Вирус Эпштейна—Барр и классическая лимфома Ходжкина

В.Э. Гурцевич

ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Владимир Эдуардович Гурцевич, д-р мед. наук, профессор, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(499)324-25-64; e-mail: gurvlad532@yahoo.com

Для цитирования: Гурцевич В.Э. Вирус Эпштейна—Барр и классическая лимфома Ходжкина. Клиническая онкогематология. 2016;9(2):101–14.

DOI: 10.21320/2500-2139-2016-9-2-101-114


РЕФЕРАТ

Среди онкогенных вирусов человека вирус Эпштейна—Барр (ВЭБ) обращает на себя внимание уникальными свойствами. Этот широко распространенный среди населения планеты вирус одновременно является лидером по числу ассоциированных с ним различных доброкачественных и злокачественных новообразований лимфоидного и эпителиального происхождения. Онкогенный потенциал ВЭБ связан с его способностью инфицировать и трансформировать лимфоциты человека. В тех случаях, когда взаимодействие между размножением ВЭБ, его латентным состоянием и иммунным контролем со стороны организма нарушается, создаются условия для длительной пролиферации инфицированных ВЭБ лимфоцитов и их злокачественной трансформации. По мнению ряда исследователей, молекулярные механизмы связанного с ВЭБ канцерогенеза обусловлены способностью вирусного генома стимулировать экспрессию серии продуктов, имитирующих ряд факторов роста, транскрипции и оказывающих антиапоптотическое действие. Эти кодируемые ВЭБ продукты нарушают сигнальные пути, которые регулируют различные клеточные функции гомеостаза, наделяя клетку способностью к неограниченной пролиферации. Тем не менее точный механизм, с помощью которого ВЭБ инициирует онкогенез, остается не до конца выясненным. В обзоре приводится обобщающая информация о структуре и онкогенном потенциале ВЭБ, морфологических и клинических вариантах лимфомы Ходжкина (ЛХ), а также роли ВЭБ в патогенезе связанных с этим вирусом вариантов ЛХ. Кроме того, в обзоре освещены последние данные об использовании уровня вирусной ДНК ВЭБ в плазме больных ЛХ в качестве биомаркера, отражающего эффективность проведенного лечения и прогноз болезни.


Ключевые слова: вирус Эпштейна—Барр, ВЭБ, латентный мембранный белок 1, LMP1, лимфома Ходжкина, копии ДНК ВЭБ.

Получено: 5 февраля 2016 г.

Принято в печать: 8 февраля 2016 г.

Читать статью в PDF pdficon


ЛИТЕРАТУРА

  1. Zur Hausen H, de Villiers EM. Reprint of: cancer “causation” by infections—individual contributions and synergistic networks. Semin Oncol. 2015;42(2):207–22. doi: 10.1053/j.seminoncol.2015.02.019.
  2. Santos-Juanes J, Fernandez-Vega I, Fuentes N, et al. Merkel cell carcinoma and Merkel cell polyomavirus: a systematic review and meta-analysis. Br J Dermatol. 2015;173(1):42–9. doi: 10.1111/bjd.13870.
  3. Rickinson AB, Young LS, Rowe M. Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J Virol. 1987;61(5):1310–7.
  4. Rickinson AB, Long HM, Palendira U, et al. Cellular immune controls over Epstein-Barr virus infection: new lessons from the clinic and the laboratory. Trends Immunol. 2014;35(4):159–69. doi: 10.1016/j.it.2014.01.003.
  5. Woodman CB, Collins SI, Vavrusova N, et al. Role of sexual behavior in the acquisition of asymptomatic Epstein-Barr virus infection: a longitudinal study. Pediatr Infect Dis J. 2005;24(6):498–502. doi: 10.1097/01.inf.0000164709.40358.b6.
  6. Henle G, Henle W, Diehl V. Relation of Burkitt’s tumor-associated herpes-type virus to infectious mononucleosis. Proc Natl Acad Sci USA. 1968;59(1):94–101. doi: 10.1073/pnas.59.1.94.
  7. Tanner J, Weis J, Fearon D, et al. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell. 1987;50(2):203–13. doi:10.1016/0092-8674(87)90216-9.
  8. Connolly SA, Jackson JO, Jardetzky TS, et al. Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol. 2011;9(5):369–81. doi: 10.1038/nrmicro2548.
  9. Janz A, Oezel M, Kurzeder C, et al. Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol. 2000;74(21):10142–52. doi: 10.1128/jvi.74.21.10142-10152.2000.
  10. Ogembo JG, Kannan L, Ghiran I, et al. Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor. Cell Rep. 2013;3(2):371–85. doi:10.1016/j.celrep.2013.01.023.
  11. Kempkes B, Robertson ES. Epstein-Barr virus latency: current and future perspectives. Curr Opin Virol. 2015;14:138–44. doi: 10.1016/j.coviro.2015.09.007.
  12. Sample J, Kieff E. Transcription of the Epstein-Barr virus genome during latency in growth-transformed lymphocytes. J Virol. 1990;64(4):1667–74.
  13. Babcock GJ, Decker LL, Volk M, et al. EBV persistence in memory B cells in vivo. Immunity. 1998;9(3):395–404. doi: 10.1016/S1074-7613(00)80622-6.
  14. Shannon-Lowe C, Adland E, Bell AI, et al. Features distinguishing Epstein-Barr virus infections of epithelial cells and B cells: viral genome expression, genome maintenance, and genome amplification. J Virol. 2009;83(15):7749–60. doi: 10.1128/JVI.00108-09.
  15. Rickinson A. Epstein-Barr virus. Virus Res. 2002;82(1–2):109–13. doi: 10.1016/s0168-1702(01)00436-1.
  16. Rowe M, Lear AL, Croom-Carter D, et al. Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol. 1992;66(1):122–31.
  17. Portis T, Dyck P, Longnecker R. Epstein-Barr Virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;102(12):4166–78. doi: 10.1182/blood-2003-04-1018.
  18. Sample J, Young L, Martin B, et al. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol. 1990;64(9):4084–92.
  19. Sixbey JW, Shirley P, Chesney PJ, et al. Detection of a second widespread strain of Epstein-Barr virus. The Lancet. 1989;2(8666):761–5. doi: 10.1016/s0140-6736(89)90829-5.
  20. Gratama JW, Ernberg I. Molecular epidemiology of Epstein-Barr virus infection. Adv Cancer Res. 1995;67:197–255. doi: 10.1016/s0065-230x(08)60714-9.
  21. Young LS, Dawson CW, Eliopoulos AG. The expression and function of Epstein-Barr virus encoded latent genes. Mol Pathol. 2000;53(5):238–47. doi: 10.1136/mp.53.5.238.
  22. Mosialos G, Birkenbach M, Yalamanchili R, et al. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell. 1995;80(3):389–99. doi: 10.1016/0092-8674(95)90489-1.
  23. Nitta T, Chiba A, Yamashita A, et al. NF-kappaB is required for cell death induction by latent membrane protein 1 of Epstein-Barr virus. Cell Signal. 2003;15(4):423–33. doi: 10.1016/S0898-6568(02)00141-9.
  24. Aviel S, Winberg G, Massucci M, Ciechanover A. Degradation of the Epstein-Barr virus latent membrane protein 1 (LMP1) by the ubiquitin-proteasome pathway. Targeting via ubiquitination of the N-terminal residue. J Biol Chem. 2000;275(31):23491–9. doi: 10.1074/jbc.M002052200.
  25. Gires O, Kohlhuber F, Kilger E, et al. Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J. 1999;18(11):3064–73. doi: 10.1093/emboj/18.11.3064.
  26. Bentz GL, Whitehurst CB, Pagano JS. Epstein-Barr virus latent membrane protein 1 (LMP1) C-terminal-activating region 3 contributes to LMP1-mediated cellular migration via its interaction with Ubc9. J Virol. 2011;85(19):10144–53. doi: 10.1128/JVI.05035-11.
  27. Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell. 1985;43(3):831–40. doi: 10.1016/0092-8674(85)90256-9.
  28. Dawson CW, Port RJ, Young LS. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol. 2012;22(2):144–53. doi: 10.1016/j.semcancer.2012.01.004.
  29. Смирнова К.В., Дидук С.В., Сенюта Н.Б., Гурцевич В.Э. Молекулярно-биологические свойства гена LMP1 вируса Эпштейна—Барр: структура, функции и полиморфизм. Вопросы вирусологии. 2015;60(3):5–13.
    [Smirnova KV, Diduk SV, Senyuta NB, Gurtsevich VE. Molecular biological properties of the Epstein-Barr virus LMP1 gene: structure, function, and polymorphism. Voprosy virusologii. 2015;60(3):5–13. (In Russ)]
  30. Vockerodt M, Morgan SL, Kuo M, et al. The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin’s Reed-Sternberg-like phenotype. J Pathol. 2008;216(1):83–92. doi: 10.1002/path.2384.
  31. Raab-Traub N. Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol. 2002;12:431–41. doi: 10.1016/s1044579x0200086x.
  32. Raab-Traub N. Novel mechanisms of EBV-induced oncogenesis. Curr Opin Virol. 2012;2(4):453–8. doi: 10.1016/j.coviro.2012.07.001.
  33. Soni V, Cahir-McFarland E, Kieff E. LMP1 TRAFficking activates growth and survival pathways. Adv Exp Med Biol. 2007;597:173–87. doi: 10.3390/v5041131.
  34. Man C, Rosa J, Lee LT, et al. Latent membrane protein 1 suppresses RASSF1A expression, disrupts microtubule structures and induces chromosomal aberrations in human epithelial cells. Oncogene. 2007;26(21):3069–80. doi: 10.1038/sj.onc.1210106.
  35. Guo L, Tang M, Yang L, et al. Epstein-Barr virus oncoprotein LMP1 mediates surviving upregulation by p53 contributing to G1/S cell cycle progression in nasopharyngeal carcinoma. Int J Mol Med. 2012;29(4):574–80. doi: 10.3892/ijmm.2012.889.
  36. Horikawa T, Yoshizaki T, Kondo S, et al. Epstein-Barr Virus latent membrane protein 1 induces Snail and epithelial-mesenchymal transition in metastatic nasopharyngeal carcinoma. Br J Cancer. 2011;104(7):1160–7. doi: 10.1038/bjc.2011.38.
  37. Xiao L, Hu ZY, Dong X, et al. Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene. 2014;33(37):4568–78. doi: 10.1038/onc.2014.32.
  38. Sun W, Liu DB, Li WW, et al. Interleukin-6 promotes the migration and invasion of nasopharyngeal carcinoma cell lines and upregulates the expression of MMP-2 and MMP-9. Int J Oncol. 2014;44(5):1551–60. doi: 10.3892/ijo.2014.2323.
  39. Tzellos S, Farrell PJ. Epstein-Barr virus sequence variation-biology and disease. Pathogens. 2012;1(2):156–74. doi: 10.3390/pathogens1020156.
  40. Walling DM, Shebib N, Weaver SC, et al. The molecular epidemiology and evolution of Epstein-Barr virus: sequence variation and genetic recombination in the latent membrane protein-1 gene. J Infect Dis. 1999;179(4):763–74. doi: 10.1086/314672.
  41. Hu LF, Zabarovsky ER, Chen F, et al. Isolation and sequencing of the Epstein-Barr virus BNLF-1 gene (LMP1) from a Chinese nasopharyngeal carcinoma. J Gen Virol. 1991;72(Pt 10):2399–409. doi: 10.1099/0022-1317-72-10-2399.
  42. Nitta T, Chiba A, Yamamoto N, et al. Lack of cytotoxic property in a variant of Epstein-Barr virus latent membrane protein-1 isolated from nasopharyngeal carcinoma. Cell Signal. 2004;16(9):1071–81. doi: 10.1016/s0898-6568(04)00032-4.
  43. da Costa VG, Marques-Silva AC, Moreli ML. The Epstein-Barr virus latent membrane protein-1 (LMP1) 30-bp deletion and XhoI-polymorphism in nasopharyngeal carcinoma: a meta-analysis of observational studies. Syst Rev. 2015;4(1):46. doi: 10.1186/s13643-015-0037-z.
  44. Rowe M, Peng-Pilon M, Huen DS, et al. Upregulation of bcl-2 by the Epstein-Barr virus latent membrane protein LMP1: a B-cell-specific response that is delayed relative to NF-kappaB activation and to induction of cell surface markers. J Virol. 1994;68(9):5602–12.
  45. Trivedi P, Hu LF, Chen F, et al. Epstein-Barr virus (EBV)-encoded membrane protein LMP1 from a nasopharyngeal carcinoma is non-immunogenic in a murine model system, in contrast to a B cell-derived homologue. Eur J Cancer. 1994;30(1):84–8. doi: 10.1016/s0959-8049(05)80024-3.
  46. Knecht H, Bachmann E, Brousset P, et al. Deletions within the LMP1 oncogene of Epstein-Barr virus are clustered in Hodgkin’s disease and identical to those observed in nasopharyngeal carcinoma. Blood. 1993;82(10):2937–42.
  47. Miller WE, Edwards RH, Walling DM, et al. Sequence variation in the Epstein-Barr virus latent membrane protein 1. J Gen Virol. 1994;75(Pt 10):2729–40. doi: 10.1099/0022-1317-75-10-2729.
  48. Weiss LM. Epstein-Barr virus and Hodgkin’s disease. Curr Oncol Rep. 2000;2(2):199–204. doi: 10.1007/s11912-000-0094-9.
  49. Ковригина А.М., Пробатова Н.А. Лимфома Ходжкина и крупноклеточные лимфомы. М.: МИА, 2007.
    [Kovrigina AM, Probatova NA. Limfoma Khodzhkina i krupnokletochnye limfomy. (Hodgkin’s lymphomas and large cell lymphomas.) Moscow: MIA Publ.; 2007. (In Russ)]
  50. Клиническая онкогематология: Руководство для врачей, 2-е изд. Под ред. М.А. Волковой. М.: Медицина, 2007.
    [Volkova MA, ed. Klinicheskaya  onkogematologiya: Rukovodstvo dlya vrachei. (Clinical oncohematology: manual for physicians.) 2nd edition. Moscow: Meditsina Publ.; 2007. (In Russ)]
  51. Dorsett Y, Robbiani DF, Jankovic M, et al. A role for AID in chromosome translocations between c-myc and the IgH variable region. J Exp Med. 2007;204(9):2225–32. doi: 10.1084/jem.20070884.
  52. Stein H. Hodgkin lymphoma – introduction. In: Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. pp. 321–34.
  53. Diehl V, Stein H, Hummel M, et al. Hodgkin’s lymphoma: biology and treatment strategies for primary, refractory, and relapsed disease. Hematology Am Soc Hematol Educ Program. 2003;1:225–47. doi: 10.1182/asheducation-2003.1.225.
  54. Chapman AL, Rickinson AB. Epstein-Barr virus in Hodgkin’s disease. Ann Oncol. 1998;9(Suppl 5):S5–16. doi: 10.1093/annonc/9.suppl_5.s5.
  55. Deacon EM, Pallesen G, Niedobitek G, et al. Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med. 1993;177(2):339–49. doi: 10.1084/jem.177.2.339.
  56. Kuppers R, Rajewsky K, Zhao M, et al. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci USA. 1994;91(23):10962–6. doi: 10.1073/pnas.91.23.10962.
  57. Thomas RK, Re D, Wolf J, et al. Part I: Hodgkin’s lymphoma—molecular biology of Hodgkin and Reed-Sternberg cells. Lancet Oncol. 2004;5(1):11–8. doi: 10.1016/S1470-2045(03)01319-6.
  58. Cartwright RA, Watkins G. Epidemiology of Hodgkin’s disease: a review. Hematol Oncol. 2004;22(1):11–26. doi: 10.1002/hon.723.
  59. Jarrett AF, Armstrong AA, Alexander E. Epidemiology of EBV and Hodgkin’s lymphoma. Ann Oncol. 1996;7(Suppl 4):5–10. doi: 10.1093/annonc/7.suppl_4.s5.
  60. Glaser SL, Lin RJ, Stewart SL, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70(4):375–82. doi: 10.1002/(sici)1097-0215(19970207)70:4<375::aid-ijc1>3.0.co;2-t.
  61. Cader FZ, Kearns P, Young L, et al. The contribution of the Epstein-Barr virus to the pathogenesis of childhood lymphomas. Cancer Treat Rev. 2010;36(4):348–53. doi: 10.1016/j.ctrv.2010.02.011.
  62. Jarrett RF, Gallagher A, Jones DB, et al. Detection of Epstein-Barr virus genomes in Hodgkin’s disease: relation to age. J Clin Pathol. 1991;44(10):844–8. doi: 10.1136/jcp.44.10.844.
  63. Armstrong AA, Alexander FE, Cartwright R, et al. Epstein-Barr virus and Hodgkin’s disease: further evidence for the three disease hypothesis. Leukemia. 1998;12(8):1272–6. doi: 10.1038/sj.leu.2401097.
  64. Oyama T, Ichimura K, Suzuki R, et al. Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol. 2003;27(1):16–26. doi: 10.1097/00000478-200301000-00003.
  65. Oyama T, Yamamoto K, Asano N, et al. Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: a study of 96 patients. Clin Cancer Res. 2007;13(17):5124–32. doi: 10.1158/1078-0432.ccr-06-2823.
  66. Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med. 2004;350(13):1328–37. doi: 10.1056/NEJMra032015.
  67. Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005;5(4):251–62. doi: 10.1038/nrc1589.
  68. Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8(1):22–33. doi: 10.1038/nri2217.
  69. Caldwell RG, Wilson JB, Anderson SJ, et al. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998;9(3):405–11. doi: 10.1016/s1074-7613(00)80623-8.
  70. Gires O, Zimber-Strobl U, Gonnella R, et al. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J. 1997;16(20):6131–40. doi: 10.1093/emboj/18.11.3064.
  71. Laichalk LL, Thorley-Lawson DA. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol. 2005;79(2):1296–307. doi: 10.1128/JVI.79.2.1296-1307.2005.
  72. Alexander FE, Jarrett RF, Lawrence D, et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer. 2000;82(5):1117–21. doi: 10.1054/bjoc.1999.1049.
  73. Mueller N, Evans A, Harris NL, et al. Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med. 1989;320(11):689–95. doi: 10.1056/nejm198903163201103.
  74. Weiss LM, Strickler JG, Warnke RA, et al. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol. 1987;129(1):86–91.
  75. Anagnostopoulos I, Herbst H, Niedobitek G, et al. Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1-positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood. 1989;74(2):810–6.
  76. Re D, Kuppers R, Diehl V. Molecular pathogenesis of Hodgkin’s lymphoma. J Clin Oncol. 2005;23(26):6379–86. doi: 10.1200/JCO.2005.55.013.
  77. Mancao C, Altmann M, Jungnickel B, et al. Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus. Blood. 2005;106(13):4339–44. doi: 10.1182/blood-2005-06-2341.
  78. Chaganti S, Bell AI, Pastor NB, et al. Epstein-Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes. Blood. 2005;106(13):4249–52. doi: 10.1182/blood-2005-06-2327.
  79. Kapatai G, Murray P. Contribution of the Epstein Barr virus to the molecular pathogenesis of Hodgkin lymphoma. J Clin Pathol. 2007;60(12):1342–9. doi: 10.1136/jcp.2007.050146.
  80. Kuppers R. B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol. 2003;3(10):801–12. doi: 10.1038/nri1201.
  81. Huen DS, Henderson SA, Croom-Carter D, et al. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene. 1995;10:549–60.
  82. Kieser A, Kilger E, Gires O, et al. Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J. 1997;16(21):6478–85. doi: 10.1093/emboj/16.21.6478.
  83. Kube D, Holtick U, Vockerodt M, et al. STAT3 is constitutively activated in Hodgkin cell lines. Blood. 2001;98(3):762–70. doi: 10.1182/blood.V98.3.762.
  84. Dutton A, Reynolds GM, Dawson CW, et al Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol. 2005;205(4):498–506. doi: 10.1002/path.1725.
  85. Brielmeier M, Mautner J, Laux G, et al. The latent membrane protein 2 gene of Epstein-Barr virus is important for efficient B cell immortalization. J Gen Virol. 1996;77(Pt 11):2807–18. doi: 10.1099/0022-1317-77-11-2807.
  86. Casola S, Otipoby KL, Alimzhanov M, et al. B cell receptor signal strength determines B cell fate. Nat Immunol. 2004;5(3):317–27. doi: 10.1038/ni1036.
  87. Engels N, Yigit G, Emmerich CH, et al. Epstein-Barr virus LMP2A signaling in statu nascendi mimics a B cell antigen receptor-like activation signal. Cell Commun Signal. 2012;10(1):9. doi: 10.1186/1478-811X-10-9.
  88. Portis T, Dyck P, Longnecker R. Epstein-Barr Virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;102(12):4166–78. doi: 10.1182/blood-2003-04-1018.
  89. Portis T, Longnecker R. Epstein-Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene. 2004;23(53):8619–28. doi: 10.1038/sj.onc.1207905.
  90. Farrell K, Jarrett RF. The molecular pathogenesis of Hodgkin lymphoma. Histopathology. 2011;58(1):15–25. doi: 10.1111/j.1365-2559.2010.03705.x.
  91. Herbst H, Foss HD, Samol J, et al. Frequent expression of interleukin-10 by Epstein-Barr virus-harboring tumor cells of Hodgkin’s disease. Blood. 1996;87:2918–29.
  92. Hsu SM, Lin J, Xie SS, et al. Abundant expression of transforming growth factor-beta 1 and -beta 2 by Hodgkin’s Reed-Sternberg cells and by reactive T lymphocytes in Hodgkin’s disease. Hum Pathol. 1993;24(3):249–55. doi: 10.1016/0046-8177(93)90034-e.
  93. Kapp U, Yeh WC, Patterson B, et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med. 1999;189(12):1939–46. doi: 10.1084/jem.189.12.1939.
  94. Munz C, Moormann A. Immune escape by Epstein-Barr virus associated malignancies. Semin Cancer Biol. 2008;18(6):381–7. doi: 10.1016/j.semcancer.2008.10.002.
  95. Lichtenstein AV, Melkonyan HS, Tomei LD, et al. Circulating nucleic acids and apoptosis. Ann NY Acad Sci. 2001;945(1):239–49. doi: 10.1111/j.1749-6632.2001.tb03892.x.
  96. Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer. 2002;2(3):210–9. doi: 10.1038/nrc755.
  97. Skvortsova TE, Rykova EY, Tamkovich SN, et al. Cell-free and cell-bound circulating DNA in breast tumours: DNA quantification and analysis of tumour-related gene methylation. Br J Cancer. 2006;94(10):1492–5. doi: 10.1038/sj.bjc.6603117.
  98. Lo YM, Chan LY, Lo KW, et al. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res. 1999;59(6):1188–91.
  99. Hou X, Zhao C, Guo Y, et al. Different Clinical Significance of Pre- and Post-treatment Plasma Epstein-Barr Virus DNA Load in Nasopharyngeal Carcinoma Treated with Radiotherapy. Clin Oncol. (R Coll Radiol) 2011;23(2):128–33. doi: 10.1016/j.clon.2010.09.001.
  100. Wang WY, Twu CW, Chen HH, et al. Plasma EBV DNA clearance rate as a novel prognostic marker for metastatic/recurrent nasopharyngeal carcinoma. Clin Cancer Res. 2010;16(3):1016–24. doi: 10.1158/1078-0432.ccr-09-2796.
  101. Lo YM, Chan AT, Chan LY, et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA. Cancer Res. 2000;60:6878–81.
  102. Lo YM, Chan LY, Chan AT, et al. Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res. 1999;59:5452–5.
  103. Au WY, Pang A, Choy C, et al. Quantification of circulating Epstein-Barr virus (EBV) DNA in the diagnosis and monitoring of natural killer cell and EBV-positive lymphomas in immunocompetent patients. Blood. 2004;104(1):243–9. doi: 10.1182/blood-2003-12-4197.
  104. Wang ZY, Liu QF, Wang H, et al. Clinical implications of plasma Epstein-Barr virus DNA in early-stage extranodal nasal-type NK/T-cell lymphoma patients receiving primary radiotherapy. Blood. 2012;120(10):2003–10. doi: 10.1182/blood-2012-06-435024.
  105. Kasamon YL, Jacene HA, Gocke CD, et al. Phase 2 study of rituximab-ABVD in classical Hodgkin lymphoma. Blood. 2012;119(18):4129–32. doi: 10.1182/blood-2012-01-402792.
  106. Kanakry JA, Li H, Gellert LL, et al. Plasma Epstein-Barr virus DNA predicts outcome in advanced Hodgkin lymphoma: correlative analysis from a large North American cooperative group trial. Blood. 2013;121(18):3547–53. doi: 10.1182/blood-2012-09-454694.
  107. Hohaus S, Santangelo R, Giachelia M, et al. The viral load of Epstein-Barr virus (EBV) DNA in peripheral blood predicts for biological and clinical characteristics in Hodgkin lymphoma. Clin Cancer Res. 2011;17(9):2885–92. doi: 10.1158/1078-0432.ccr-10-3327.
  108. Dinand V, Sachdeva A, Datta S, et al. Plasma Epstein Barr Virus (EBV) DNA as a Biomarker for EBV associated Hodgkin lymphoma. Indian Pediatr. 2015;52(8):681–5. doi: 10.1007/s13312-015-0696-9.
  109. Vockerodt М, Yap L-F, Shannon-Lowe C, et al. The Epstein-Barr virus and the pathogenesis of lymphoma. J Pathol. 2015;235(2):312–22. doi: 10.1002/path.4459.
  110. Grywalska E, Markowicz J, Grabarczyk P, et al. Epstein-Barr virus-associated lymphoproliferative disorders. Postepy Hig Med Dosw (Online). 2013;67:481–90. doi 10.5604/17322693.1050999.