Значение ПЭТ, совмещенной с КТ, при диффузной В-крупноклеточной лимфоме: история вопроса, эволюция представлений и современные возможности метода (обзор литературы)
ISSN (print) 1997-6933     ISSN (online) 2500-2139
2024-1
PDF_2024-17-1_66-75

Ключевые слова

диффузная В-крупноклеточная лимфома
ПЭТ-КТ
промежуточная ПЭТ-КТ
оценка противоопухолевого ответа

Как цитировать

1.
Вовченко А.А., Фалалеева Н.А., Даниленко А.А., Терехова А.Ю., Ходжибекова М.М., Челмаков А.М., Замотина А.Г., Дикова А.С., Ручкова С.В., Синицына Ю.В., Ковальская В.Ю., Перепелицына А.Н., Балашова А.Н., Манаенков Д.А., Иванов С.А. Значение ПЭТ, совмещенной с КТ, при диффузной В-крупноклеточной лимфоме: история вопроса, эволюция представлений и современные возможности метода (обзор литературы). Клиническая онкогематология. 2024;17(1):66-75. doi:10.21320/2500-2139-2024-17-1-66-75

Ключевые слова

Аннотация

Позитронно-эмиссионная томография, совмещенная с компьютерной томографией (ПЭТ-КТ), широко используется не только на этапе первичного стадирования неходжкинских лимфом (НХЛ), но и во время, а также после лечения. Благодаря большому количеству непрерывно поступающих данных по классической лимфоме Ходжкина, при которой ПЭТ-КТ сыграла огромную роль, быстро накапливается подобная информация о НХЛ. В настоящее время существует консенсус в отношении того, что результаты ПЭТ-КТ эффективно используются в стратификации пациентов на прогностические группы при различных вариантах НХЛ, например диффузной В-крупноклеточной лимфоме (ДВКЛ). Однако в огромном количестве информации, накопленной к настоящему времени, вариабельность клинических ситуаций при ДВКЛ, срока и метода оценки результатов ПЭТ-КТ затрудняет понимание полной картины. В настоящем обзоре предполагается рассмотреть роль ПЭТ-КТ в диагностике и оценке ответа на лечение при ДВКЛ.

PDF_2024-17-1_66-75

Библиографические ссылки

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. doi: 10.3322/caac.21551.
  2. Gisselbrecht C, Glass B, Mounier N, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28(27):4184–90. doi: 10.1200/JCO.2010.28.1618.
  3. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.
  4. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42. doi: 10.1056/NEJMoa011795.
  5. Habermann TM, Weller EA, Morrison VA, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol. 2006;24(19):3121–7. doi: 10.1200/JCO.2005.05.1003.
  6. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.
  7. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/35000501.
  8. Gutierrez-Garcia G, Cardesa-Salzmann T, Climent F, et al. Gene-expression profiling and not immunophenotypic algorithms predicts prognosis in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Blood. 2011;117(18):4836–43. doi: 10.1182/blood-2010-12-322362.
  9. Scott DW, Mottok A, Ennishi D, et al. Prognostic Significance of Diffuse Large B-Cell Lymphoma Cell of Origin Determined by Digital Gene Expression in Formalin-Fixed Paraffin-Embedded Tissue Biopsies. J Clin Oncol. 2015;33(26):2848–56. doi: 10.1200/JCO.2014.60.2383.
  10. Gu K, Weisenburger DD, Fu K, et al. Cell of origin fails to predict survival in patients with diffuse large B-cell lymphoma treated with autologous hematopoietic stem cell transplantation. Hematol Oncol. 2012;30(3):143–9. doi: 10.1002/hon.1017.
  11. Ott G, Ziepert M, Klapper W, et al. Immunoblastic morphology but not the immunohistochemical GCB/nonGCB classifier predicts outcome in diffuse large B-cell lymphoma in the RICOVER-60 trial of the DSHNHL. Blood. 2010;116(23):4916–25. doi: 10.1182/blood-2010-03-276766.
  12. Schmitz R, Wright GW, Huang DW, et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N Engl J Med. 2018;378(15):1396–407. doi: 10.1056/NEJ Moa1801445.
  13. Hans CP, Weisenburger DD, Greiner TV, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82. doi: 10.1182/blood-2003-05-1545.
  14. Horn H, Staiger AM, Vohringer M, et al. Diffuse large B-cell lymphomas of immunoblastic type are a major reservoir for MYC-IGH translocations. Am J Surg Pathol. 2015;39(1):61–6. doi: 10.1097/PAS.0000000000000319.
  15. Li M, Liu Y, Wang Y, et al. Anaplastic Variant of Diffuse Large B-cell Lymphoma Displays Intricate Genetic Alterations and Distinct Biological Features. Am J Surg Pathol. 2017;41(10):1322–32. doi: 10.1097/PAS.0000000000000836.
  16. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.
  17. Dahlbom M, Hoffman EJ, Hoh CK, et al. Whole-body positron emission tomography: Part I. Methods and performance characteristics. J Nucl Med. 1992;33(6):1191–9.
  18. Hoh CK, Hawkins RA, Glaspy JA, et al. Cancer detection with whole-body PET using 2-[18F]fluoro-2-deoxy-D-glucose. J Comput Assist Tomogr. 1993;17(4):582–9. doi: 10.1097/00004728-199307000-00012.
  19. Basu S, Hess S, Nielsen Braad PE, et al. The Basic Principles of FDG-PET/CT Imaging. PET Clin. 2014;9(4):355–70. doi: 10.1016/j.cpet.2014.07.006.
  20. Paul R. Comparison of fluorine-18–2-fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma. J Nucl Med. 1987;28(3):288–92.
  21. Newman JS, Francis IR, Kaminski MR, Wahl RL. Imaging of lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose: correlation with CT. Radiology. 1994;190(1):111–6. doi: 10.1148/radiology.190.1.8259386.
  22. Buchmann I, Reinhardt M, Elsner K, et al. 2-(fluorine-18)fluoro-2-deoxy-D-glucose positron emission tomography in the detection and staging of malignant lymphoma. A bicenter trial. Cancer. 2001;91(5):889–99.
  23. Mylam KJ, Nielsen AL, Pedersen LM, Hutchings M. Fluorine-18-fluorodeoxyglucose Positron Emission Tomography in Diffuse Large B-cell Lymphoma. PET Clin. 2014;9(4):443–55. doi: 10.1016/j.cpet.2014.06.001.
  24. Isasi CR, Lu P, Blaufox MD. A meta-analysis of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography in the staging and restaging of patients with lymphoma. Cancer. 2005;104(5):1066–74. doi: 10.1016/j.hoc.2016.07.003.
  25. Schaefer NG, Hany TF, Taverna C, et al. Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging – do we need contrast-enhanced CT? Radiology. 2004;232(3):823–9. doi: 10.1148/radiol.2323030985.
  26. Hutchings M, Loft A, Hansen M, et al. Position emission tomography with or without computed tomography in the primary staging of Hodgkin’s lymphoma. Haematologica. 2006;91(4):482–9.
  27. Elstrom RL, Leonard JP, Coleman M, et al. Combined PET and low-dose, noncontrast CT scanning obviates the need for additional diagnostic contrast-enhanced CT scans in patients undergoing staging or restaging for lymphoma. Ann Oncol. 2008;19(10):1770–3. doi: 10.1093/annonc/mdn282.
  28. Pelosi E, Pregno P, Penna D, et al. Role of whole-body [18F] fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) and conventional techniques in the staging of patients with Hodgkin and aggressive non Hodgkin lymphoma. Radiol Med. 2008;113(4):578–90. doi: 10.1007/s11547-008-0264-7.
  29. Khan AB, Barrington SF, Mikhaeel NG, et al. PET-CT staging of DLBCL accurately identifies and provides new insight into the clinical significance of bone marrow involvement. Blood. 2013;122(1):61–7. doi: 10.1182/blood-2012-12-473389.
  30. Adams HJ, Kwee TC, de Keizer B, et al. FDG PET/CT for the detection of bone marrow involvement in diffuse large B-cell lymphoma: systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2014;41(3):565–74. doi: 10.1007/s00259-013-2623-4.
  31. Adams HJ, Kwee TC, Fijnheer R, et al. Bone marrow 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography cannot replace bone marrow biopsy in diffuse large B-cell lymphoma. Am J Hematol. 2014;89(7):726–31. doi: 10.1002/ajh.23730.
  32. Cerci JJ, Gyorke T, Fanti S, et al. Combined PET and biopsy evidence of marrow involvement improves prognostic prediction in diffuse large B-cell lymphoma. J Nucl Med. 2014;55(10):1591–7. doi: 10.2967/jnumed.113.134486.
  33. Hong J, Lee Y, Park Y, et al. Role of FDG-PET/CT in detecting lymphomatous bone marrow involvement in patients with newly diagnosed diffuse large B-cell lymphoma. Ann Hematol. 2012;91(5):687–95. doi: 10.1007/s00277-011-1353-6.
  34. Sehn LH, Scott DW, Chhanabhai M, et al. Impact of concordant and discordant bone marrow involvement on outcome in diffuse large B-cell lymphoma treated with R-CHOP. J Clin Oncol. 2011;29(11):1452–7. doi: 10.1200/JCO.2010.33.3419.
  35. Berthet L, Cochet A, Kanoun S, et al. In newly diagnosed diffuse large B-cell lymphoma, determination of bone marrow involvement with 18F-FDG PET/CT provides better diagnostic performance and prognostic stratification than does biopsy. J Nucl Med. 2013;54(8):1244–50. doi: 10.2967/jnumed.112.114710.
  36. Teagle AR, Barton H, Charles-Edwards E, et al. Use of FDG PET/CT in identification of bone marrow involvement in diffuse large B cell lymphoma and follicular lymphoma: comparison with iliac crest bone marrow biopsy. Acta Radiol. 2017;58(12):1476–84. doi: 10.1177/0284185117701305.
  37. Han HS, Escalon MP, Hsiao B, et al. High incidence of false-positive PET scans in patients with aggressive non-Hodgkin’s lymphoma treated with rituximab-containing regimens. Ann Oncol. 2009;20(2):309–18. doi: 10.1093/annonc/mdn629.
  38. Bangerter M, Moog F, Buchmann I, et al. Whole-body 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol. 1998;9(10):1117–22. doi: 10.1023/a:1008486928190.
  39. Broecker-Preuss M, Becher-Boveleth N, Muller SP, et al. Impact of germline polymorphisms in genes regulating glucose uptake on positron emission tomography findings and outcome in diffuse large B-cell lymphoma: results from the PETAL trial. J Cancer Res Clin Oncol. 2022;148(10):2611–21. doi: 10.1007/s00432-021-03796-z.
  40. Hoh CK, Glaspy J, Rosen P, et al. Whole-body FDG-PET imaging for staging of Hodgkin’s disease and lymphoma. J Nucl Med. 1997;38(3):343–8.
  41. Fuertes S, SetoainX, Lopez-Guillermo A, et al. The value of positron emission tomography/ computed tomography (PET/CT) in the staging of diffuse large B-cell lymphoma. Med Clin (Barc). 2007;129(18):688–93. doi: 10.1157/13112510.
  42. Raanani P, Shasha Y, Perry C, et al. Is CT scan still necessary for staging in Hodgkin and non-Hodgkin lymphoma patients in the PET/CT era? Ann Oncol. 2006;17(1):117–22. doi: 10.1093/annonc/mdj024.
  43. Tilly H, da Silva MG, Vitolo U, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v116–25. doi: 10.1093/annonc/mdv304.
  44. Carbone PP, Kaplan HS, Musshoff K, et al. Report of the committee on Hodgkin’s disease staging classification. Cancer Res. 1971;31(11):1860–1.
  45. Meignan M, Gallamini A, Haioun C. Report on the First International Workshop on Interim-PET-Scan in Lymphoma. Leuk Lymphoma. 2009;50(8):1257–60. doi: 10.1080/10428190903040048.
  46. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58. doi: 10.1200/JCO.2013.53.5229.
  47. Jagannath S, Velasquez WS, Tucker SL, et al. Tumor burden assessment and its implication for a prognostic model in advanced diffuse large-cell lymphoma. J Clin Oncol. 1986;4(6):859–65. doi: 10.1200/JCO.1986.4.6.859.
  48. Rivas-Delgado A, Nadeu F, Enjuanes A, et al. Mutational Landscape and Tumor Burden Assessed by Cell-free DNA in Diffuse Large B-Cell Lymphoma in a Population-Based Study Clin Cancer Res. 2021;27(2):513–21. doi: 10.1158/1078-0432.CCR-20-2558.
  49. Locke FL, Rossi JM, Neelapu SS, et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020;4(19):4898–911. doi: 10.1182/bloodadvances.2020002394.
  50. Barrington SF, Meignan MJ. Time to Prepare for Risk Adaptation in Lymphoma by Standardizing Measurement of Metabolic Tumor Burden. Nucl Med. 2019;60(8):1096–102. doi: 10.2967/jnumed.119.227249.
  51. Kostakoglu L, Martelli M, Sehn LH, et al. Baseline PET-derived metabolic tumor volume metrics predict progression-free and overall survival in DLBCL after first-line treatment: results from the phase 3 GOYA study. Blood. 2017;130(Suppl 1):824. doi: 10.1182/blood.v130.suppl_1.824.824.
  52. Ilyas H, Mikhaeel NG, Dunn JT, et al. Defining the optimal method for measuring baseline metabolic tumour volume in diffuse large B cell lymphoma. Eur J Nucl Med Mol Imaging. 2018;45(7):1142–54. doi: 10.1007/s00259-018-3953-z.
  53. Vercellino L, Cottereau A, Casasnovas O, et al. High total metabolic tumor volume at baseline predicts survival independent of response to therapy. Blood. 2020;135(16):1396–405. doi: 10.1182/blood.2019003526.
  54. Schmitz C, Huttmann A, Muller SP, et al. Dynamic risk assessment based on positron emission tomography scanning in diffuse large B-cell lymphoma: post-hoc analysis from the PETAL trial. Eur J Cancer. 2020;124:25–36. doi: 10.1016/j.ejca.2019.09.027.
  55. Guzman Ortiz S, Mucientes Rasilla J, Vargas Nunez JA, et al. Evaluation of the prognostic value of different methods of calculating the tumour metabolic volume with 18F-FDG PET/CT, in patients with diffuse large cell B-cell lymphoma. Rev Esp Med Nucl Imagen Mol (Engl Ed). 2020;39(6):340–6. doi: 10.1016/j.remn.2020.06.007.
  56. Sasanelli M, Meignan M, Haioun C, et al. Pretherapy metabolic tumour volume is an independent predictor of outcome in patients with diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2014;41(11):2017–22. doi: 10.1007/s00259-014-2822-7.
  57. Ceriani L, Gritti G, Cascione L, et al. SAKK38/07 study: integration of baseline metabolic heterogeneity and metabolic tumor volume in DLBCL prognostic model. Blood Adv. 2020;4(6):1082–92. doi: 10.1182/bloodadvances.2019001201.
  58. Tout M, Casasnovas O, Meignan M, et al. Rituximab exposure is influenced by baseline metabolic tumor volume and predicts outcome of DLBCL patients: a Lymphoma Study Association report. Blood. 2017;129(19):2616–23. doi: 10.1182/blood-2016-10-744292.
  59. Eertink JJ, van de Brug T, Wiegers SE, et al. 18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2022;49(3):932–42. doi: 10.1007/s00259-021-05480-3.
  60. Yim SK, Yhim HY, Han YH, et al. Early risk stratification for diffuse large B-cell lymphoma integrating interim Deauville score and International Prognostic Index. Ann Hematol. 2019;98(12):2739–48. doi: 10.1007/s00277-019-03834-4.
  61. Thieblemont C, Chartier L, Duhrsen U, et al. A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma. Blood Adv. 2022;6(23):5995–6004. doi: 10.1182/bloodadvances.2021006923.
  62. Mikhaeel MG, Smith D, Dunn JT, et al. Combination of baseline metabolic tumour volume and early response on PET/CT improves progression-free survival prediction in DLBCL. Eur J Nucl Med Mol Imaging. 2016;43(7):1209–19. doi: 10.1007/s00259-016-3315-7.
  63. Cottereau AS, Lanic H, Mareschal S, et al. Molecular profile and FDG-PET/CT total metabolic tumor volume improve risk classification at diagnosis for patients with diffuse large B-cell lymphoma. Clin Cancer Res. 2016;22(15):3801–9. doi: 10.1158/1078-0432.CCR-15-2825.
  64. Cottereau A-S, Meignan M, Nioche C, et al. Risk stratification in diffuse large B-cell lymphoma using lesion dissemination and metabolic tumor burden calculated from baseline PET/CT. Ann Oncol. 2021;32(3):404–11. doi: 10.1016/j.annonc.2020.11.019.
  65. Frood R, Burton C, Tsoumpas C, et al. Baseline PET/CT imaging parameters for prediction of treatment outcome in Hodgkin and diffuse large B cell lymphoma: a systematic review. Eur J Nucl Med Mol Imaging. 2021;48(10):3198–220. doi: 10.1007/s00259-021-05233-2.
  66. Mamot C, Klingbiel D, Hitz F, et al. Final results of a prospective evaluation of the predictive value of interim positron emission tomography in patients with diffuse large B-cell lymphoma treated with R-CHOP-14 (SAKK 38/07). J Clin Oncol. 2015;33(23):2523–9. doi: 10.1200/JCO.2014.58.9846.
  67. Casasnovas RO, Ysebaert L, Thieblemont C, et al. FDG-PET-driven consolidation strategy in diffuse large B-cell lymphoma: final results of a randomized phase 2 study. Blood. 2017;130(11):1315–26. doi: 10.1182/blood-2017-02-766691.
  68. Persky DO, Li H, Stephens DM, et al. Positron emission tomography-directed therapy for patients with limited-stage diffuse large B-cell lymphoma: results of Intergroup National Clinical Trials Network Study S1001. J Clin Oncol. 2020;38(26):3003–11. doi: 10.1200/JCO.20.00999.
  69. El-Galaly TC, Villa D, Gormsen LC, et al. FDG-PET/CT in the management of lymphomas: current status and future directions. J Intern Med. 2018;284(4):358–76. doi: 10.1111/joim.12813.
  70. Kim J, Song YS, Lee JS, et al. Risk stratification of diffuse large B-cell lymphoma with interim PET-CT based on different cutoff Deauville scores. Leuk Lymphoma. 2018;59(2):340–7. doi: 10.1080/10428194.2017.1339877.
  71. Duhrsen U, Muller S, Hertenstein B, et al. Positron emission tomography-guided therapy of aggressive non-Hodgkin lymphomas (PETAL): a multicenter, randomized phase III trial. J Clin Oncol. 2018;36(20):2024–34. doi: 10.1200/JCO.2017.76.8093.
  72. Casasnovas RO, Meignan M, Berriolo-Riedinger A, et al. SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma. Blood. 2011;118(1):37–43. doi: 10.1182/blood-2010-12-327767.
  73. Mylam KJ, Kostakoglu L, Hutchings M, et al. (18)F-fluorodeoxyglucose-positron emission tomography/computed tomography after one cycle of chemotherapy in patients with diffuse large B-cell lymphoma: results of a Nordic/US intergroup study. Leuk Lymphoma. 2015;56(7):2005–12. doi: 10.3109/10428194.2014.975800.
  74. Hertzberg M, Gandhi MK, Trotman J, et al. Early treatment intensification with R-ICE and 90Y-ibritumomab tiuxetan (Zevalin)-BEAM stem cell transplantation in patients with high-risk diffuse large B-cell lymphoma patients and positive interim PET after 4 cycles of R-CHOP-14. Haematologica. 2017;102(2):356–63. doi: 10.3324/haematol.2016.154039.
  75. Moskowitz CH, Schoder H, Teruya-Feldstein J, et al. Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in advanced-stage diffuse large B-cell lymphoma. J Clin Oncol. 2010;28(11):1896–903. doi: 10.1200/JCO.2009.26.5942.
  76. Burggraaff CN, de Jong A, Hoekstra OS, et al. Predictive value of interim positron emission tomography in diffuse large B-cell lymphoma: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2019;46(1):65–79. doi: 10.1007/s00259-018-4103-3.
  77. Schoder H, Polley MC, Knopp MV, et al. Prognostic value of interim FDG-PET in diffuse large cell lymphoma: results from the CALGB 50303 Clinical Trial. Blood. 2020;135(25):2224–34. doi: 10.1182/blood.2019003277.
  78. Mikhaeel NG, Cunningham D, Counsell N, et al. FDG-PET/CT after two cycles of R-CHOP in DLBCL predicts complete remission but has limited value in identifying patients with poor outcome — final result of a UK National Cancer Research Institute prospective study. Br J Haematol. 2021;192(3):504–13. doi: 10.1111/bjh.16875.
  79. Eertink JJ, Burggraaff CN, Heymans MW, et al. Optimal timing and criteria of interim PET in DLBCL: a comparative study of 1692 patients. Blood Adv. 2021;5(9):2375–84. doi: 10.1182/bloodadvances.2021004467.
  80. Swinnen LJ, Li H, Quon A, et al. Response-adapted therapy for aggressive non-Hodgkin’s lymphomas based on early [18F] FDG-PET scanning: ECOG-ACRIN Cancer Research Group study (E3404). Br J Haematol. 2015;170(1):56–65. doi: 10.1111/bjh.13389.
  81. Pardal E, Coronado M, Martin A, et al. Intensification treatment based on early FDG-PET in patients with high-risk diffuse large B-cell lymphoma: a phase II GELTAMO trial. Br J Haematol. 2014;167(3):327–36. doi: 10.1111/bjh.13036.
  82. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/JCO.2006.09.2403.
  83. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68. doi: 10.1200/JCO.2013.54.8800.
  84. Juweid ME, Wiseman GA, Vose JM, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18–fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2005;23(21):4652–61. doi: 10.1200/JCO.2005.01.891.
  85. Juweid ME, Cheson BD. Role of positron emission tomography in lymphoma. J Clin Oncol. 2005;23(21):4577–80. doi: 10.1200/JCO.2005.01.904.
  86. Juweid ME, Cheson BD. Positron-emission tomography and assessment of cancer therapy. N Engl J Med. 2006;354(5):496–507. doi: 10.1056/NEJMra050276.
  87. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8. doi: 10.1200/JCO.2006.08.2305.
  88. Seam P, Juweid ME, Cheson BD. The role of FDG-PET scans in patients with lymphoma. Blood. 2007;110(10):3507–16. doi: 10.1182/blood-2007-06-097238.
  89. Juweid ME. 18F-FDG PET as a routine test for posttherapy assessment of Hodgkin’s disease and aggressive non-Hodgkin’s lymphoma: where is the evidence? J Nucl Med. 2008;49(1):9–12. doi: 10.2967/jnumed.107.046292.
  90. Manohar K, Mittal BR, Raja S, et al. Comparison of various criteria in interpreting end of therapy F-18 labeled fluorodeoxyglucose positron emission tomography/computed tomography in patients with aggressive non-Hodgkin lymphoma. Leuk Lymphoma. 2013;54(4):714–9. doi: 10.3109/10428194.2012.717693.
  91. Pregno P, Chiappella A, Bello M, et al. Interim 18-FDG-PET/CT failed to predict the outcome in diffuse large B-cell lymphoma patients treated at the diagnosis with rituximab-CHOP. Blood. 2012;119(9):2066–73. doi: 10.1182/blood-2011-06-359943.
  92. Adams HJ, de Klerk JM, Fijnheer R, et al. Residual anatomical disease in diffuse large B-cell lymphoma patients with FDG-PET-based complete response after first-line R-CHOP therapy: does it have any prognostic value? J Comput Assist Tomogr. 2015;39(5):810–5. doi: 10.1097/RCT.0000000000000270.
  93. Bishton MJ, Hughes S, Richardson F, et al. Delineating outcomes of patients with diffuse large B cell lymphoma using the National Comprehensive Cancer Network-International Prognostic Index and positron emission tomography-defined remission status; a population-based analysis. Br J Haematol. 2016;172(2):246–54. doi: 10.1111/bjh.13831.
  94. Kanemasa Y, Shimoyama T, Sasaki Y, et al. Analysis of prognostic value of complete response by PETCT and further stratification by clinical and biological markers in DLBCL patients. Med Oncol. 2017;34(2):29. doi: 10.1007/s12032-017-0885-6.
  95. Maurer MJ, Habermann TM, Shi Q, et al. Progression-free survival at 24 months (PFS24) and subsequent outcome for patients with diffuse large B-cell lymphoma (DLBCL) enrolled on randomized clinical trials. Ann Oncol. 2018;29(8):1822–7. doi: 10.1093/annonc/mdy203.
  96. Sargent DJ, Shi Q, Flowers CR, et al. The Search for Surrogate Endpoints in Trials in Diffuse Large B-Cell Lymphoma: The Surrogate Endpoints for Aggressive Lymphoma Project. Oncologist. 2017;22(12):1415–8. doi: 10.1634/theoncologist.2017-0177.
  97. Micallef IN, Maurer MJ, Wiseman GA, et al. Epratuzumab with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy in patients with previously untreated diffuse large B-cell lymphoma. Blood. 2011;118(15):4053–61. doi: 10.1182/blood-2011-02-336990.
  98. Cox MC, Ambrogi V, Lanni V, et al. Use of interim [18F]fluorodeoxyglucose-positron emission tomography is not justified in diffuse large B-cell lymphoma during first-line immunochemotherapy. Leuk Lymphoma. 2012;53(2):263–9. doi: 10.3109/10428194.2011.614704.
  99. Gonzalez-Barca E, Canales M, Cortes M, et al. Predictive value of interim 18F-FDG-PET/CT for event free survival in patients with diffuse large B-cell lymphoma homogenously treated in a phase II trial with six cycles of R-CHOP-14 plus pegfilgrastim as first-line treatment. Nucl Med Commun. 2013;34(10):946–52. doi: 10.1097/MNM.0b013e 328363c695.
  100. Carr R, Fanti S, Paez D, et al. Prospective international cohort study demonstrates inability of interim PET to predict treatment failure in diffuse large B-cell lymphoma. J Nucl Med. 2014;55(12):1936–44. doi: 10.2967/jnumed.114.145326.
  101. Thompson CA, Ghesquieres H, Maurer MJ, et al. Utility of routine post-therapy surveillance imaging in diffuse large B-cell lymphoma. J Clin Oncol. 2014;32(31):3506–12. doi: 10.1200/JCO.2014.55.7561.
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.

Copyright (c) 2023 Клиническая онкогематология