Аннотация
Развитие и совершенствование геномных методов диагностики в последние десятилетия позволяют глубже раскрыть разнообразие патогенеза хронического лимфоцитарного лейкоза (ХЛЛ): от концепций клеточного происхождения и реактивного микроокружения опухоли до молекулярного ландшафта и генетических маркеров с прогностическим значением. В настоящем обзоре обсуждаются клинически значимые молекулярно-генетические аберрации, которые необходимо учитывать при стратификации пациентов с ХЛЛ на группы риска и выборе персонализированного лечения. Представлен современный взгляд на молекулярный ландшафт ХЛЛ, включая информацию о сигнальных клеточных механизмах и биомаркерах, имеющих клиническое значение. Рассматриваются вопросы, связанные с гетерогенностью клинического течения ХЛЛ как отражением биологических событий на мультиомном уровне: геноме, эпигеноме, транскриптоме, протеоме и метаболоме. Кроме того, в обзоре представлена информация о новейших технологиях и подчеркивается актуальность применения мультиомного профилирования с целью создать в перспективе новые подклассификации ХЛЛ.
Библиографические ссылки
- 1. Hallek M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am J Hematol. 2019;94(11):1266–87. doi: 10.1002/ajh.25595.
- 2. Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745–60. doi: 10.1182/blood-2017-09-806398.
- 3. Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005;352(8):804–15. doi: 10.1056/NEJMra041720.
- 4. Klein U, Dalla-Favera R. New insights into the phenotype and cell derivation of B cell chronic lymphocytic leukemia. Curr Top Microbiol Immunol. 2005;294:31–49. doi: 10.1007/3-540-29933-5_3.
- 5. Stevenson FK, Caligaris-Cappio F. Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood. 2004;103(12):4389–95. doi: 10.1182/blood-2003-12-4312.
- 6. Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: IARC Press; 2008.
- 7. Bosch F, Dalla-Favera R. Chronic lymphocytic leukaemia: from genetics to treatment. Nat Rev Clin Oncol. 2019;16(11):684–701. doi: 10.1038/s41571-019-0239-8.
- 8. Klein U, Tu Y, Stolovitzky GA, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194(11):1625–38. doi: 10.1084/jem.194.11.1625.
- 9. Seifert M, Sellmann L, Bloehdorn J, et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J Exp Med. 2012;209(12):2183–98. doi: 10.1084/jem.20120833.
- 10. Kulis M, Heath S, Bibikova M, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012;44(11):1236–42. doi: 10.1038/ng.2443.
- 11. Ferrer G, Montserrat E. Critical molecular pathways in CLL therapy. Mol Med. 2018;24(1):9. doi: 10.1186/s10020-018-0001-1.
- 12. Ten Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications for disease pathogenesis and treatment. Biochim Biophys Acta. 2016;1863(3):401–13. doi: 10.1016/j.bbamcr.2015.07.009.
- 13. O’Donnell A, Pepper C, Mitchell S, Pepper A. NF-kB and the CLL microenvironment. Front Oncol. 2023;13:1169397. doi: 10.3389/fonc.2023.1169397.
- 14. Juliusson G, Oscier DG, Fitchett M, et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med. 1990;323(11):720–4. doi: 10.1056/NEJM199009133231105.
- 15. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6. doi: 10.1056/NEJM200012283432602.
- 16. Puiggros A, Blanco G, Espinet B. Genetic abnormalities in chronic lymphocytic leukemia: where we are and where we go. Biomed Res Int. 2014;2014:435983. doi: 10.1155/2014/435983.
- 17. Klein U, Lia M, Crespo M, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17(1):28–40. doi: 10.1016/j.ccr.2009.11.019.
- 18. Kasar S, Salerno E, Yuan Y, et al. Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignancy in the NZB de novo mouse model of chronic lymphocytic leukemia. Genes Immun. 2012;13(2):109–19. doi: 10.1038/gene.2011.58.
- 19. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences. 2005;102(39):13944–9. doi: 10.1073/pnas.0506654102.
- 20. Jeromin S, Weissmann S, Haferlach C, et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia. 2014;28(1):108–17. doi: 10.1038/leu.2013.263.
- 21. Larrayoz M, Rose-Zerilli MJJ, Kadalayil L, et al. Non-coding NOTCH1 mutations in chronic lymphocytic leukemia; their clinical impact in the UK CLL4 trial. Leukemia. 2017;31(2):510–4. doi: 10.1038/leu.2016.298.
- 22. Brown JR, Hanna M, Tesar B, et al. Integrative genomic analysis implicates gain of PIK3CA at 3q26 and MYC at 8q24 in chronic lymphocytic leukemia. Clin Cancer Res. 2012;18(14):3791–802. doi: 10.1158/1078-0432.CCR-11-2342.
- 23. Zenz T, Mertens D, Kuppers R, et al. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010;10(1):37–50. doi: 10.1038/nrc2764.
- 24. Lampson BL, Gupta A, Tyekucheva S, et al. Rare Germline ATM Variants Influence the Development of Chronic Lymphocytic Leukemia. J Clin Oncol. 2023;41(5):1116–28. doi: 10.1200/JCO.22.00269.
- 25. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376(9747):1164–74. doi: 10.1016/S0140-6736(10)61381-5.
- 26. Zenz T, Vollmer D, Trbusek M, et al. TP53 mutation profile in chronic lymphocytic leukemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia. 2010;24(12):2072–9. doi: 10.1038/leu.2010.208.
- 27. Seiffert M, Dietrich S, Jethwa A, et al. Exploiting biological diversity and genomic aberrations in chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53(6):1023–31. doi: 10.3109/10428194.2011.631638.
- 28. Yu L, Kim HT, Kasar SN, et al. Survival of del17p CLL depends on genomic complexity and somatic mutation. Clin Cancer Res. 2017;23(3):735–45. doi: 10.1158/1078-0432.CCR-16-0594.
- 29. Mikhaleva M, Tyekucheva S, Mashima K, et al. Higher Mutational Burden Is an Independent Predictor of Shorter Time to First Treatment in Untreated Chronic Lymphocytic Leukemia Patients. Blood. 2023;142(Suppl 1):3270. doi: 10.1182/blood-2023-173738.
- 30. Rigolin GM, Cibien F, Martinelli S, et al. Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia with “normal” FISH: correlations with clinicobiologic parameters. Blood. 2012;119(10):2310–3. doi: 10.1182/blood-2011-11-395269.
- 31. Baliakas P, Iskas M, Gardiner A, et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol. 2014;89(3):249–55. doi: 10.1002/ajh.23618.
- 32. Cavallari M, Cavazzini F, Bardi A, et al. Biological significance and prognostic/predictive impact of complex karyotype in chronic lymphocytic leukemia. Oncotarget. 2018;9(76):34398–412. doi: 10.18632/oncotarget.26146.
- 33. Jaglowski SM, Ruppert AS, Heerema NA, et al. Complex karyotype predicts for inferior outcomes following reduced‐intensity conditioning allogeneic transplant for chronic lymphocytic leukaemia. Br J Haematol. 2012;159(1):82–7. doi: 10.1111/j.1365-2141.2012.09239.x.
- 34. Baliakas P, Jeromin S, Iskas M, et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood. 2019;133(11):1205–16. doi: 10.1182/blood-2018-09-873083.
- 35. Baliakas P, Espinet B, Mellink C, et al. Cytogenetics in chronic lymphocytic leukemia: ERIC perspectives and recommendations. Hemasphere. 2022;6(4):e707. doi: 10.1097/HS9.0000000000000707.
- 36. Hamblin TJ, Davis Z, Gardiner A, et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848–54.
- 37. Damle RN, Wasil T, Fais F, et al. Ig V Gene Mutation Status and CD38 Expression As Novel Prognostic Indicators in Chronic Lymphocytic Leukemia. Blood. 1999;94(6):1840–7.
- 38. Ghia P, Stamatopoulos K, Belessi C, et al. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia. 2007;21(1):1–3. doi: 10.1038/sj.leu.2404457.
- 39. Agathangelidis A, Chatzidimitriou A, Chatzikonstantinou T, et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: the 2022 update of the recommendations by ERIC, the European Research Initiative on CLL. Leukemia. 2022;36(8):1961–8. doi: 10.1038/s41375-022-01604-2.
- 40. Rosenquist R, Ghia P, Hadzidimitriou A, et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations. Leukemia. 2017;31(7):1477–81. doi: 10.1038/leu.2017.125.
- 41. Mansouri L, Thorvaldsdottir B, Sutton LA, et al. Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: a study by ERIC in HARMONY. Leukemia. 2023;37(2):339–47. doi: 10.1038/s41375-022-01802-y.
- 42. Бидерман Б.В., Никитин Е.А., Сергиенко Т.Ф. и др. Репертуар генов тяжелой цепи иммуноглобулинов при В-клеточном хроническом лимфолейкозе в России и Беларуси. Онкогематология. 2012;3:38–43. [Biderman B.V., Nikitin E.A., Sergienko T.F., et al. Repertoire of immunoglobulin heavy chain genes in B-cell chronic lymphocytic leukemia in Russia and Belarus. Onkogematologiya. 2012;3:38–43. (In Russ)]
- 43. Бидерман Б.В., Судариков А.Б. Гены иммуноглобулинов и стереотипные антигенные рецепторы при хроническом лимфолейкозе и других лимфопролиферативных заболеваниях. Гематология и трансфузиология. 2023;68(1):70–9. doi: 10.35754/0234-5730-2023-68-1-70-79. [Biderman B.V., Sudarikov A.B. Immunoglobulin genes and stereotyped antigenic receptors in chronic lymphocytic leukemia and other lymphoproliferative diseases. Russian journal of hematology and transfusiology. 2023;68(1):70–9. doi: 10.35754/0234-5730-2023-68-1-70-79. (In Russ)]
- 44. Burger JA, Barr PM, Robak T, et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia. 2020;34(3):787–98. doi: 10.1038/s41375-019-0602-x.
- 45. Stilgenbauer S, Schnaiter A, Paschka P, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123(21):3247–54. doi: 10.1182/blood-2014-01-546150.
- 46. Fischer K, Al-Sawaf O, Bahlo J, et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med. 2019;380(23):2225–36. doi: 10.1056/NEJMoa1815281.
- 47. Brown JR, Eichhorst B, Hillmen P, et al. Zanubrutinib or ibrutinib in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2023;388(4):319–32. doi: 10.1056/NEJMoa2211582.
- 48. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating. Proc Nat Acad Sci USA. 1977;74(12):5463–7. doi: 10.1073/pnas.74.12.5463.
- 49. Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101–5. doi: 10.1038/nature10113.
- 50. Quesada V, Conde L, Villamor N, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2011;44(1):47–52. doi: 10.1038/ng.1032.
- 51. Wang L, Lawrence MS, Wan Y, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365(26):2497–506. doi: 10.1056/NEJMoa1109016.
- 52. Fabbri G, Rasi S, Rossi D, et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med. 2011;208(7):1389–401. doi: 10.1084/jem.20110921.
- 53. Puente XS, Bea S, Valdes-Mas R, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015;526(7574):519–24. doi: 10.1038/nature14666.
- 54. Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152(4):714–26. doi: 10.1016/j.cell.2013.01.019.
- 55. Landau DA, Stewart C, Reiter JG, et al. Novel Putative Driver Gene Mutations in Chronic Lymphocytic Leukemia (CLL): Results from a Combined Analysis of Whole-Exome Sequencing of 262 Primary CLL Samples. Blood. 2014;124(21):1952. doi: 10.1182/blood.v124.21.1952.1952.
- 56. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525–30. doi: 10.1038/nature15395.
- 57. Ljungstrom V, Cortese D, Young E, et al. Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood. 2016;127(8):1007–16. doi: 10.1182/blood-2015-10-674572.
- 58. Knisbacher BA, Lin Z, Hahn CK, et al. Molecular map of chronic lymphocytic leukemia and its impact on outcome. Nat Genet. 2022;54(11):1664–74. doi: 10.1038/s41588-022-01140-w.
- 59. Mollstedt J, Mansouri L, Rosenquist R. Precision diagnostics in chronic lymphocytic leukemia: Past, present and future. Front Oncol. 2023;13:1146486. doi: 10.3389/fonc.2023.1146486.
- 60. Brieghel C, da Cunha-Bang C, Yde CW, et al. The number of signaling pathways altered by driver mutations in chronic lymphocytic leukemia impacts disease outcome. Clin Cancer Res. 2020;26(6):1507–15. doi: 10.1158/1078-0432.CCR-18-4158.
- 61. Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science. 2013;340(6127):1546–58. doi: 10.1126/science.1235122.
- 62. Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell. 2018;173(2):321–37.e10. doi: 10.1016/j.cell.2018.03.035.
- 63. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. doi: 10.1158/2159-8290.CD-12-0095.
- 64. NCBI Resource Coordinators. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2016;44(D1):D7–D19. doi: 10.1093/nar/gkv1290.
- 65. Tate JG, Bamford S, Jubb HC, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47(D1):D941–D947. doi: 10.1093/nar/gky1015.
- 66. Sondka Z, Bamford S, Cole CG, et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696–705. doi: 10.1038/s41568-018-0060-1.
- 67. Futreal PA, Coin L, Marshall M, et al. A census of human cancer genes. Nat Rev Cancer. 2004;4(3):177–83. doi: 10.1038/nrc1299.
- 68. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore M). Online Mendelian Inheritance in Man, OMIM®. Available from: https://omim.org/ (accessed 01.10.2024).
- 69. Fabregat A, Sidiropoulos K, Viteri G, et al. Reactome diagram viewer: data structures and strategies to boost performance. Bioinformatics. 2018;34(7):1208–14. doi: 10.1093/bioinformatics/btx752.
- 70. Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29(1):28–35. doi: 10.1002/pro.3711.
- 71. Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 2022;31(1):47–53. doi: 10.1002/pro.4172.
- 72. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9. doi: 10.1038/75556.
- 73. Gene Ontology Consortium. The Gene Ontology resource: enriching a GOLD mine. Nucleic Acids Res. 2021;49(D1):D325–D334. doi: 10.1093/nar/gkaa1113.
- 74. Chakravarty D, Gao J, Phillips S, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;2017:PO.17.00011. doi: 10.1200/PO.17.00011.
- 75. Bruford EA, Braschi B, Denny P, et al. Guidelines for human gene nomenclature. Nat Genet. 2020;52(8):754–8. doi: 10.1038/s41588-020-0669-3.
- 76. Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 2003;3(10):756–67. doi: 10.1038/nrc1186.
- 77. Zent CS, Burack WR. Mutations in chronic lymphocytic leukemia and how they affect therapy choice: focus on NOTCH1, SF3B1, and TP53. Hematology. 2014;2014(1):119–24. doi: 10.1182/asheducation-2014.1.119.
- 78. Arruga F, Vaisitti T, Deaglio S. The NOTCH pathway and its mutations in mature B cell malignancies. Front Oncol. 2018;8:550. doi: 10.3389/fonc.2018.00550.
- 79. Damm F, Mylonas E, Cosson A, et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 2014;4(9):1088–111. doi: 10.1158/2159-8290.CD-14-0104.
- 80. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50. doi: 10.1038/nature03319.
- 81. Makinen N, Mehine M, Tolvanen J, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334(6053):252–5. doi: 10.1126/science.1208930.
- 82. Janovska P, Bryja V. Wnt signalling pathways in chronic lymphocytic leukaemia and B‐cell lymphomas. Br J Pharmacol. 2017;174(24):4701–15. doi: 10.1111/bph.13949.
- 83. Messina M, Del Giudice I, Khiabanian H, et al. Genetic lesions associated with chronic lymphocytic leukemia chemo-refractoriness. Blood. 2014;123(15):2378–88. doi: 10.1182/blood-2013-10-534271.
- 84. Nilsson JA, Cleveland JL. Myc pathways provoking cell suicide and cancer. Oncogene. 2003;22(56):9007–21. doi: 10.1038/sj.onc.1207261.
- 85. Rossi D. MYC addiction in chronic lymphocytic leukemia. Leuk Lymphoma. 2013;54(5):905–6. doi: 10.3109/10428194.2012.755179.
- 86. Kern D, Regl G, Hofbauer SW, et al. Hedgehog/GLI and PI3K signaling in the initiation and maintenance of chronic lymphocytic leukemia. Oncogene. 2015;34(42):5341–51. doi: 10.1038/onc.2014.450.
- 87. Ghia EM, Rassenti LZ, Neuberg DS, et al. Activation of hedgehog signaling associates with early disease progression in chronic lymphocytic leukemia. Blood. 2019;133(25):2651–63. doi: 10.1182/blood-2018-09-873695.
- 88. Zhao S, Allis CD, Wang GG. The language of chromatin modification in human cancers. Nat Rev Cancer. 2021;21(7):413–30. doi: 10.1038/s41568-021-00357-x.
- 89. Rodriguez D, Bretones G, Quesada V, et al. Mutations in CHD2 cause defective association with active chromatin in chronic lymphocytic leukemia. Blood. 2015;126(2):195–202. doi: 10.1182/blood-2014-10-604959.
- 90. Mallm J, Iskar M, Ishaque N, et al. Linking aberrant chromatin features in chronic lymphocytic leukemia to transcription factor networks. Mol Syst Biol. 2019;15(5):e8339. doi: 10.15252/msb.20188339.
- 91. Mansouri L, Wierzbinska JA, Plass C, Rosenquist R. Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact. Semin Cancer Biol. 2018;51:1–11. doi: 10.1016/j.semcancer.2018.02.001.
- 92. Unoki M, Nakamura Y. EGR2 induces apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK. Oncogene. 2003;22(14):2172–85. doi: 10.1038/sj.onc.1206222.
- 93. Prieto C, Kharas MG. RNA regulators in leukemia and lymphoma. Cold Spring Harb Perspect Med. 2020;10(5):a034967. doi: 10.1101/cshperspect.a034967.
- 94. Rice GI, Bond J, Asipu A, et al. Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet. 2009;41(7):829–32. doi: 10.1038/ng.373.
- 95. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66. doi: 10.1038/nrc2602.
- 96. Wade M, Li YC, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013;13(2):83–96. doi: 10.1038/nrc3430.
- 97. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13(4):246–57. doi: 10.1038/nrc3458.
- 98. Noorbakhsh N, Hayatmoghadam B, Jamali M, et al. The Hippo signaling pathway in leukemia: function, interaction, and carcinogenesis. Cancer Cell Int. 2021;21(1):705. doi: 10.1186/s12935-021-02408-7.
- 99. Bos JL. Ras Oncogenes in Human Cancer: A Review. Cancer Res. 1989;49(17):4682–9.
- 100. Jebaraj BMC, Kienle D, Buhler A, et al. BRAF mutations in chronic lymphocytic leukemia. Leuk Lymphoma. 2013;54(6):1177–82. doi: 10.3109/10428194.2012.742525.
- 101. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3(6):459–65. doi: 10.1038/nrc1097.
- 102. Marechal Y, Queant S, Polizzi S, et al. Inositol 1,4,5-trisphosphate 3-kinase B controls survival and prevents anergy in B cells. Immunobiology. 2011;216(1–2):103–9. doi: 10.1016/j.imbio.2010.03.012.
- 103. Proud CG. mTORC1 regulates the efficiency and cellular capacity for protein synthesis. Biochem Soc Trans. 2013;41(4):923–6. doi: 10.1042/BST20130036.
- 104. Woyach JA, Furman RR, Liu TM, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–94. doi: 10.1056/NEJMoa1400029.
- 105. Severin F, Frezzato F, Martini V, et al. Three Different Jak2/Stat3-Related Pathways Favor the Survival of Chronic Lymphocytic Leukemia Neoplastic Clone. Blood. 2018;132(Suppl 1):4405. doi: 10.1182/blood-2018-99-114591.
- 106. Fasouli ES, Katsantoni E. JAK-STAT in early hematopoiesis and leukemia. Front Cell Dev Biol. 2021;9:669363. doi: 10.3389/fcell.2021.669363.
- 107. Groner B, von Manstein V. Jak Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol. 2017;451:1–14. doi: 10.1016/j.mce.2017.05.033.
- 108. Severin F, Frezzato F, Visentin A, et al. In chronic lymphocytic leukemia the JAK2/STAT3 pathway is constitutively activated and its inhibition leads to CLL cell death unaffected by the protective bone marrow microenvironment. Cancers (Basel). 2019;11(12):1939. doi: 10.3390/cancers11121939.
- 109. Massague J. TGFβ in cancer. Cell. 2008;134(2):215–30. doi: 10.1016/j.cell.2008.07.001.
- 110. Matveeva A, Kovalevska L, Kholodnyuk I, et al. The TGF-beta—SMAD pathway is inactivated in cronic lymphocytic leukemia cells. Exp Oncol. 2017;39(4):286–90.
- 111. Dong M, Blobe GC. Role of transforming growth factor-β in hematologic malignancies. Blood. 2006;107(12):4589–96. doi: 10.1182/blood-2005-10-4169.
- 112. Gimenez N, Schulz R, Higashi M, et al. Targeting IRAK4 disrupts inflammatory pathways and delays tumor development in chronic lymphocytic leukemia. Leukemia. 2020;34(1):100–14. doi: 10.1038/s41375-019-0507-8.
- 113. Rozovski U, Keating MJ, Estrov Z. Targeting inflammatory pathways in chronic lymphocytic leukemia. Crit Rev Oncol Hematol. 2013;88(3):655–66. doi: 10.1016/j.critrevonc.2013.07.011.
- 114. Михалева М.А., Мартынкевич И.С., Булдаков И.А. и др. Секвенирование нового поколения как метод познания природы хронического лимфолейкоза и перехода к персонифицированной терапии. Гематология. Трансфузиология. Восточная Европа. 2021;7(2):176–90. doi: 10.34883/PI.2021.7.2.006. [Mikhaleva M.A., Martynkevich I.S., Buldakov I.A., et al. Next generation sequencing as a method for discovering the nature of chronic lymphocytic leukemia and transition to personalized treatment. 2021;7(2):176–90. Hematology. Transfusiology. Eastern Europe. doi: 10.34883/PI.2021.7.2.006. (In Russ)]
- 115. Robbe P, Ridout KE, Vavoulis DV, et al. Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features. Nat Genet. 2022;54(11):1675–89. doi: 10.1038/s41588-022-01211-y.
- 116. Herbst SA, Vesterlund M, Helmboldt AJ, et al. Proteogenomics refines the molecular classification of chronic lymphocytic leukemia. Nat Commun. 2022;13(1):6226. doi: 10.1038/s41467-022-33385-8.
- 117. Wang Z, Yan H, Boysen JC, et al. B cell receptor signaling drives APOBEC3 expression via direct enhancer regulation in chronic lymphocytic leukemia B cells. Blood Cancer J. 2022;12(7):99. doi: 10.1038/s41408-022-00690-w.
- 118. Maher N, Mouhssine S, Matti BF, et al. Treatment Refractoriness in Chronic Lymphocytic Leukemia: Old and New Molecular Biomarkers. Int J Mol Sci. 2023;24(12):10374. doi: 10.3390/ijms241210374.
- 119. Thijssen R, Tian L, Anderson MA, et al. Single-cell multiomics reveal the scale of multilayered adaptations enabling CLL relapse during venetoclax therapy. Blood. 2022;140(20):2127–41. doi: 10.1182/blood.2022016040.
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.
Copyright (c) 2025 Клиническая онкогематология