Роль соматических мутаций в различных генах и проблема резистентности к ингибиторам тирозинкиназ у пациентов с хроническим миелолейкозом (обзор литературы)
ISSN (print) 1997-6933     ISSN (online) 2500-2139
2025-1
PDF_2025-18-1-10-20

Ключевые слова

хронический миелолейкоз
соматические мутации в генах
неудача терапии
резистентность

Как цитировать

Кузьмина Е.А., Челышева Е.Ю., Бидерман Б.В., Туркина А.Г. Роль соматических мутаций в различных генах и проблема резистентности к ингибиторам тирозинкиназ у пациентов с хроническим миелолейкозом (обзор литературы). Клиническая онкогематология. 2025;(1):10–20. doi:10.21320/2500-2139-2025-18-1-10-20.

Ключевые слова

Аннотация

Применение ингибиторов тирозинкиназ (ИТК) значительно улучшило прогноз у большинства пациентов с хроническим миелолейкозом (ХМЛ). Однако проблема резистентности к терапии ИТК по-прежнему остается чрезвычайно актуальной. В настоящее время активно изучается молекулярно-генетический профиль опухолевых клеток у больных ХМЛ и роль соматических мутаций в различных генах помимо BCR::ABL1 в развитии резистентности к терапии ИТК. Появляются новые данные о частоте соматических мутаций в различных генах ко времени первичной диагностики ХМЛ, обычно в хронической фазе, о клональных изменениях во время лечения, в т. ч. при прогрессировании заболевания. Особый интерес представляет изучение роли соматических мутаций в генах при трансформации ХМЛ в фазу акселерации и бластного криза. Важное значение имеет срок между обнаружением соматических мутаций и временем регистрации прогрессирования заболевания. Цель настоящего обзора заключается в представлении результатов последних наиболее актуальных исследований молекулярно-генетического профиля пациентов с ХМЛ на разных этапах течения болезни. В своих исследованиях авторы стремятся выявить связь между наличием соматических мутаций в генах и ответом на терапию ИТК, оценить прогностическое значение мутаций, обнаруженных на этапе первичной диагностики и на фоне терапии ХМЛ. В перспективе полученные знания можно было бы использовать в клинике для оптимизации лечения с точки зрения выбора наиболее эффективного ИТК и назначения таргетных препаратов, направленных на альтернативные генетические мишени, а также раннего выполнения трансплантации аллогенных гемопоэтических стволовых клеток. Изучение роли наиболее часто встречающихся соматических мутаций в различных генах помимо BCR::ABL1, а также проблем, связанных с резистентным течением болезни, привлекает внимание гематологов и представителей фундаментальной науки как актуальное и клинически востребованное направление исследований при ХМЛ.

PDF_2025-18-1-10-20

Библиографические ссылки

  1. 1. Cortes J, Pavlovsky C, Saussele S. Chronic myeloid leukaemia. Lancet. 2021;398(10314):1914–26. doi: 10.1016/S0140-6736(21)01204-6.
  2. 2. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5(3):172–83. doi: 10.1038/nrc1567.
  3. 3. Shtivelman E, Lifshitz B, Gale RP, et al. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315(6020):550–4. doi: 10.1038/315550a0.
  4. 4. Quintas-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 2009;113(8):1619–30. doi: 10.1182/blood-2008-03-144790.
  5. 5. Куликов С.М., Виноградова О.Ю., Челышева Е.Ю. и др. Заболеваемость хроническим миелолейкозом в 6 регионах России по данным популяционного исследования 2009–2012 гг. Терапевтический архив. 2014;86(7):24–30. [Kulikov S.M., Vinogradova O.Yu., Chelysheva E.Yu., et al. The incidence of chronic myeloid leukemia in 6 regions of Russia according to the population-based study of 2009–2012. Terapevticheskii arkhiv. 2014;86(7):24–30. (In Russ)]
  6. 6. Hoffmann VS, Baccarani M, Hasford J, et al. The EUTOS population-based registry: incidence and clinical characteristics of 2904 CML patients in 20 European countries. Leukemia. 2015;29(6):1336–43. doi: 10.1038/leu.2015.73.
  7. 7. Hehlmann R. Chronic Myeloid Leukemia in 2020. Hemasphere. 2020;4(5):E468. doi: 10.1097/HS9.0000000000000468.
  8. 8. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia;34(4):966–84. doi: 10.1038/s41375-020-0776-2.
  9. 9. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. Am J Hematol. 2022;97(9):1236–56. doi: 10.1002/ajh.26642.
  10. 10. Gambacorti-Passerini C, Brummendorf TH, Kim DW, et al. Bosutinib efficacy and safety in chronic phase chronic myeloid leukemia after imatinib resistance or intolerance: Minimum 24-month follow-up. Am J Hematol. 2014;89(7):732–42. doi: 10.1002/ajh.23728.
  11. 11. Giles F, le Coutre P, Pinilla-Ibarz J, et al. Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia. 2013;27:107–12. doi: 10.1038/leu.2012.181.
  12. 12. Cortes JE, Khoury HJ, Kantarjian HM, et al. Long-term bosutinib for chronic phase chronic myeloid leukemia after failure of imatinib plus dasatinib and/or nilotinib. Am J Hematol. 2016;91(12):1206–14. doi: 10.1002/ajh.24536.
  13. 13. Shah NP, Rousselot P, Schiffer C, et al. Dasatinib in imatinib-resistant or -intolerant chronic-phase, chronic myeloid leukemia patients: 7-year follow-up of study CA180-034. Am J Hematol. 2016;91(9):869–74. doi: 10.1002/ajh.24423.
  14. 14. Rea D, Hughes TP. Development of asciminib, a novel allosteric inhibitor of BCR-ABL1. Crit Rev Oncol Hematol. 2022;171:103580. doi: 10.1016/j.critrevonc.2022.103580.
  15. 15. Туркина А.Г., Кузьмина Е.А., Ломаиа Е.Г. и др. Асциминиб у больных хроническим миелолейкозом, не имеющих альтернативных методов лечения: результаты исследования в рамках программы расширенного доступа МАР (Managed Access Program, NCT04360005) в России. Клиническая онкогематология. 2023;16(1):54–68. doi: 10.21320/2500-2139-2023-16-1-54-68. [Turkina A.G., Kuzmina E.A., Lomaia E.G., et al. Asciminib in Chronic Myeloid Leukemia Patients Without Therapeutic Alternatives Alternatives: Results of the MAP (Managed Access Program, NCT04360005) Trial in Russia. Clinical oncohematology. 2023;16(1):54–68. doi: 10.21320/2500-2139-2023-16-1-54-68. (In Russ)]
  16. 16. Hughes TP, Mauro MJ, Cortes JE, et al. Asciminib in Chronic Myeloid Leukemia after ABL Kinase Inhibitor Failure. N Engl J Med. 2019;381(24):2315. doi: 10.1056/NEJMoa1902328.
  17. 17. Cortes JE, Kim DW, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132(4):393–404. doi: 10.1182/blood-2016-09-739086.
  18. 18. Andrews C, Lipton J. The role of ponatinib in chronic myeloid leukemia in the era of treatment free remission. Leuk Lymphoma. 2019;60(13):3099–101. doi: 10.1080/10428194.2019.1665667.
  19. 19. Branford S, Rudzki Z, Walsh S, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood. 2003;102(1):276–83. doi: 10.1182/blood-2002-09-2896.
  20. 20. Cortes JE, Talpaz M, Giles F, et al. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood. 2003;101(10):3794–800. doi: 10.1182/blood-2002-09-2790.
  21. 21. Lahaye T, Riehm B, Berger U, et al. Response and resistance in 300 patients with BCR-ABL-positive leukemias treated with imatinib in a single center: a 4.5-year follow-up. Cancer. 2005;103(8):1659–69. doi: 10.1002/cncr.20922.
  22. 22. Branford S, Dong D, Kim H, et al. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia behalf of the International CML Foundation Genomics Alliance. Leukemia. 2019;33(8):1835–50. doi: 10.1038/s41375-019-0512-y.
  23. 23. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi: 10.1182/blood-2016-08-733196.
  24. 24. Pfirrmann M, Baccarani M, Saussele S, et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia. 2016;30(1):48–56. doi: 10.1038/leu.2015.261.
  25. 25. Sokal J, Cox E, Baccarani M, et al. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood. 1984;63(4):789–99.
  26. 26. Hasford J, Baccarani M, Hoffmann V, et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood. 2011;118(3):686–92. doi: 10.1182/blood-2010-12-319038.
  27. 27. Sant’Antonio E, Camerini C, Rizzo V, et al. Genetic Heterogeneity in Chronic Myeloid Leukemia: How Clonal Hematopoiesis and Clonal Evolution May Influence Prognosis, Treatment Outcome, and Risk of Cardiovascular Events. Clin Lymphoma Myeloma Leuk. 2021;21(9):573–9. doi: 10.1016/j.clml.2021.04.014.
  28. 28. Steensma DP. Clinical consequences of clonal hematopoiesis of indeterminate potential. Blood Adv. 2018;2(22):3404–10. doi: 10.1182/bloodadvances.2018020222.
  29. 29. Luis TC, Wilkinson AC, Beerman I, et al. Biological implications of clonal hematopoiesis. Exp Hematol. 2019;77:1–5. doi: 10.1016/j.exphem.2019.08.004.
  30. 30. Calvillo-Arguelles O, Jaiswal S, Shlush LI, et al. Connections between Clonal Hematopoiesis, Cardiovascular Disease, and Cancer: A Review. JAMA Cardiol. 2019;4(4):380–7. doi: 10.1001/jamacardio.2019.0302.
  31. 31. Jaiswal S, Ebert BL. Clonal hematopoiesis in human aging and disease. Science. 2019;366(6465). doi: 10.1126/science.aan4673.
  32. 32. Виноградова О.Ю., Асеева Е.А., Воронцова А.В. и др. Влияние различных хромосомных аномалий в Ph-позитивных клетках костного мозга на течение хронического миелолейкоза при терапии ингибиторами тирозинкиназ. Онкогематология. 2014;7(4):24–34. doi: 10.17650/1818-8346-2012-7-4-24-34. [Vinogradova O.Yu., Aseeva E.A., Vorontsova A.V., et al. Influence of different chromosomal abnormalities in Ph-positive bone marrow cells on the chronic myeloid leukemia course during tyrosine kinase inhibitors therapy. Oncohematology. 2012;7(4):24–34. doi: 10.17650/1818-8346-2012-7-4-24-34. (In Russ)]
  33. 33. Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7:12484. doi: 10.1038/ncomms12484.
  34. 34. Genovese G, Kahler AK, Handsaker RE, et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N Engl J Med. 2014;371(26):2477–87. doi: 10.1056/NEJMoa1409405.
  35. 35. Walter MJ. Antecedent CHIP in CML? Blood. 2017;129(1):3–4. doi: 10.1182/blood-2016-11-746842.
  36. 36. Rose D, Haferlach T, Schnittger S, et al. Subtype-specific patterns of molecular mutations in acute myeloid leukemia. Leukemia. 2017;31(1):11–7. doi: 10.1038/leu.2016.163.
  37. 37. Corces-Zimmerman MR, Majeti R. Pre-leukemic evolution of hematopoietic stem cells: The importance of early mutations in leukemogenesis. Leukemia. 2014;28(12):2276–82. doi: 10.1038/leu.2014.211.
  38. 38. Shlush LI, Zandi S, Itzkovitz S, Schuh AC. Aging, clonal hematopoiesis and preleukemia: not just bad luck? Int J Hematol. 2015;102(5):513–22. doi: 10.1007/s12185-015-1870-5.
  39. 39. Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood. 2023;141(16):1909. doi: 10.1182/blood.2022017578.
  40. 40. Sargas C, Ayala R, Larrayoz MJ, et al. Molecular Landscape and Validation of New Genomic Classification in 2668 Adult AML Patients: Real Life Data from the PETHEMA Registry. Cancers (Basel). 2023;15(2):438. doi: 10.3390/cancers15020438.
  41. 41. Tazi Y, Arango-Ossa JE, Zhou Y, et al. Unified classification and risk-stratification in Acute Myeloid Leukemia. Nat Commun. 2022;13(1):4622. doi: 10.1038/s41467-022-32103-8.
  42. 42. Ganguly BB, Kadam NN. Mutations of myelodysplastic syndromes (MDS): An update. Mutat Res Rev Mutat Res. 2016;769:47–62. doi: 10.1016/j.mrrev.2016.04.009.
  43. 43. Roumier C, Fenaux P, Lafage M, et al. New mechanisms of AML1 gene alteration in hematological malignancies. Leukemia. 2003;17(1):9–16. doi: 10.1038/sj.leu.2402766.
  44. 44. Ichikawa M, Asai T, Saito T, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004;10(3):299–304. doi: 10.1038/nm997.
  45. 45. Puyan FO, Alkan S. The Progress of Next Generation Sequencing in the Assessment of Myeloid Malignancies. Balkan Med J. 2019;36(2):78–87. doi: 10.4274/balkanmedj.galenos.2018.2018.1195.
  46. 46. Мисюрин А.В. Цитогенетические и молекулярно-генетические факторы прогноза острых миелоидных лейкозов. Клиническая онкогематология. 2017;10(2):227–34. doi: 10.21320/2500-2139-2017-10-2-227-234. [Misyurin A.V. Cytogenetic and Molecular Genetic Prognostic Factors of Acute Myeloid Leukemia. Clinical oncohematology. 2017;10(2):227–34. doi: 10.21320/2500-2139-2017-10-2-227-234. (In Russ)]
  47. 47. Меликян А.Л., Суборцева И.Н. Биология миелопролиферативных новообразований. Клиническая онкогематология. 2016;9(3):314–25. doi: 10.21320/2500-2139-2016-9-3-314-325. [Melikyan A.L., Subortseva I.N. Biology of Myeloproliferative Malignancies. Clinical oncohematology. 2016;9(3):314–25. doi: 10.21320/2500-2139-2016-9-3-314-325. (In Russ)]
  48. 48. De Fromentel CC, Soussi T. TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer. 1992;4(1):1–15. doi: 10.1002/gcc.2870040102.
  49. 49. Jongen-Lavrencic M, Grob T, Hanekamp D, et al. Molecular Minimal Residual Disease in Acute Myeloid Leukemia. N Engl J Med. 2018;378(13):1189–99. doi: 10.1056/NEJMoa1716863.
  50. 50. Mitani K, Nagata Y, Sasaki K, et al. Somatic mosaicism in chronic myeloid leukemia in remission. Blood. 2016;128(24):2863–6. doi: 10.1182/blood-2016-06-723494.
  51. 51. Mologni L, Piazza R, Khandelwal P, et al. Somatic mutations identified at diagnosis by exome sequencing can predict response to imatinib in chronic phase chronic myeloid leukemia (CML) patients. Am J Hematol. 2017;92(10):E623–5. doi: 10.1002/ajh.24865.
  52. 52. Togasaki E, Takeda J, Yoshida K, et al. Frequent somatic mutations in epigenetic regulators in newly diagnosed chronic myeloid leukemia. Blood Cancer J. 2017;7(4):e559. doi: 10.1038/bcj.2017.36.
  53. 53. Schmidt M, Rinke J, Schafer V, et al. Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia. 2014;28(12):2292–9. doi: 10.1038/leu.2014.272.
  54. 54. Kim TH, Tyndel MS, Kim HJ, et al. Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy. Blood. 2017;129(1):38–47. doi: 10.1182/blood-2016-04-708560.
  55. 55. Nteliopoulos G, Bazeos A, Claudiani S, et al. Somatic variants in epigenetic modifiers can predict failure of response to imatinib but not to second-generation tyrosine kinase inhibitors. Haematologica. 2019;104(12):2400. doi: 10.3324/haematol.2018.200220.
  56. 56. Awad SA, Kankainen M, Ojala T, et al. Mutation accumulation in cancer genes relates to nonoptimal outcome in chronic myeloid leukemia. Blood Adv. 2020;4(3):546. doi: 10.1182/bloodadvances.2019000943.
  57. 57. Branford S, Wang P, Yeung DT, et al. Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood. 2018;132(9):948–61. doi: 10.1182/blood-2018-02-832253.
  58. 58. Soverini S, De Benedittis C, Mancini M, Martinelli G. Mutations in the BCR-ABL1 Kinase Domain and Elsewhere in Chronic Myeloid Leukemia. Clin Lymphoma Myeloma Leuk. 2015;15(Suppl):S120–8. doi: 10.1016/j.clml.2015.02.035.
  59. 59. Sondka Z, Bamford S, Cole CG, et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696. doi: 10.1038/s41568-018-0060-1.
  60. 60. Phan CL, Megat Baharuddin PJNB, Chin LP, et al. Amplification of BCR-ABL and t(3;21) in a patient with blast crisis of chronic myelogenous leukemia. Cancer Genet Cytogenet. 2008;180(1):60–4. doi: 10.1016/j.cancergencyto.2007.09.014.
  61. 61. CML-1: Understanding the clonal hierarchy in Chronic Myeloid Leukemia to help improve patient outcomes – HARMONY Alliance. Available from: https://www.harmony-alliance.eu/projects/research-project/cml-understanding-the-clonal-hierarchy-in-chronic-myeloid-leukemia-to-help-improve-patient-outcomes-1655723411 (accessed 18.07.2024).
  62. 62. Branford S, Fernandes A, Shahrin NH, et al. Beyond BCR::ABL1-The Role of Genomic Analyses in the Management of CML. J Natl Compr Canc Netw. 2024;22(1):e237335. doi: 10.6004/jnccn.2023.7335.
  63. 63. Churchman ML, Low J, Qu C, et al. Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia. Cancer Cell. 2015;28(3):343–56. doi: 10.1016/j.ccell.2015.07.016.
  64. 64. Adnan Awad S, Dufva O, Ianevski A, et al. RUNX1 mutations in blast-phase chronic myeloid leukemia associate with distinct phenotypes, transcriptional profiles, and drug responses. Leukemia. 2021;35(4):1087–99. doi: 10.1038/s41375-020-01011-5.
  65. 65. Mill CP, Fiskus W, DiNardo CD, et al. Effective therapy for AML with RUNX1 mutation by cotreatment with inhibitors of protein translation and BCL2. Blood. 2022;139(6):907–21. doi: 10.1182/blood.2021013156.
  66. 66. Nicolini FE, Khoury HJ, Akard L, et al. Omacetaxine mepesuccinate for patients with accelerated phase chronic myeloid leukemia with resistance or intolerance to two or more tyrosine kinase inhibitors. Haematologica. 2013;98(7):e78–е79. doi: 10.3324/haematol.2012.083006.
  67. 67. Cortes JE, Nicolini FE, Wetzler M, et al. Subcutaneous omacetaxine mepesuccinate in patients with chronic-phase chronic myeloid leukemia previously treated with 2 or more tyrosine kinase inhibitors including imatinib. Clin Lymphoma Myeloma Leuk. 2013;13(5):584–91. doi: 10.1016/j.clml.2013.03.020.
  68. 68. Wang L, Birch NW, Zhao Z, et al. Epigenetic targeted therapy of stabilized BAP1 in ASXL1 gain-of-function mutated leukemia. Nat Cancer. 2021;2(5):515–26. doi: 10.1038/s43018-021-00199-4.
  69. 69. Yang H, Kurtenbach S, Guo Y, et al. Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood. 2018;131(3):328–41. doi: 10.1182/blood-2017-06-789669.
  70. 70. Roche-Lestienne C, Marceau A, Labis E, et al. Mutation analysis of TET2, IDH1, IDH2 and ASXL1 in chronic myeloid leukemia. Leukemia. 2011;25(10):1661–4. doi: 10.1038/leu.2011.139.
  71. 71. Ernst T, Busch M, Rinke J, et al. Frequent ASXL1 mutations in children and young adults with chronic myeloid leukemia. Leukemia. 2018;32(9):2046–9. doi: 10.1038/s41375-018-0157-2.
  72. 72. Адильгереева Э.П., Никитин А.Г., Жегло Д.Г. и др. Молекулярно-генетические предикторы первичной резистентности хронического миелоидного лейкоза к терапии ингибиторами тирозинкиназ. Вестник гематологии. 2021;17(2):45–46. [Adilgereeva E.P., Nikitin A.G., Zheglo D.G., et al. Molecular genetic predictors of primary resistance of chronic myeloid leukemia to tyrosine kinase inhibitor treatment. Vestnik gematologii. 2021;17(2):45–46. (In Russ)]
  73. 73. Shanmuganathan N, Wadham C, Shahrin N, et al. Impact of additional genetic abnormalities at diagnosis of chronic myeloid leukemia for first-line imatinib-treated patients receiving proactive treatment intervention. Haematologica. 2023;108(9):2380–95. doi: 10.3324/haematol.2022.282184.
  74. 74. Schonfeld L, Rinke J, Hinze A, et al. ASXL1 mutations predict inferior molecular response to nilotinib treatment in chronic myeloid leukemia. Leukemia. 2022;36(9):2242. doi: 10.1038/s41375-022-01648-4.
  75. 75. Kim T, Zackova D, Jeziskova I, et al. Somatic mutations in myeloid transcription factors and in activated signaling pathway, but not in epigenetic modifier pathway, predict the risk of treatment failure and progression to advanced phase in chronic myeloid leukemia. Blood. 2022;140(S1):812–4. doi: 10.1182/blood-2022-162676.
  76. 76. Corm S, Biggio V, Roche-Lestienne C, et al. Coexistence of AML1/RUNX1 and BCR-ABL point mutations in an imatinib-resistant form of CML. Leukemia. 2005;19(11):1991–2. doi: 10.1038/sj.leu.2403931.
  77. 77. Roehe-Lestienne C, Deluche L, Corm S, et al. RUNX1 DNA-binding mutations and RUNX1-PRDM16 cryptic fusions in BCR-ABL+ leukemias are frequently associated with secondary trisomy 21 and may contribute to clonal evolution and imatinib resistance. Blood. 2008;111(7):3735–41. doi: 10.1182/blood-2007-07-102533.
  78. 78. Soverini S, Colarossi S, Gnani A, et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res. 2006;12(24):7374–9. doi: 10.1158/1078-0432.CCR-06-1516.
  79. 79. Cortes J, Rousselot P, Kim DW, et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood. 2007;109(8):3207–13. doi: 10.1182/blood-2006-09-046888.
  80. 80. Branford S, Melo JV, Hughes TP. Selecting optimal second-line tyrosine kinase inhibitor therapy for chronic myeloid leukemia patients after imatinib failure: does the BCR-ABL mutation status really matter? Blood. 2009;114(27):5426–35. doi: 10.1182/blood-2009-08-215939.
  81. 81. Ahuja H, Bar-Eli M, Arlin Z, et al. The spectrum of molecular alterations in the evolution of chronic myelocytic leukemia. J Clin Invest. 1991;87(6):2042. doi: 10.1172/JCI115234.
  82. 82. Feinstein E, Cimino G, Gale RP, et al. p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci USA. 1991;88(14):6293–7. doi: 10.1073/pnas.88.14.6293.
  83. 83. Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453(7191):110–4. doi: 10.1038/nature06866.
  84. 84. Ochi Y, Yoshida K, Huang YJ, et al. Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia. Nat Commun. 2021;12(1):2833. doi: 10.1038/s41467-021-23097-w.
  85. 85. Grossmann V, Kohlmann A, Zenger M, et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia. 2011;25(3):557–60. doi: 10.1038/leu.2010.298.
  86. 86. Zhang SJ, Ma LY, Huang QH, et al. Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc Natl Acad Sci USA. 2008;105(6):2076–81. doi: 10.1073/pnas.0711824105.
  87. 87. Meyer C, Burmeister T, Groger D, et al. The MLL recombinome of acute leukemias in 2017. Leukemia. 2018;32(2):273–84. doi: 10.1038/leu.2017.213.
  88. 88. Salem A, Loghavi S, Tang G, et al. Myeloid neoplasms with concurrent BCR-ABL1 and CBFB rearrangements: A series of 10 cases of a clinically aggressive neoplasm. Am J Hematol. 2017;92(6):520. doi: 10.1002/ajh.24710.
  89. 89. Кузьмина Е.А., Бидерман Б.В., Челышева Е.Ю. и др. Определение соматических мутаций генов у больных хроническим миелолейкозом. Гематология и трансфузиология. 2024;69(S2):118. [Kuzmina E.A., Biderman B.V., Chelysheva E.Yu., et al. Determination of somatic mutations in genes of chronic myeloid leukemia patients. Gematologiya i transfuziologiya. 2024;69(S2):118. (In Russ)]
  90. 90. Ko TK, Javed A, Lee KL, et al. An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia. Blood. 2020;135(26):2337–53. doi: 10.1182/blood.2020004834.
  91. 91. Magistroni V, Mauri M, D’Aliberti D, et al. De novo UBE2A mutations are recurrently acquired during chronic myeloid leukemia progression and interfere with myeloid differentiation pathways. Haematologica. 2019;104(9):1789. doi: 10.3324/haematol.2017.179937.
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.

Copyright (c) 2025 Клиническая онкогематология