus 18F-fluorodeoxyglucose for PET/CT imaging in patients with suspected relapsing or progressive multiple myeloma: a pilot study. Eur J Nucl Med Mol Imaging. 2016;43(11):1995–2004. doi: 10.1007/s00259-016-3392-7.
  71. Ho CL, Chen S, Leung YL, et al. 11C-Acetate PET/CT for Metabolic Characterization of Multiple Myeloma: A Comparative Study with 18F-FDG PET/CT. J Nucl Med. 2014;55(5):749–52. doi: 10.2967/jnumed.113.131169.
  72. Sachpekidis C, Goldschmidt H, Kopka K, et al. Assessment of glucose metabolism and cellular proliferation in multiple myeloma: A first report on combined 18F-FDG and 18F-FLT PET/CT imaging. EJNMMI Res. 2018;8(1):28. doi: 10.1186/s13550-018-0383-7.
  73. Veerasuri S, Redman S, Graham R, et al. Non-prostate uptake on 18F-PSMA-1007 PET/CT: a case of myeloma. BJR Case Rep. 2020;7(2):20200102. doi: 10.1259/bjrcr.20200102.
  74. Sonmezoglu K, Vatankulu B, Elverdi T, et al. The role of 68Ga-DOTA-TATE PET/CT scanning in the evaluation of patients with multiple myeloma: preliminary results. Nuc Med Commun. 2017;38(1):76–83. doi: 10.1097/MNM.0000000000000610.
  75. Elboga U, Sahin E, Burak Cayirli Y, et al. Comparison of [68Ga]-FAPI PET/CT and [18F]-FDG PET/CT in Multiple Myeloma: Clinical Experience. Tomography. 2022;8(1):293–302. doi: 10.3390/tomography8010024.
  76. Jauw YWS, Zijlstra JM, de Jong D, et al. Performance of 89Zr-Labeled-Rituximab-PET as an Imaging Biomarker to Assess CD20 Targeting: A Pilot Study in Patients with Relapsed/Refractory Diffuse Large B Cell Lymphoma. PLoS ONE. 2017;12(1):e0169828. doi: 10.1371/journal.pone.0169828.
  77. Vaes M, Bron D, Vugts DJ, et al. Safety and Efficacy of Radioimmunotherapy with 90Yttrium-Rituximab in Patients with Relapsed CD20+ B Cell Lymphoma: A Feasibility Study. J Cancer Sci Ther. 2012;4:394–400.
  78. De Jong A, Mous R, van Dongen GAMS, et al. 89Zr-rituximab PET/CT to detect neurolymphomatosis. Am J Hematol. 2016;91(6):649–50. doi: 10.1002/ajh.24328.
  79. Chopra A. 64Cu-Labeled DOTA-conjugated rituximab, a chimeric murine/human anti-CD20 monoclonal antibody. 2012 Sep 20. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013.
  80. Perk LR, Visser OJ, Stigter-van Walsum M, et al. Preparation and Evaluation of (89)Zr-Zevalin for Monitoring of (90)Y-Zevalin Biodistribution with Positron Emission Tomography. Eur J Nucl Med Mol Imaging. 2006;33(11):1337–45. doi: 10.1007/s00259-006-0160-0.
  81. Kang L, Jiang D, Ehlerding EB, et al. Noninvasive Trafficking of Brentuximab Vedotin and PET Imaging of CD30 in Lung Cancer Murine Models. Mol Pharm. 2018;15(4):1627–34. doi: 10.1021/acs.molpharmaceut.7b01168.
  82. Ulaner GA, Sobol NB, O’Donoghue JA, et al. CD38-targeted Immuno-PET of Multiple Myeloma: From Xenograft Models to First-in-Human Imaging. Radiology. 2020;295(3):606–15. doi: 10.1148/radiol.2020192621.
  83. Herrero Alvarez N, Michel AL, Viray TD, et al. 89Zr-DFO-Isatuximab for CD38-Targeted ImmunoPET Imaging of Multiple Myeloma and Lymphomas. ACS Omega. 2023;8(25):22486–95. doi: 10.1021/acsomega.3c00624.
  84. Herrmann K, Schottelius M, Lapa C, et al. First-in-Human Experience of CXCR4-Directed Endoradiotherapy with 177Lu- and 90Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease. J Nucl Med. 2016;57(2):248–51. doi: 10.2967/jnumed.115.167361.
  85. Hanscheid H, Schirbel A, Hartrampf P, et al. Biokinetics and Dosimetry of 177Lu-Pentixather. J Nucl Med. 2022;63(5):754–60. doi: 10.2967/jnumed.121.262295.
  86. Lapa C, Herrmann K, Schirbel A, et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed multiple myeloma. Theranostics. 2017;7(6):1589–97. doi: 10.7150/thno.19050.
  87. Lapa C, Hanscheid H, Kircher M, et al. Feasibility of CXCR4-directed radioligand therapy in advanced diffuse large B-cell lymphoma. J Nucl Med. 2019;60(1):60–4. doi: 10.2967/jnumed.118.210997.
  88. Buck AK, Grigoleit GU, Kraus S, Schirbel A. C-X-C Motif Chemokine Receptor 4–Targeted Radioligand Therapy in Patients with Advanced T-Cell Lymphoma. J Nucl Med. 2023;64(1):34–9. doi: 10.2967/jnumed.122.264207.
  89. Abou DS, Longtine M, Fears A, et al. Evaluation of Candidate Theranostics for 227Th/89Zr Paired Radioimmunotherapy of Lymphoma. J Nucl Med. 2023;64(7):1062–8. doi: 10.2967/jnumed.122.264979.
  90. Kang L, Li C, Rosenkrans ZT, et al. CD38-Targeted Theranostics of Lymphoma with 89Zr/177Lu-Labeled Daratumumab. Adv Sci. 2021;8(10):2001879. doi: 10.1002/advs.202001879.
  91. Kang L, Jiang D, Ehlerding E, et al. Safety and dosimetry evaluation of radioimmunotherapy using 177Lu-labeled antibodies in lymphoma. J Nucl Med. 2019;60(Suppl 1):1004.
  92. Dawicki W, Allen KJH, Jiao R, et al. Daratumumab-225 actinium conjugate demonstrates greatly enhanced antitumor activity against experimental multiple myeloma tumors. OncoImmunology. 2019;8(8):1607673. doi: 10.1080/2162402X.2019.1607673.
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.

Copyright (c) 2024 Клиническая онкогематология