Мутационный профиль генома нормальных и опухолевых клеток у больного множественной миеломой (клиническое наблюдение)
ISSN (print) 1997-6933     ISSN (online) 2500-2139
2023-3
PDF_2023-16-3_337-349

Ключевые слова

множественная миелома
секвенирование нового поколения
экзом
наследуемые мутации
соматические мутации

Как цитировать

Жук А.С., Кострома И.И., Степченкова Е.И., Качкин Д.В., Белопольская О.Б., Зотова И.В., Гарифуллин А.Д., Волошин С.В., Грицаев С.В., Аксенова А.Ю. Мутационный профиль генома нормальных и опухолевых клеток у больного множественной миеломой (клиническое наблюдение). Клиническая онкогематология. 2024;(3):337–349. doi:10.21320/2500-2139-2023-16-3-337-349.

Ключевые слова

Аннотация

В настоящем исследовании представлено клиническое наблюдение больного с впервые диагностированной множественной миеломой (ММ), у которого до начала лечения проведено секвенирование экзома лимфоцитов периферической крови и опухолевых плазматических клеток CD138+. У пациента выявлено несколько наследуемых вариантов в генах, связанных с предрасположенностью к ММ. В генотипе у пациента обнаружены варианты в генах, отвечающих за репарацию ДНК, в т. ч. наследуемые мутации в генах RFDW3 и TP53. Они участвуют в регуляции стабильности генома, скорости накопления соматических мутаций, в т. ч. структурных перестроек и хромосомных аберраций. На нарушение процессов репарации ДНК у пациента указывает большое количество структурных вариаций и наличие мутационной подписи ID6 в генетическом материале опухоли. Анализ экзома опухолевых клеток позволил определить профиль соматических мутаций, включающий мутации в генах, ранее считавшихся связанными с ММ, а также оценить функциональную значимость выявленных нарушений. Кроме того, среди соматических мутаций мы обнаружили повреждающие мутации и мутации высокой значимости в генах, связанных с развитием других типов опухолей, в частности в генах ASCC3, TETи CHD1, а также в генах, кодирующих антимикробные пептиды CAMP и HTN3. За исключением дополнительной копии плеча 1q в геноме опухолевых плазматических клеток, у пациента не установлено других генетических факторов риска, связанных с неблагоприятным течением заболевания. У больного выявлены наследуемые (мутации в гене ABCB1) и соматические (трисомия по хромосоме 3) изменения генетического материала, которые характеризуются, по данным литературы, как факторы положительного прогноза при ММ.

PDF_2023-16-3_337-349

Библиографические ссылки

  1. Aksenova AY, Zhuk AS, Lada AG, et al. Genome instability in multiple myeloma: Facts and factors. Cancers. 2021;13(23):5949. doi: 10.3390/cancers13235949.
  2. Аксенова А.Ю., Жук А.С., Степченкова Е.И., Грицаев С.В. Стратификация больных множественной миеломой: современное состояние вопроса и дальнейшие перспективы. Клиническая онкогематология. 2022;15(3):259–70. doi: 10.21320/2500-2139-2022-15-3-259-270.
  3. [Aksenova AYu, Zhuk AS, Stepchenkova EI, Gritsaev SV. Stratification of Patients with Multiple Myeloma: State-of-the-Art and Prospects. Clinical oncohematology. 2022;15(3):259–70. doi: 10.21320/2500-2139-2022-15-3-259-270. (In Russ)]
  4. Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132(6):587–97. doi: 10.1182/blood-2018-03-840132.
  5. Fu X, Yucer N, Liu S, et al. RFWD3-Mdm2 ubiquitin ligase complex positively regulates p53 stability in response to DNA damage. Proc Nat Acad Sci USA. 2010;107(10):4579–84. doi: 10.1073/PNAS.0912094107.
  6. Feeney L, Munoz IM, Lachaud C, et al. RPA-Mediated Recruitment of the E3 Ligase RFWD3 Is Vital for Interstrand Crosslink Repair and Human Health. Mol Cell. 2017;66(5):610–621.e4. doi: 10.1016/j.molcel.2017.04.021.
  7. Mitchell JS, Li N, Weinhold N, et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat Commun. 2016;7:12050. doi: 10.1038/ncomms12050.
  8. Went M, Sud A, Forsti A, et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun. 2018;9(1):3707. doi: 10.1038/s41467-018-04989-w.
  9. Hou P, Su X, Cao W, et al. Whole-exome sequencing reveals the etiology of the rare primary hepatic mucoepidermoid carcinoma. Diagn Pathol. 2021;16(1):29. doi: 10.1186/s13000-021-01086-3.
  10. Huang X, Wu F, Zhang Z, Shao Z. Association between TP53 rs1042522 gene polymorphism and the risk of malignant bone tumors: a meta-analysis. Biosci Rep. 2019;39(3):20181832. doi: 10.1042/BSR20181832.
  11. Akter R, Islam MS, Islam MS, et al. A case-control study investigating the association of TP53 rs1042522 and CDH1 rs16260 polymorphisms with prostate cancer risk. Meta Gene. 2021;30:100962. doi: 10.1016/J.MGENE.2021.100962.
  12. Henner WD, Evans AJ, Hough KM, et al. Association of codon 72 polymorphism of p53 with lower prostate cancer risk. Prostate. 2001;49(4):263–6. doi: 10.1002/PROS.10021.
  13. Dunna NR, Vure S, Sailaja K, et al. TP53 codon 72 polymorphism and risk of acute leukemia. Asian Pacif J Cancer Prevent. 2012;13(1):347–50. doi: 10.7314/APJCP.2012.13.1.349.
  14. Kochethu G, Delgado J, Pepper C, et al. Two germ line polymorphisms of the tumour suppressor gene p53 may influence the biology of chronic lymphocytic leukaemia. Leuk Res. 2006;30(9):1113–8. doi: 10.1016/J.LEUKRES.2005.12.014.
  15. Bergamaschi D, Samuels Y, Sullivan A, et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet. 2006;38(10):1133–41. doi: 10.1038/ng1879.
  16. Dumont P, Leu JIJ, Della Pietra AC, et al. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003;33(3):357–65. doi: 10.1038/ng1093.
  17. Weng Y, Lu L, Yuan G, et al. p53 codon 72 polymorphism and Hematological Cancer Risk: An Update Meta-Analysis. PLoS ONE. 2012;7(9):e45820. doi: 10.1371/journal.pone.0045820.
  18. Ortega MM, Honma HN, Zambon L, et al. GSTM1 and codon 72 P53 polymorphism in multiple myeloma. Ann Hematol. 2007;86(11):815–9. doi: 10.1007/S00277-007-0347-X/TABLES/3.
  19. Hattori Y, Ikeda Y, Suzuki Y, et al. Codon 72 polymorphism of TP53 gene is a novel prognostic marker for therapy in multiple myeloma. Br J Haematol. 2014;165(5):728–31. doi: 10.1111/BJH.12784.
  20. Greenberg AJ, Lee AM, Serie DJ, et al. Single-nucleotide polymorphism rs1052501 associated with monoclonal gammopathy of undetermined significance and multiple myeloma. Leukemia. 2013;27(2):515–6. doi: 10.1038/leu.2012.232.
  21. Broderick P, Chubb D, Johnson DC, et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat Genet. 2012;44(1):58–61. doi: 10.1038/ng.993.
  22. Ford AQ, Heller NM, Stephenson L, et al. An Atopy-Associated Polymorphism in the Ectodomain of the IL-4Rα Chain (V50) Regulates the Persistence of STAT6 Phosphorylation. J Immunol. 2009;183(3):1607–16. doi: 10.4049/JIMMUNOL.0803266.
  23. Luo Y, Ye Z, Li K, et al. Associations between polymorphisms in the IL-4 and IL-4 receptor genes and urinary carcinomas: a meta-analysis. Int J Clin Exp Med. 2015;8(1):1227–33.
  24. Ivansson EL, Gustavsson IM, Magnusson JJ, et al. Variants of chemokine receptor 2 and interleukin 4 receptor, but not interleukin 10 or Fas ligand, increase risk of cervical cancer. Int J Cancer. 2007;121(11):2451–7. doi: 10.1002/IJC.22989.
  25. Alvarez JV, Frank DA. Genome-wide analysis of STAT target genes: Elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol Ther. 2004;3(11):1045–50. doi: 10.4161/cbt.3.11.1172.
  26. Vikova V, Jourdan M, Robert N, et al. Comprehensive characterization of the mutational landscape in multiple myeloma cell lines reveals potential drivers and pathways associated with tumor progression and drug resistance. Theranostics. 2019;9(2):540–53. doi: 10.7150/thno.28374.
  27. Waller RG, Darlington TM, Wei X, et al. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk Epstein MP, editor. PLOS Genet. 2018;14(2):e1007111. doi: 10.1371/journal.pgen.1007111.
  28. Bolli N, Barcella M, Salvi E, et al. Next-generation sequencing of a family with a high penetrance of monoclonal gammopathies for the identification of candidate risk alleles. Cancer. 2017;123(19):3701–8. doi: 10.1002/cncr.30777.
  29. Greipp P, Cascino G, Kimlinger T, et al. Plasma Cell Folate Receptor Overexpression Differentiates Multiple Myeloma from Monoclonal Gammopathy of Undetermined Significance and Smoldering Myeloma. Blood. 2004;104(11):3649. doi: 10.1182/BLOOD.V104.11.3649.3649.
  30. Song J, Freeman ADJ, Knebel A, et al. Human ANKLE1 Is a Nuclease Specific for Branched DNA. J Mol Biol. 2020;432(21):5825–34. doi: 10.1016/J.JMB.2020.08.022.
  31. Antoniou AC, Wang X, Fredericksen ZS, et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet. 2010;42(10):885–92. doi: 10.1038/NG.669.
  32. Tian J, Ying P, Ke J, et al. ANKLE1 N6-Methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability. Int J Cancer. 2020;146(12):3281–93. doi: 10.1002/IJC.32677.
  33. Rhie SK, Coetzee SG, Noushmehr H, et al. Comprehensive functional annotation of seventy-one breast cancer risk Loci. PloS One. 2013;8(5):e63925. doi: 10.1371/journal.pone.0063925.
  34. Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics. 2011;21(3):152–61. doi: 10.1097/FPC.0B013E3283385A1C.
  35. Hassen W, Kassambara A, Reme T, et al. Drug metabolism and clearance system in tumor cells of patients with multiple myeloma. Oncotarget. 2014;6(8):6431–47. doi: 10.18632/ONCOTARGET.3237.
  36. Salama NN, Yang Z, Bui T, Ho RJY. MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J Pharm Sci. 2006;95(10):2293–308. doi: 10.1002/JPS.20717.
  37. Drain S, Catherwood M, Orr N, et al. ABCB1 (MDR1) rs1045642 is associated with increased overall survival in plasma cell myeloma. Leuk lymphoma. 2009;50(4):566–70. doi: 10.1080/10428190902853144.
  38. Buda G, Ricci D, Huang CC, et al. Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin. Ann Hematol. 2010;89(11):1133. doi: 10.1007/S00277-010-0992-3.
  39. Maggini V, Buda G, Martino A, et al. MDR1 diplotypes as prognostic markers in multiple myeloma. Pharmacogenet Genomics. 2008;18(5):383–9. doi: 10.1097/FPC.0B013E3282F82297.
  40. Ziccheddu B, Biancon G, Bagnoli F, et al. Integrative analysis of the genomic and transcriptomic landscape of double-refractory multiple myeloma. Blood Adv. 2020;4(5):830–44. doi: 10.1182/bloodadvances.2019000779.
  41. Zheleznyak A, Mixdorf M, Marsala L, et al. Orthogonal targeting of osteoclasts and myeloma cells for radionuclide stimulated dynamic therapy induces multidimensional cell death pathways. Theranostics. 2021;11(16):7735–54. doi: 10.7150/THNO.60757.
  42. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32(12):2604–16. doi: 10.1038/s41375-018-0037-9.
  43. Dementyeva E, Kryukov F, Kubiczkova L, et al. Clinical implication of centrosome amplification and expression of centrosomal functional genes in multiple myeloma. J Transl Med. 2013;11(1):1–9. doi: 10.1186/1479-5876-11-77/FIGURES/5.
  44. Dango S, Mosammaparast N, Sowa ME, et al. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol Cell. 2011;44(3):373–84. doi: 10.1016/J.MOLCEL.2011.08.039.
  45. Fedeles BI, Singh V, Delaney JC, et al. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J Biol Chem. 2015;290(34):20734–42. doi: 10.1074/JBC.R115.656462.
  46. Jia J, Absmeier E, Holton N, et al. The interaction of DNA repair factors ASCC2 and ASCC3 is affected by somatic cancer mutations. Nat Commun. 2020;11(1):1–13. doi: 10.1038/s41467-020-19221-x.
  47. Ko M, An J, Pastor WA, et al. TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunol Rev. 2015;263(1):6–21. doi: 10.1111/IMR.12239.
  48. Bray JK, Dawlaty MM, Verma A, Maitra A. Roles and Regulations of TET Enzymes in Solid Tumors. Trends Cancer. 2021;7(7):635–46. doi: 10.1016/j.trecan.2020.12.011.
  49. Linowiecka K, Foksinski M, Brozyna AA. Vitamin c transporters and their implications in carcinogenesis. Nutrients. 2020;12(12):1–19. doi: 10.3390/nu12123869.
  50. Kari V, Mansour WY, Raul SK, et al. Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness. EMBO Rep. 2016;17(11):1609–23. doi: 10.15252/EMBR.201642352.
  51. Zhou J, Li J, Serafim RB, et al. Human CHD1 is required for early DNA-damage signaling and is uniquely regulated by its N terminus. Nucleic Acids Res. 2018;46(8):3891–905. doi: 10.1093/nar/gky128.
  52. Cardoso AR, Lopes-Marques M, Oliveira M, et al. Genetic variability of the functional domains of chromodomains helicase DNA-binding (CHD) proteins. Genes. 2021;12(11):1–15. doi: 10.3390/genes12111827.
  53. Burkhardt L, Fuchs S, Krohn A, et al. CHD1 Is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res. 2013;73(9):2795–805. doi: 10.1158/0008-5472.CAN-12-1342.
  54. Li Y, Roberts ND, Wala JA, et al. Patterns of somatic structural variation in human cancer genomes. Nature. 2020;578(7793):112–21. doi: 10.1038/s41586-019-1913-9.
  55. Chretien ML, Corre J, Lauwers-Cances V, et al. Understanding the role of hyperdiploidy in myeloma prognosis: Which trisomies really matter? Blood. 2015;126(25):2713–9. doi: 10.1182/blood-2015-06-650242.
  56. Perrot A, Lauwers-Cances V, Tournay E, et al. Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma. J Clin Oncol. 2019;37(19):1657–65. doi: 10.1200/JCO.18.00776.
  57. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLOS Comput Biol. 2016;12(4):e1004873. doi: 10.1371/JOURNAL.PCBI.1004873.
  58. Lee J, Lee AJ, Lee JK, et al. Mutalisk: A web-based somatic MUTation AnaLyIS toolKit for genomic, transcriptional and epigenomic signatures. Nucleic Acids Res. 2018;46(W1):W102–W108. doi: 10.1093/nar/gky406.
  59. Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011;25(23):2436. doi: 10.1101/GAD.179184.111.
  60. Schmidt TM, Barwick BG, Joseph N, et al. Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J. 2019;9(12):94. doi: 10.1038/s41408-019-0254-0.
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.