Хронический гепатит С и онкогематологические заболевания

Т.В. Антонова1, М.С. Ножкин1, Д.А. Лиознов1,2

1 ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

2 ФГБУ «НИИ гриппа им. А.А. Смородинцева» Минздрава России, ул. Профессора Попова, д. 15/17, Санкт-Петербург, Российская Федерация, 197376

Для переписки: Тамара Васильевна Антонова, д-р мед. наук, профессор, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; e-mail: antonovatv28@yandex.ru

Для цитирования: Антонова Т.В., Ножкин М.С., Лиознов Д.А. Хронический гепатит С и онкогематологические заболевания. Клиническая онкогематология. 2023;16(1):46–53.

DOI: 10.21320/2500-2139-2023-16-1-46-53


РЕФЕРАТ

В обзоре обсуждается HCV-инфекция у онкогематологических больных. Высокий риск инфицирования вирусом гепатита С (HCV) при онкогематологических заболеваниях доказан значимо большей частотой HCV-инфекции (в 2–2,5 раза) у пациентов с неходжкинскими лимфомами в сравнении с популяционными данными. Кроме того, установлено значение HCV в развитии и прогрессировании В-клеточных неходжкинских лимфом, что подтверждает его онкогенный потенциал. Рассмотрен вариант серонегативного (оккультного) гепатита С, при котором РНК HCV определяется в ткани печени и в мононуклеарах периферической крови высокочувствительным методом ПЦР с обратной транскрипцией при отсутствии антител к HCV и РНК HCV в сыворотке. При этом пациенты могут быть источниками инфекции. Серонегативный гепатит С выявляется у доноров крови в 2,2–3,4 % случаев. Этот вариант инфекции встречается у 20–85 % онкогематологических пациентов, что требует дальнейшего изучения. Сопутствующая HCV-инфекция является потенциальным фактором, влияющим на прогноз онкогематологических заболеваний. У онкогематологических пациентов с сопутствующим хроническим гепатитом С (ХГС) доказана значимо худшая выживаемость в сравнении с больными без него. Установлена связь HCV-инфекции с увеличением частоты осложнений как противоопухолевой терапии, так и трансплантации гемопоэтических стволовых клеток (ТГСК). Иммунохимиотерапия, в свою очередь, влияет на обострение и прогрессирование ХГС. Высокая эффективность и удовлетворительная переносимость препаратов прямого противовирусного действия (ППД) для лечения ХГС открыли перспективы для широкого их использования при наличии сопутствующих заболеваний. Остается сложным вопрос о лечении инфекции у пациентов после ТГСК. Рекомендации по лечению ХГС преимущественно ориентированы на проведение противовирусного лечения до ТГСК. В реальной клинической практике это не всегда возможно. Имеются примеры эффективного применения препаратов ППД до или после ТГСК, описано клиническое наблюдение противовирусного лечения одновременно с ТГСК.

Ключевые слова: вирус гепатита С, HCV-инфекция, онкогематология, трансплантация гемопоэтических стволовых клеток, иммунохимиотерапия, препараты прямого противовирусного действия.

Получено: 17 июня 2022 г.

Принято в печать: 10 декабря 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Choo QL, Kuo G, Weiner AJ, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989;244(4902):359–62. doi: 10.1126/science.2523562.
  2. Houghton M. Discovery of the hepatitis C virus. Liver Int. 2009;29(Suppl 1):82–8. doi: 10.1111/j.1478-3231.2008.01925.x.
  3. Жебрун А.Б., Калинина О.В. Вирусный гепатит С: эволюция эпидемиологического процесса, эволюция вируса. Журнал микробиологии, эпидемиологии и иммунобиологии. 2016;1:102–12. doi: 10.36233/0372-9311-2016-1-102-112.
    [Zhebrun AB, Kalinina OV. Viral hepatitis C: evolution of the epidemiologic process, evolution of the virus. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii. 2016;1:102–12. doi: 10.36233/0372-9311-2016-1-102-112. (In Russ)]
  4. Simmonds P, Bukh J, Combet C, et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. 2005;42(4):962–73. doi: 10.1002/hep.20819.
  5. Smith DB, Bukh J, Kuiken C, et al. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. 2014;59(1):318–27. doi: 10.1002/hep.26744.
  6. Petruzziello A, Marigliano S, Loquercio G, et al. Global epidemiology of hepatitis C virus infection: updated information on the distribution and circulation of hepatitis C virus genotypes. World J Gastroenterol. 2016;22(34):7824–40. doi: 10.3748/wjg.v22.i34.7824.
  7. Чуланов В.П., Исаков В.А., Жданов К.В. и др. Промежуточные результаты международного многоцентрового проспективного наблюдательного исследования «MOSAIC» по оценке эпидемиологии, субъективных и экономических исходов лечения хронического вирусного гепатита С. Инфекционные болезни. 2018;16(1):5–14. doi: 20953/1729-9225-2018-1-5-14.
    [Chulanov VP, Isakov VA, Zhdanov KV, et al. Interim results of the international multicenter prospective observational study to evaluate the epidemiology, humanistic and economic outcomes of treatment for chronic hepatitis C virus (HCV) (MOSAIC). Infektsionnye bolezni. 2018;16(1):5–14. doi: 10.20953/1729-9225-2018-1-5-14. (In Russ)]
  8. Чуланов В.П., Пименов Н.Н., Мамонова Н.А. и др. Хронический гепатит С как проблема здравоохранения России сегодня и завтра. Терапевтический архив. 2015;87(11):5–10. doi: 10.17116/terarkh201587115-10.
    [Chulanov VP, Pimenov NN, Mamonova NA, et al. Chronic hepatitis C In Russia: current challenges and prospects. Terapevticheskii arkhiv. 2015;87(11):5–10. doi: 10.17116/terarkh201587115-10. (In Russ)]
  9. Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2019 г.: Государственный доклад. М.: 2020. 299 с.
    [Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2019: State report. Moscow; 2020. 299 p. (In Russ)]
  10. Дземова А.А., Ганченко Р.А., Трифонова Г.Ф. и др. Хронический гепатит С в Российской Федерации после начала программы элиминации HCV-инфекции. Гепатология и гастроэнтерология. 2020;4(2):165–70. doi: 25298/2616-5546-2020-4-2-165-170.
    [Dzemova AA, Ganchenko RA, Trifonova GF, et al. Chronic hepatitis C in the Russian Federation after starting the HCV elimination program. Gepatologiya i gastroenterologiya. 2020;4(2):165–70. doi: 10.25298/2616-5546-2020-4-2-165-170. (In Russ)]
  11. Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 252 с.
    [Kaprin AD, Starinskii VV, Shakhzadova AO, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2020 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms In Russia in 2019 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; 2021. 252 p. (In Russ)]
  12. Kawamura Y, Ikeda K, Arase Y, et al. Viral elimination reduces incidence of malignant lymphoma in patients with hepatitis. J Am Med Assoc. 2007;120(12):1034–41. doi: 10.1016/j.amjmed.2007.06.022.
  13. Su TH, Liu CJ, Tseng TC, et al. Hepatitis C viral infection increases the risk of lymphoid-neoplasms: A population-based cohort study. Hepatology. 2016;63(3):721–30. doi: 10.1002/hep.28387.
  14. Pozzato G, Mazzaro C, Maso L, et al. Hepatitis C virus and non-Hodgkin’s lymphomas: meta-analysis of epidemiology data and therapy options. World J Hepatol. 2016;8(2):107–16. doi: 10.4254/wjh.v8.i2.107.
  15. Милованова С.Ю., Лысенко Л.В., Милованова Л.Ю. и др. HCV-ассоциированная смешанная криоглобулинемия и В-клеточная неходжкинская лимфома — патогенетически связанные проблемы. Терапевтический архив. 2018;90(6):112–20. doi: 10.26442/terarkh2018906112-120.
    [Milovanova SYu, Lysenko LV, Milovanova LYu, et al. HCV-associated mixed cryoglobulinemia and B-cell non-Hodgkin’s lymphoma are pathogenetically related problems. Terapevticheskii arkhiv. 2018;90(6):112–20. doi: 10.26442/terarkh2018906112-120. (In Russ)]
  16. Minafo YA, Del Padre M, Cristofoletti C, et al. A stereotyped light chain may shape virus-specific B-cell receptors in HCV-dependent lymphoproliferative disorders. Genes Immun. 2020;21(2):131–5. doi: 10.1038/s41435-020-0093-9.
  17. Lotfi AA, Mohamed AE, Shalaby NA, et al. Occult hepatitis C virus infection in patients with malignant lymphoproliferative disorders. Int J Immunopathol Pharmacol. 2020;34:2058738420961202. doi: 10.1177/2058738420961202.
  18. Hirose S, Yamaji Y, Tsuruya K, et al. Rapid regression of B-cell non-Hodgkin’s lymphoma after eradication of hepatitis C virus by direct antiviral agents. Case Rep Gastroenterol. 2019;13(2):336–41. doi: 10.1159/000501546.
  19. Defrancesco I, Zerbi C, Rattotti S, et al. HCV infection and non-Hodgkin lymphomas: an evolving story. Clin Exp Med. 2020;20(3):321–8. doi: 10.1007/s10238-020-00615-6.
  20. Pozzato G, Mazzaro C, Gattei V. Hepatitis C virus-associated non-Hodgkin lymphomas: the endless history. Minerva Medica. 2021;112(2):215–27. doi: 10.23736/S0026-4806.20.07184-0.
  21. Сaсoub P, Comarmond C, Vieira M, et al. HCV-related lymphoproliferative disorders in the direct-acting antiviral era: From mixed cryoglobulinaemia to B-cell lymphoma. J Hepatol. 2021;76(1):174–85. doi: 10.1016/j.jhep.2021.09.023.
  22. Zhang M, Gao F, Peng L, et al. Distinct clinical features and prognostic factors in Hepatitis C virus-associated Non-Hodgkin’s lymphoma: a systematic review and meta-analysis. Cancer Cell Int. 2021;21(1):524. doi: 10.1186/s12935-021-02230-1.
  23. Ножкин М.С. Клинико-лабораторная характеристика течения хронического гепатита С у онкогематологических больных: Автореф. дис.… канд. мед. наук. СПб., 2021. 17 с.
    [Nozhkin MS. Kliniko-laboratornaya kharakteristika techeniya khronicheskogo gepatita C u onkogematologicheskikh bolnykh. (Clinical and laboratory characteristics of the course of chronic hepatitis C in oncohematological ) [dissertation] Saint Petersburg; 2021. 17 р. (In Russ)]
  24. Arico M, Maggiore G, Silini E, et al. Hepatitis C virus infection in children treated for acute lymphoblastic leukemia. Blood. 1994;84(9):2919–22.
  25. Meir H, Balawi I, Nayel H, et al. Hepatitis dysfunction in children with acute lymphoblastic leukemia remission: relation to hepatitis infection. Med Pediatr Oncol. 2001;36(4):469–73. doi: 10.1002/mpo.1111.
  26. Шардаков В.И., Назарова Е.Л., Сухорукова Э.Е. и др. Характеристика иммунного ответа у онкогематологических больных, имеющих хронический гепатит С. Вятский медицинский вестник. 2020;65(1):62–7.
    [Shardakov VI, Nazarova EL, Sukhorukova EE, et al. Characterization of the immune response in oncohematological patients with chronic hepatitis C. Vyatskii meditsinskii vestnik. 2020;65(1):62–7. (In Russ)]
  27. Torres HA, Davila M. Reactivation of hepatitis B virus and hepatitis C virus in patients with cancer. Nat Rev Clin Oncol. 2012;9(3):156–66. doi: 10.1038/nrclinonc.2012.1.
  28. Шаницына С.Е., Бурневич Э.З., Никулкина Е.Н. и др. Факторы риска неблагоприятного прогноза хронического гепатита С. Терапевтический архив. 2019;91(2):59–66. doi: 10.26442/00403660.2019.02.000082.
    [Shchanitcyna SE, Burnevich EZ, Nikulkina EN, et al. Risk factors of unfavorable prognosis of chronic hepatitis C. Terapevticheskii arkhiv. 2019;91(2):59–66. doi: 10.26442/00403660.2019.02.000082. (In Russ)]
  29. Mahale P, Kontoyiannis DP, Chemaly RF, et al. Acute exacerbation and reactivation of chronic hepatitis C virus infection in cancer patients. J Hepatol. 2021;57(6):1177–85. doi: 10.1016/j.jhep.2012.07.031.
  30. Nosotti L, D’Andrea M, Pitidis A, et al. Hepatitis C virus infection prevalence and liver dysfunction in a cohort of B-cell non-Hodgkin’s lymphoma patients treated with immunochemotherapy. Scand J Infect Dis. 2012;44(1):70–3. doi: 10.3109/00365548.2011.611819.
  31. Новик А.А. Возможности трансплантации костного мозга и стволовых кроветворных клеток в терапии гематологических и онкологических заболеваний. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2006;1(1):58–63.
    [Novik AA. Possibilities for bone marrow and hematopoietic stem cell transplantation in the treatment of hematological and oncological diseases. Vestnik Natsionalnogo mediko-khirurgicheskogo tsentra im. N.I. Pirogova. 2006;1(1):58–63. (In Russ)]
  32. Mahmoud HK, Fathy GM, Elhaddad A, et al. Hematopoietic Stem Cell Transplantation in Egypt: Challenges and Opportunities. Mediterr J Hematol Infect Dis. 2020;12(1):e2020023. doi: 10.4084/MJHID.2020.023.
  33. Levitsky D, Sorrell MF. Hepatic complications of hematopoietic cell transplantation. Curr Gastroenterol Rep. 2007;9(1):60–5. doi: 10.1007/s11894-008-0022-y.
  34. Abdelbary H, Magdy R, Moussa M, et al. Liver disease during and after hematopoietic stem cell transplantation in adults: a single-center Egyptian experience. J Egypt Natl Canc Inst. 2020;32(1):11. doi: 10.1186/s43046-020-0020-1.
  35. Kaito S, Doki N, Hishima T, et al. Progressive hepatic cirrhosis early after allogeneic hematopoietic stem cell transplantation in a patient with chronic hepatitis C infection. Turk J Hematol. 2019;36(2):130–3. doi: 10.4274/tjh.galenos.2019.2018.0224.
  36. Castillo I, Rodriguez-Inigo E, Bartolome J, et al. Hepatitis C virus replicates in peripheral blood mononuclear cells of patients with occult hepatitis C virus infection. 2005;54(5):682–5. doi: 10.1136/gut.2004.057281.
  37. Castillo I, Bartolome J, Quiroga JA, et al. Long-term virological follow up of patients with occult hepatitis C virus infection. Liver Int. 2011;31(10):1519–24. doi: 10.1111/j.1478-3231.2011.02613.x.
  38. Вишневская Т.В., Масалова О.В., Альховский С.В. и др. Выявление маркеров репликации вируса гепатита С в мононуклеарных клетках периферической крови больных хроническим гепатитом С. Медицинская иммунология. 2008;10(4–5):397–404. doi: 10.15789/1563-0625-2008-4-5-397-404.
    [Vishnevskaya TV, Massalova OV, Alkhovsky SV, et al. Detection of hepatitis C virus-specific replication markers in peripheral blood mononuclears from the patients with chronic hepatitis C. Medical immunology. 2008;10(4–5):397–404. doi: 10.15789/1563-0625-2008-4-5-397-404. (In Russ)]
  39. Quiroga JA, Castillo I, Llorente S, et al. Identification of serologically silent latent hepatitis C viral infection by detecting an immunoglobulin G antibody to the dominant epitope of the HCV core peptide. J Hepatol. 2009;50(2):256–63. doi: 10.1016/j.jhep.2008.08.021.
  40. Carreno V, Bartolome J, Castillo I, et al. New perspectives in occult hepatitis C virus infection. World J Gastroenterol. 2012;18(23):2887–94. doi: 10.3748/wjg.v18.i23.2887.
  41. De Marco L, Gillio-Tos A, Fiano V, et al. Occult HCV infection: an unexpected finding in a population unselected for hepatic disease. PLoS One. 2009;4(12):e8128. doi: 10.1371/journal.pone.0008128.
  42. Lin H, Chen X, Zhu S, et al. Prevalence of Occult Hepatitis C Virus Infection among Blood Donors in Jiangsu, China. Intervirology. 2016;59(4):204–10. doi: 10.1159/000455854.
  43. Martinez-Rodriguez ML, Uribe-Noguez LA, Arroyo-Anduiza CI, et al. Prevalence and risk factors of Occult Hepatitis C infections in blood donors from Mexico City. PLoS One. 2018;13(10):e0205659. doi: 10.1371/journal.pone.0205659.
  44. Austria A, Wu GY. Occult Hepatitis C Virus Infection: A Review. J Clin Transl Hepatol. 2018;6(2):155–60. doi: 10.14218/JCTH.2017.00053.
  45. Helaly GF, Elsheredy AG, El Basset Mousa AA, et al. Seronegative and occult hepatitis C virus infections in patients with hematological disorders. Arch Virol. 2017;162(1):63–6. doi: 10.1007/s00705-016-3049-7.
  46. Mahrous S, Baraka A, Fathy М, Fayez М. Seronegative and latent hepatitis C viral infections in patients with acute and chronic myeloid leukemia. Egypt J Hosp Med. 2022;86(1):470–6. doi: 10.21608/ejhm.2022.213795.
  47. Yousif MM, Elsadek Fakhr A, Morad EA, et al. Prevalence of occult hepatitis C virus infection in patients who achieved sustained virologic response to direct-acting antiviral agents. Infez Med. 2018;26(3):237–43.
  48. Mazzaro C, Quartuccio L, Adinolfi LE. Review of extrahepatic manifestations of chronic hepatitis C viral infection and the effects of direct-acting antiviral therapy. Viruses. 2021;13(11):2249. doi: 10.3390/v13112249.
  49. Sarakko DM, Marzano A, Rizzetto M. Therapy of chronic viral hepatitis: light at the end of the tunnel? 2022;10(3):534. doi: 10.3390/biomedicines10030534.
  50. Нурмухаметова Е.А., Блохина Н.П., Тихонова Н.Ю. Противовирусная терапия хронического гепатита С: многолетний опыт реальной клинической практики. Инфекционные болезни. 2021;19(3):43–57. doi: 10.20953/1729-9225-2021-3-43-57.
    [Nurmukhametova EA, Blokhina NP, Tikhonova NYu. Antiviral therapy for chronic hepatitis C: many years of real clinical experience. Infektsionnye bolezni. 2021;19(3):43–57. doi: 10.20953/1729-9225-2021-3-43-57. (In Russ)]
  51. Rabaan AA, Al-Ahmed SH, Bazzi AM, et al. Overview of hepatitis C infection, molecular biology and new treatment. J Infect Public Health. 2020;13(5):773–83. doi: 10.1016/j.jiph.2019.11.015.
  52. Fontana RJ, Brown RS, Moreno-Zamora A, et al. Daclatasvir in combination with sofosbuvir or simeprevir in liver transplant recipients with severe recurrent hepatitis C infection. Liver Transpl. 2016;22(4):446–58. doi: 10.1002/lt.24416.
  53. Michot JM, Canioni D, Driss H, et al. Antiviral therapy is associated with a better survival in patients with hepatitis C virus and B-cell non-Hodgkin lymphomas, ANRS HC-13 lympho-C study. Am J Hematol. 2015;90(3):197–203. doi: 10.1002/ajh.23889.
  54. Frigeni M, Besson C, Visco C, et al. Interferon-free compared to interferon-based antiviral regimens as first-line therapy B-cell lymphoproliferative disorders associated with hepatitis C virus infection. Leukemia. 2020;34(5):1462–6. doi: 10.1038/s41375-019-0687-2.
  55. Pinana JL, Serra MА, Hernandez-Boluda JC, et al. Successful treatment of hepatitis C virus infection with sofosbuvir and simeprevir in the early phase of an allogeneic stem cell transplant. Transpl Infect Dis. 2016;18(1):89–92. doi: 10.1111/tid.12474.
  56. Rauwolf K, Herbruggen H, Zollner S, et al. Durable control of hepatitis C through interferon-free antiviral combination therapy immediately prior to allogeneic haematopoietic stem cell transplantation. J Viral. 2019;26(4):454–8. doi: 10.1111/jvh.13046.
  57. Onodera K, Onishi Y, Inoue J, et al. Second direct-acting antiviral therapy for hepatitis C virus infection after umbilical cord blood transplantation: A case report. J Infect Chemother. 2021;27(8):1230–3. doi: 10.1016/j.jiac.2021.02.002.
  58. Iftikhar R, Ahmad P, de Latour R, et al. Special issues related to the diagnosis and management of acquired aplastic anemia in countries with restricted resources, a report on behalf of the Eastern Mediterranean blood and marrow transplantation (EMBMT) group and severe aplastic anemia working party of the European Society for blood and marrow transplantation (SAAWP of EBMT). Bone Marrow Transplant. 2021;56(10):2518–32. doi: 10.1038/s41409-021-01332-8.
  59. Cunningham HE, Shea TC, Grgic T, Lachiewicz AM. Successful treatment of hepatitis C virus infection with direct-acting antivirals during hematopoietic cell transplant. Transpl Infect Dis. 2019;21(3):е13091. doi: 10.1111/tid.13091.
  60. Кичатова В.С., Кюрегян К.К. Современный взгляд на резистентность к препаратам прямого противовирусного действия при лечении вирусного гепатита С. Инфекционные болезни: новости, мнения, обучение. 2019;8(2):64–71. doi: 10.24411/2305-3496-2019-12009.
    [Kichatova VS, Kuregyan KK. Modern view on resistance to direct antiviral drugs in the treatment of viral hepatitis C: analytical review. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2019;8(2):64–71. doi: 10.24411/2305-3496-2019-12009. (In Russ)]
  61. Глобальная стратегия сектора здравоохранения по вирусному гепатиту 2016–2021 гг. На пути к ликвидации вирусного гепатита. Женева: ВОЗ, 2016. 52 с.
    [Global health sector strategy on viral hepatitis 2016–2021. Towards ending viral hepatitis. Geneva: WHO Publ.; 52 p. (In Russ)]
  62. Михайлов М.И., Ющук Н.Д., Малинникова Е.Ю. и др. Проект программы по контролю и ликвидации вирусных гепатитов как проблемы общественного здоровья в Российской Федерации. Инфекционные болезни: новости, мнения, обучение. 2018;7(2):52–8. doi:24411/2305-3496-2018-12005.
    [Mikhaylov MI, Yushchuk ND, Malinnikova EYu, et al. The design of the program for control and elimination of viral hepatitis as public health problem in the Russian Federation. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2018;7(2):52–8. doi: 10.24411/2305-3496-2018-12005. (In Russ)]

Достижения и проблемы доказательной медицины при трансплантации гемопоэтических стволовых клеток: анализ результатов одноцентровых и многоцентровых исследований

Б.В. Афанасьев, И.С. Моисеев, Н.Г. Волков, К.В. Лепик, Н.Б. Михайлова, С.Н. Бондаренко, Л.С. Зубаровская, Е.В. Морозова, О.В. Паина, П.В. Кожокарь, Ж.З. Рахманова, О.В. Пирогова, К.С. Афанасьева, А.В. Бейнарович, Е.В. Семенова, О.Г. Смыкова, И.В. Маркова, Т.А. Быкова, А.Л. Алянский, Б.И. Смирнов, М.Д. Владовская, А.Г. Смирнова, Н.Е. Иванова, А.Д. Кулагин

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Иван Сергеевич Моисеев, д-р мед. наук, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; e-mail: moisiv@mail.ru

Для цитирования: Афанасьев Б.В., Моисеев И.С., Волков Н.Г. и др. Достижения и проблемы доказательной медицины при трансплантации гемопоэтических стволовых клеток: анализ результатов одноцентровых и многоцентровых исследований. Клиническая онкогематология. 2020;13(3):260–72.

DOI: 10.21320/2500-2139-2020-13-3-260-272


РЕФЕРАТ

Проведение рандомизированных многоцентровых исследований в области трансплантации гемопоэтических стволовых клеток (ТГСК) представляет значительные трудности, поэтому доля таких исследований невелика. Большинство клинических рекомендаций основывается на данных популяционных многоцентровых исследований регистров или хорошо контролируемых проспективных одноцентровых нерандомизированных исследований. С целью определить критерии хорошо контролируемого одноцентрового исследования, результаты которого могут быть подтверждены в многоцентровом анализе, проанализировано 44 группы пациентов из 22 совместных с группой EBMT исследований. Проведено сравнение результатов этих исследований с одноцентровыми данными и спланированными исследованиями НИИ ДОГиТ им. Р.М. Горбачевой. Выявлено, что статистически значимые различия наблюдались в 43 % случаев, при этом вероятность расхождения результатов при повышении числа пациентов в одноцентровых группах не уменьшалась, а увеличивалась (отношение шансов 1,037; 95%-й доверительный интервал 1,001–1,074; = 0,046), что свидетельствует о различиях в методологии одноцентровых и многоцентровых исследований. При анализе причин статистически значимых результатов сформулированы следующие необходимые критерии высококачественных одноцентровых исследований в области ТГСК: 1) режимы кондиционирования и профилактики реакции «трансплантат против хозяина» (если они не являются предметом исследования) должны соответствовать наиболее часто используемым в практике; 2) группы пациентов должны быть однородными по своему статусу; 3) в исследование не должны включаться пациенты, получавшие лечение более чем за 5 лет до анализа; 4) пациенты должны получать современную противоопухолевую терапию на до- и посттрансплантационном этапах; 5) каждая сравниваемая группа должна включать более 30–40 пациентов.

Ключевые слова: трансплантация гемопоэтических стволовых клеток, доказательная медицина, одноцентровые исследования, многоцентровые исследования, метаанализ.

Получено: 1 апреля 2020 г.

Принято в печать: 20 июня 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Kuhn K. Claudii Galeni Opera Omnia. Leipzig; 1821–1833. Vol. 1.

  2. Clendening L. Source Book Of Medical History. N.Y.: Dover Pubs.; 1960.

  3. Kaplan E, Meier P. Nonparametric Estimation from Incomplete Observations. J Am Stat Assoc. 1958;53(282):457–81. doi: 10.1080/01621459.1958.10501452.

  4. Lasagna L, Meier P. Clinical Evaluation of Drugs. Annu Rev Med. 1958;9(1):347–54. doi: 10.1146/annurev.me.09.020158.002023.

  5. Doll R, Hill A. Study of the Aetiology of Carcinoma of the Lung. BMJ. 1952;2(4797):1271–86. doi: 10.1136/bmj.2.4797.1271.

  6. Bonadonna G, Zucali R, Monfardini S, de Lena M, Uslenghi C. Combination chemotherapy of Hodgkin’s disease with adriamycin, bleomycin, vinblastine, and imidazole carboxamide versus MOPP. Cancer. 1975;36(1):252–9. doi: 10.1002/1097-0142(197507)36:1<252::aid-cncr2820360128>3.0.co;2-7.

  7. Hughes A. Clinical epidemiology a basic science for clinical medicine (2nd edition). Statist Med. 1993;12(2):187–8. doi: 10.1002/sim.4780120211.

  8. Oxman A. Users’ Guides to the Medical Literature. JAMA. 1993;270(17):2093. doi: 10.1001/jama.1993.03510170083036.

  9. Greenhalgh T. How to read a paper. BMJ Books; 2014.

  10. Hill G. Archie Cochrane and his legacy. J Clin Epidemiol. 2000;53(12):1189–92. doi: 10.1016/s0895-4356(00)00253-5.

  11. Петров В.И. Базисные принципы и методология доказательной медицины. Вестник ВолгГМУ. 2011;2(38):3–8.[Petrov VI. Basic principles and methodology in evidence-based medicine. Vestnik VolgGMU. 2011;2(38):3–8. (In Russ)]

  12. Liesegang TJ. Evidence-based medicine: principles for applying the users’ guides to patient care. Am J Ophthalmol. 2001;1:153. doi: 10.1016/s0002-9394(00)00911-9.

  13. Bondarenko, SN, Moiseev IS, Slesarchuk, OA, et al. Allogeneic hematopoietic stem cell transplantation in children and adults with acute lymphoblastic leukemia. Cell Ther Transplant. 2016;5(2):12–20. doi: 10.18620/1866-8836-2016-5-2-12-20.

  14. Sadowska-Klasa A, Piekarska A, Prejzner W, et al. Colonization with multidrug-resistant bacteria increases the risk of complications and a fatal outcome after allogeneic hematopoietic cell transplantation. Ann Hematol. 2017;97(3):509–17. doi: 10.1007/s00277-017-3205-5.

  15. Alessandrino EP, Della Porta MG, Bacigalupo A, et al. Prognostic impact of pre-transplantation transfusion history and secondary iron overload in patients with myelodysplastic syndrome undergoing allogeneic stem cell transplantation: a GITMO study. Haematologica. 2019;95(3):476–84. doi: 10.3324/haematol.2009.011429.

  16. Schmidt-Hieber M, Tridello G, Ljungman P, et al. The prognostic impact of the cytomegalovirus serostatus in patients with chronic hematological malignancies after allogeneic hematopoietic stem cell transplantation: a report from the Infectious Diseases Working Party of EBMT. Ann Hematol. 2019;98(7):1755–63. doi: 10.1007/s00277-019-03669-z.

  17. Ayuk F, Beelen DW, Bornhauser M, et al. Relative Impact of HLA Matching and Non-HLA Donor Characteristics on Outcomes of Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndrome. Biol Blood Marrow Transplant. 2018;24(12):2558–67. doi: 10.1016/j.bbmt.2018.06.026.

  18. Zheng C, Dai R, Gale RP, Zhang MJ. Causal inference in randomized clinical trials. Bone Marrow Transplant. 2019;55(1):4–8. doi: 10.1038/s41409-018-0424-x.

  19. Bazarbachi AH, Hamed RA, Labopin M, et al. Allogeneic stem-cell transplantation with sequential conditioning in adult patients with refractory or relapsed acute lymphoblastic leukemia: a report from the EBMT Acute Leukemia Working Party. Bone Marrow Transplant. 2020;55(3):595–602. doi: 10.1038/s41409-019-0702-2.

  20. Shem-Tov N, Peczynski C, Labopin M, et al. Haploidentical vs. unrelated allogeneic stem cell transplantation for acute lymphoblastic leukemia in first complete remission: on behalf of the ALWP of the EBMT. Leukemia. 2020;34(1):283–92. doi: 10.1038/s41375-019-0544-3.

  21. Battipaglia G, Labopin M, Kroger N, et al. Posttransplant cyclophosphamide vs antithymocyte globulin in HLA-mismatched unrelated donor transplantation. Blood. 2019;134(11):892–9. doi: 10.1182/blood.2019000487.

  22. Brissot E, Labopin M, Ehninger G, et al. Haploidentical versus unrelated allogeneic stem cell transplantation for relapsed/refractory acute myeloid leukemia: a report on 1578 patients from the Acute Leukemia Working Party of the EBMT. Haematologica. 2019;104(3):524–32. doi: 10.3324/haematol.2017.187450.

  23. Kharfan-Dabaja MA, Labopin M, Polge E, et al. Association of Second Allogeneic Hematopoietic Cell Transplant vs Donor Lymphocyte Infusion With Overall Survival in Patients With Acute Myeloid Leukemia Relapse. JAMA Oncol. 2018;4(9):1245–53. doi: 10.1001/jamaoncol.2018.2091.

  24. Giebel S, Labopin M, Potter M, et al. Comparable results of autologous and allogeneic haematopoietic stem cell transplantation for adults with Philadelphia-positive acute lymphoblastic leukaemia in first complete molecular remission: An analysis by the Acute Leukemia Working Party of the EBMT. Eur J Cancer. 2018;96:73–81. doi: 10.1016/j.ejca.2018.03.018.

  25. Bazarbachi A, Boumendil A, Finel H, et al. Brentuximab vedotin prior to allogeneic stem cell transplantation in Hodgkin lymphoma: a report from the EBMT Lymphoma Working Party. Br J Haematol. 2018;181(1):86–96. doi: 10.1111/bjh.15152.

  26. van Gelder M, Ziagkos D, de Wreede L, et al. Baseline Characteristics Predicting Very Good Outcome of Allogeneic Hematopoietic Cell Transplantation in Young Patients With High Cytogenetic Risk Chronic Lymphocytic Leukemia – A Retrospective Analysis From the Chronic Malignancies Working Party of the EBMT. Clin Lymphoma Myel Leuk. 2017;17(10):667–75.e2. doi: 10.1016/j.clml.2017.06.007.

  27. Santoro N, Ruggeri A, Labopin M, et al. Unmanipulated haploidentical stem cell transplantation in adults with acute lymphoblastic leukemia: a study on behalf of the Acute Leukemia Working Party of the EBMT. J Hematol Oncol. 2017;10(1):113. doi: 10.1186/s13045-017-0480-5.

  28. Lucchini G, Labopin M, Beohou E, et al. Impact of Conditioning Regimen on Outcomes for Children with Acute Myeloid Leukemia Undergoing Transplantation in First Complete Remission. An Analysis on Behalf of the Pediatric Disease Working Party of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2017;23(3):467–74. doi: 10.1016/j.bbmt.2016.11.022.

  29. Savani BN, Labopin M, Blaise D, et al. Peripheral blood stem cell graft compared to bone marrow after reduced intensity conditioning regimens for acute leukemia: a report from the ALWP of the EBMT. Haematologica. 2016;101(2):256–62. doi: 10.3324/haematol.2015.135699.

  30. Ecsedi M, Lengline E, Knol-Bout C, et al. Use of eltrombopag in aplastic anemia in Europe. Ann Hematol. 2019;98(6):1341–50. doi: 10.1007/s00277-019-03652-8.

  31. Battipaglia G, Boumendil A, Labopin M, et al. Unmanipulated haploidentical versus HLA-matched sibling allogeneic hematopoietic stem cell transplantation in relapsed/refractory acute myeloid leukemia: a retrospective study on behalf of the ALWP of the EBMT. Bone Marrow Transplant. 2019;54(9):1499–510. doi: 10.1038/s41409-019-0459-7.

  32. Yaniv I, Krauss AC, Beohou E, et al. Second Hematopoietic Stem Cell Transplantation for Post-Transplantation Relapsed Acute Leukemia in Children: A Retrospective EBMT-PDWP Study. Biol Blood Marrow Transplant. 2018;24(8):1629–42. doi: 10.1016/j.bbmt.2018.03.002.

  33. Ruggeri A, Labopin M, Bacigalupo A, et al. Post-transplant cyclophosphamide for graft-versus-host disease prophylaxis in HLA matched sibling or matched unrelated donor transplant for patients with acute leukemia, on behalf of ALWP-EBMT. J Hematol Oncol. 2018;11(1):40. doi: 10.1186/s13045-018-0586-4.

  34. Avivi I, Boumendil A, Finel H, et al. Autologous stem cell transplantation for primary mediastinal B-cell lymphoma: long-term outcome and role of post-transplant radiotherapy. A report of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. 2018;53(8):1001–9. doi: 10.1038/s41409-017-0063-7.

  35. Cesaro S, Crocchiolo R, Tridello G, et al. Comparable survival using a CMV-matched or a mismatched donor for CMV+ patients undergoing T-replete haplo-HSCT with PT-Cy for acute leukemia: a study of behalf of the infectious diseases and acute leukemia working parties of the EBMT. Bone Marrow Transplant. 2018;53(4):422–30. doi: 10.1038/s41409-017-0016-1.

  36. Martinez C, Gayoso J, Canals C, et al. Post-Transplantation Cyclophosphamide-Based Haploidentical Transplantation as Alternative to Matched Sibling or Unrelated Donor Transplantation for Hodgkin Lymphoma: A Registry Study of the Lymphoma Working Party of the European Society for Blood and Marrow Transplantation. J Clin Oncol. 2017;35(30):3425–32. doi: 10.1200/JCO.2017.72.6869.

  37. Kroger N, Iacobelli S, Franke GN, et al. Dose-Reduced Versus Standard Conditioning Followed by Allogeneic Stem-Cell Transplantation for Patients With Myelodysplastic Syndrome: A Prospective Randomized Phase III Study of the EBMT (RICMAC Trial). J Clin Oncol. 2017;35(19):2157–64. doi: 10.1200/JCO.2016.70.7349.

  38. Pavlu J, Labopin M, Zoellner AK, et al. Allogeneic hematopoietic cell transplantation for primary refractory acute lymphoblastic leukemia: A report from the Acute Leukemia Working Party of the EBMT. Cancer. 2017;123(11):1965–70. doi: 10.1002/cncr.30604.

  39. Rubio MT, Savani BN, Labopin M, et al. Impact of conditioning intensity in T-replete haplo-identical stem cell transplantation for acute leukemia: a report from the acute leukemia working party of the EBMT. J Hematol Oncol. 2016;9(1):25. doi: 10.1186/s13045-016-0248-3.

  40. Baron F, Labopin M, Peniket A, et al. Reduced-intensity conditioning with fludarabine and busulfan versus fludarabine and melphalan for patients with acute myeloid leukemia: a report from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Cancer. 2015;121(7):1048–55. doi: 10.1002/cncr.29163.

  41. Verneris MR, Eapen M, Duerst R, et al. Reduced-intensity conditioning regimens for allogeneic transplantation in children with acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2010;16(9):1237–44. doi: 10.1016/j.bbmt.2010.03.009.

  42. Gilleece MH, Labopin M, Yakoub-Agha I, et al. Measurable residual disease, conditioning regimen intensity, and age predict outcome of allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first remission: A registry analysis of 2292 patients by the Acute Leukemia Working Party European Society of Blood and Marrow Transplantation. Am J Hematol. 2018;93(9):1142–52. doi: 10.1002/ajh.25211.

  43. Moiseev IS, Pirogova OV, Alyanski AL, et al. Graft-versus-Host Disease Prophylaxis in Unrelated Peripheral Blood Stem Cell Transplantation with Post-Transplantation Cyclophosphamide, Tacrolimus, and Mycophenolate Mofetil. Biol Blood Marrow Transplant. 2016;22(6):1037–42. doi: 10.1016/j.bbmt.2016.03.004.

  44. Бондаренко С.Н. Роль аллогенной трансплантации гемопоэтических стволовых клеток в программной терапии острого миелоидного лейкоза у взрослых: Дис. … д-ра мед. наук. СПб., 2020. 277 с.[Bondarenko SN. Rol’ allogennoi transplantatsii gemopoeticheskikh stvolovykh kletok v programmnoi terapii ostrogo mieloidnogo leikoza u vzroslykh. (The role of allogeneic hematopoietic stem cell transplantation in the programmed treatment of acute myeloid ) [dissertation] Saint Petersburg; 2020. 227 p. (In Russ)]

  45. Afanasyev B, Borzenkova E, Lepik K, et al. Improving the outcome in patients with relapsed/refractory classical Hodgkin lymphoma undergoing allogeneic stem cells transplantation. Bone Marrow Transplant. 2019;53(S1):P622. doi: 10.1038/s41409-018-0354-

  46. Kalashnikova OB, Ivanova MO, Shmidt DI, et al. Allogeneic hematopoietic stem cell transplantation for relapsed and refractory chronic lymphocytic leukemia: single-center experience. Cell Ther Transplant. 2019;8(3):56–7.

  47. Beynarovich AV, Babenko EV, Moiseev IS, et al. Haploidentical stem cell transplantation in adults for the treatment of hematologic diseases: results of a single center (CIC725). Cell Ther Transplant. 2019;8(1):26–35. doi: 10.18620/ctt-1866-8836-2019-8-1-26-35.

  48. Paina OV, Rakhmanova ZZ, Kozhokar PV, et al. Comparison of Allogeneic Transplant Outcomes Using Conditioning with Different Dose of Busulfan for Children with Acute Myeloid Leukemia. Blood. 2019;134(Suppl_1): doi: 10.1182/blood-2019-128155.

  49. Кучер М.А. Роль и оптимизация трансфузиологической тактики при трансплантации гемопоэтических стволовых клеток у онкологических и гематологических больных: Дис. … д-ра мед. наук. СПб., 2018. 246 с.[Kucher MA. Rol’ i optimizatsiya transfuziologicheskoi taktiki pri transplantatsii gemopoeticheskikh stvolovykh kletok u onkologicheskikh i gematologicheskikh bol’nykh. (The role and optimization of transfusion approach in hematopoietic stem cell transplantation in oncological and hematological patients.) [dissertation] Saint Petersburg; 2018. 246 p. (In Russ)]

  50. Кожокарь П.В., Паина О.В., Боровкова А.С. и др. Повторная аллогенная трансплантация гемопоэтических стволовых клеток как метод терапии у детей с рефрактерным течением онкогематологических заболеваний. Российский журнал детской гематологии и онкологии. 2019;6(S1):162–3.[Kozhokar PV, Paina OV, Borovkova AV, et al. Repeated allogeneic hematopoietic stem cell transplantation as therapy for children with refractory oncohematological diseases. Rossiiskii zhurnal detskoi gematologii i onkologii. 2019;6(S1):162–3. (In Russ)]

  51. Моисеев И.С. Совершенствование методов профилактики и лечения реакции «трансплантат против хозяина»: Дис. … д-ра мед. наук. СПб., 2019. 300 с.[Moiseev IS. Sovershenstvovanie metodov profilaktiki i lecheniya reaktsii “transplantat protiv khozyaina”. (Improvement of methods for prevention and treatment of graft-versus-host disease.) [dissertation] Saint Petersburg; 2019. 300 p. (In Russ)]

  52. Morozova EV, Barabanshikova MV, Tcvetkov NY, et al. Application of standard and novel prognostic systems in patients with myelodysplastic syndrome undergoing allogeneic hematopoietic stem cell transplantation. Cell Ther Transplant. 2019;8(1):36–45. doi: 18620/ctt-1866-8836-2019-8-1-36-45.

  53. Бондаренко С.Н., Разумова С.В., Станчева Н.В. и др. Эффективность аллогенной трансплантации гемопоэтических стволовых клеток с миелоаблативными режимами и режимами кондиционирования со сниженной интенсивностью у детей и подростков с острым миелобластным лейкозом. Онкопедиатрия. 2015;2(4):396–403. doi: 10.15690/onco.v2.i4.1466.[Bondarenko SN, Razumova SV, Stancheva NV, et al. Efficacy of Allogeneic Stem Cell Transplantation for Children and Adolescents with Acute Myeloid Leukemia After Myeloablative and Reduced-Intensity Conditioning. Onkopediatria. 2015;2(4):396–403. doi: 10.15690/onco.v2.i4.1466. (In Russ)]

  54. Giralt S, Ballen K, Rizzo D, et al. Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the center for international blood and marrow transplant research. Biol Blood Marrow Transplant. 2009;15(3):367–9. doi: 10.1016/j.bbmt.2008.12.497.

  55. Gavaghan DJ, Moore AR, McQay HJ. An evaluation of homogeneity tests in meta-analysis in pain using simulations of patient data. Pain. 2000;85(3):415–24. doi: 10.1016/s0304-3959(99)00302-4.

  56. Volpp KG, Troxel AB, Pauly MV, et al. A randomized, controlled trial of financial incentives for smoking cessation. N Engl J Med. 2009;360(7):699–709. doi: 10.1056/NEJMsa0806819.

  57. Fredman LS. Tables of the number of patients required in clinical trials using the logrank test. Statist Med. 1982;1(2):121–9. doi: 10.1002/sim.4780010204.

  58. Wakamatsu M, Terakura S, Ohashi K, et al. Impacts of thymoglobulin in patients with acute leukemia in remission undergoing allogeneic HSCT from different donors. Blood Adv. 2019;3(2):105–15. doi: 10.1182/bloodadvances.2018025643.

  59. Залялов Ю.Р. Роль поликлональных антитимоцитарных глобулинов в повышении эффективности трансплантаций аллогенных гемопоэтических стволовых клеток в клинике: Автореф. дис. … канд. мед. наук. СПб., 2012. 21 с.[Zalyalov YuR. Rol’ poliklonal’nykh antitimotsitarnykh globulinov v povyshenii effektivnosti transplantatsii allogennykh gemopoeticheskikh stvolovykh kletok v klinike. (The role of polyclonal antithymocyte globulins in improving the efficacy of allogeneic hematopoietic stem cell transplantation in clinical practice.) [dissertation] Saint Petersburg; 2012. 21 р. (In Russ)]

  60. Кистенева Л.Б. Клинико-лабораторные особенности цитомегаловирусной и HC-вирусной инфекции у беременных и новорожденных. Разработка системы лечебно-профилактических мер: Дис. … д-ра мед. наук. М., 2011. 322 с.[Kisteneva LB. Kliniko-laboratornye osobennosti tsitomegalovirusnoi i HC-virusnoi infektsii u beremennykh i novorozhdennykh. Razrabotka sistemy lechebno-profilakticheskikh mer. (Clinical and laboratory features of cytomegalovirus and HC-virus infection in pregnancy and neonates. Development of therapeutic and prophylactic measures.) [dissertation] Moscow; 2011. 322 p. (In Russ)]

  61. Ciurea SO, Al Malki MM, Kongtim P, et al. The European Society for Blood and Marrow Transplantation (EBMT) consensus recommendations for donor selection in haploidentical hematopoietic cell transplantation. Bone Marrow Transplant. 2020;55(1):12–24. doi: 10.1038/s41409-019-0499-z.

  62. Armand P, Kim HT, Cutler CS, et al. A prognostic score for patients with acute leukemia or myelodysplastic syndromes undergoing allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2008;14(1):28–35. doi: 10.1016/j.bbmt.2007.07.016.

  63. Schroeder T, Wegener N, Lauseker M, et al. Comparison between upfront transplantation and different pretransplant cytoreductive treatment approaches in patients with high-risk myelodysplastic syndrome and secondary acute myelogenous leukemia Biol Blood Marrow Transplant. 2019;25(8):1550–9. doi: 10.1016/j.bbmt.2019.03.011.

  64. Shaheen M, Moiseev IS, Ivanova MO, et al. Prognosis of Elevated Serum Ferritin in Allogeneic-HCT. Global J Hematol Blood Transf. 2015;2(2):1–10. doi: 10.15379/2408-9877.2015.02.02.01.

  65. Lepik KV, Mikhailova NB, Moiseev IS, et al. Nivolumab for the treatment of relapsed and refractory classical Hodgkin lymphoma after ASCT and in ASCT-naive patients. Leuk Lymphoma. 2019;60(9):2316–9. doi: 10.1080/10428194.2019.1573368.

  66. Паина О.В. Аллогенная трансплантация стволовых гемопоэтических клеток от гаплоидентичного донора в лечении первичной химиорезистентности и рецидивов острых лейкозов у детей и подростков: Дис. … д-ра мед. наук. СПб., 2017.[Paina OV. Allogennaya transplantatsiya stvolovykh gemopoeticheskikh kletok ot gaploidentichnogo donora v lechenii pervichnoi khimiorezistentnosti i retsidivov ostrykh leikozov u detei i podrostkov. (Allogeneic hematopoietic stem cell transplantation from haploidentical donor for the treatment of primary chemoresistant or relapsed acute leukemias in children and adolescents.) [dissertation] Saint Petersburg; 2017. (In Russ)]

  67. Connors JM, Jurczak W, Straus DJ, et al. Brentuximab Vedotin with Chemotherapy for Stage III or IV Hodgkin’s Lymphoma. N Engl J Med. 2018;378(9):878. doi: 10.1056/nejmx180007.

  68. Sertkaya A, Birkenbach A, Berlind A, Eyraud J. Examination of Clinical Trial Costs and Barriers for Drug Development. Available from: https://aspe.hhs.gov/report/examination-clinical-trial-costs-and-barriers-drug-development (accessed 4.05.2020).

Сопроводительная (поддерживающая) терапия при трансплантации гемопоэтических стволовых клеток: традиционные методы и новые подходы

В.П. Поп, О.А. Рукавицын

ФГКУ «Главный военный клинический госпиталь им. Н.Н. Бурденко» Минобороны России, Госпитальная пл., д. 3, Москва, Российская Федерация, 105229

Для переписки: Василий Петрович Поп, канд. мед. наук, Госпитальная пл., д. 3, Москва, Российская Федерация, 105229; тел.: +7(903)178-94-12; факс: 8(499)263-07-39; e-mail: vasiliypop@mail.ru

Для цитирования: Поп В.П., Рукавицын О.А. Сопроводительная (поддерживающая) терапия при трансплантации гемопоэтических стволовых клеток: традиционные методы и новые подходы. Клиническая онкогематология. 2017;10(4):501–13.

DOI: 10.21320/2500-2139-2017-10-4-501-513


РЕФЕРАТ

Сопроводительная (поддерживающая) терапия (СТ) при трансплантации гемопоэтических стволовых клеток (ТГСК) переживает значительное развитие и изменения. Целью обзора является суммирование основных данных о методах и перспективе СТ при ТГСК, анализ новых возможностей, а также развивающихся альтернативных подходов, усиливающих эффективность противоопухолевого потенциала ТГСК. Потребность в СТ постоянно возрастает в силу как увеличения количества проводимых ТГСК, так и возрастания числа живущих после ТГСК. В обзоре освещены традиционные методы СТ, благодаря которым стали возможны успехи ТГСК: антибактериальная, противогрибковая и противовирусная профилактика. Кроме того, рассматриваются вопросы специфической профилактики, такие как возможности предупреждения токсичности криоконсерванта диметилсульфоксида, а также еще недостаточно изученные аспекты вакцинации реципиентов ТГСК и особенности воздействия на микробиоту. Продемонстрировано, что многие классические рекомендации СТ подлежат пересмотру с учетом широкой вариативности подходов не только к посттрансплантационному мониторингу, но и к эмпирической антибактериальной терапии, тактике применения гемопоэтических факторов роста, целесообразности коррекции микробиоты, ограничений внешней среды и социальных контактов. В настоящее время ТГСК может быть выполнима намного более часто, чем ранее, в условиях, близких к амбулаторным, что приводит к улучшению исходов лечения без необходимости значительных затрат на СТ в стационаре. Повышение эффективности использования ресурсов и качества СТ в будущем возможно на основе медицинских информационных технологий и улучшения цифровой инфраструктуры между врачом и пациентом. Представлен собственный опыт СТ при аллоТГСК у 19 пациентов и СТ при аутоТГСК у 82 больных, а также опыт проведения аутоТГСК в неизолированных палатах без HEPA-фильтрации. Анализ литературы свидетельствует как о повышенной востребованности различных методов СТ при ТГСК, так и о возрастающей эффективности СТ. Несмотря на отсутствие единых стандартов, внедрение новых вариантов СТ позволит значительно улучшить исходы ТГСК.

Ключевые слова: трансплантация гемопоэтических стволовых клеток, сопроводительная терапия, мукозит, антибактериальная, противогрибковая и противовирусная профилактика, микробиота, посттрансплантационные осложнения.

Получено: 26 марта 2017 г.

Принято в печать: 22 мая 2017 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. McCarthy PL, Hahn T, Hassebroek A, et al. Trends in Use of and Survival after Autologous Hematopoietic Cell Transplantation in North America, 1995-2005: Significant Improvement in Survival for Lymphoma and Myeloma during a Period of Increasing Recipient Age. Biol Blood Marrow Transplant. 2013;19(7):1116–23. doi: 10.1016/j.bbmt.2013.04.027.
  2. Auner HW, Szydlo R, Hoek J, et al. Trends in autologous hematopoietic cell transplantation for multiple myeloma in Europe: increased use and improved outcomes in elderly patients in recent years. Bone Marrow Transplant. 2015;50(2):209–15. doi: 10.1038/bmt.2014.255.
  3. Passweg JR, Baldomero H, Bader P, et al. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplant. 2016;51(6):786–92. doi: 10.1038/bmt.2016.20.
  4. Farquhar C, Marjoribanks J, Basser R, Lethaby A. High dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with early poor prognosis breast cancer. Cochrane Database Syst Rev. 2005;3:CD003139. doi: 10.1002/14651858.CD003139.pub2.
  5. Farquhar C, Marjoribanks J, Lethaby A, Azhar M. High-dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with early poor prognosis breast cancer. Cochrane Database Syst Rev. 2016;5:CD003139. doi: 10.1002/14651858.CD003139.pub3.
  6. Gratwohl A, Pasquini MC, Aljurf M, et al. One million haemopoietic stem-cell transplants: a retrospective observational study. Lancet Haematol. 2015;2(3):e91–100. doi: 10.1016/S2352-3026(15)00028-9.
  7. Majhail NS, Tao L, Bredeson C, et al. Prevalence of hematopoietic cell transplant survivors in the United States. Biol Blood Marrow Transplant. 2013;19(10):1498–501. doi: 10.1016/j.bbmt.2013.07.020.
  8. Savani BN. How Can We Improve Life Expectancy and Quality of Life in Long-Term Survivors After Allogeneic Stem Cell Transplantation? Semin Hematol. 2012;49(1):1–3. doi: 10.1053/j.seminhematol.2011.10.014.
  9. Rubio MT, Savani BN, Labopin M, et al. Impact of conditioning intensity in T-replete haplo-identical stem cell transplantation for acute leukemia: a report from the acute leukemia working party of the EBMT. J Hematol Oncol. 2016;9(1):25. doi: 10.1186/s13045-016-0248-3.
  10. Lalla RV, Bowen J, Barasch A, et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014;120(10):1453–61. doi: 10.1002/cncr.28592.
  11. Wang L, Gu Z, Zhai R, et al. Efficacy of oral cryotherapy on oral mucositis prevention in patients with hematological malignancies undergoing hematopoietic stem cell transplantation: a meta-analysis of randomized controlled trials. PloS One. 2015;10(5):e0128763. doi: 10.1371/journal.pone.0128763.
  12. Svanberg A, Оhrn K, Birgegard G. Caphosol® mouthwash gives no additional protection against oral mucositis compared to cryotherapy alone in stem cell transplantation. A pilot study. Eur J Oncol Nurs. 2015;19(1):50–3. doi: 10.1016/j.ejon.2014.07.011.
  13. Spielberger R, Stiff P, Bensinger W, et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med. 2004;351(25):2590–8. doi: 10.1056/nejmoa040125.
  14. Stiff PJ, Emmanouilides C, Bensinger WI, et al. Palifermin reduces patient-reported mouth and throat soreness and improves patient functioning in the hematopoietic stem-cell transplantation setting. J Clin Oncol. 2006;24(33):5186–93. doi: 10.1200/JCO.2005.02.8340.
  15. Abidi MH, Agarwal R, Tageja N, et al. A phase I dose-escalation trial of high-dose melphalan with palifermin for cytoprotection followed by autologous stem cell transplantation for patients with multiple myeloma with normal renal function. Biol Blood Marrow Transplant. 2013;19(1):56–61. doi: 10.1016/j.bbmt.2012.08.003.
  16. Tsirigotis P, Triantafyllou K, Girkas K, et al. Keratinocyte growth factor is effective in the prevention of intestinal mucositis in patients with hematological malignancies treated with high-dose chemotherapy and autologous hematopoietic SCT: a video-capsule endoscopy study. Bone Marrow Transplant. 2008;42(5):337–43. doi: 10.1038/bmt.2008.168.
  17. Nooka AK, Johnson HR, Kaufman JL, et al. Pharmacoeconomic analysis of palifermin to prevent mucositis among patients undergoing autologous hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(6):852–7. doi: 10.1016/j.bbmt.2014.02.025.
  18. Bensinger WI, Becker PS, Gooley TA, et al. A randomized study of melphalan 200 mg/m2 vs 280 mg/m2 as a preparative regimen for patients with multiple myeloma undergoing auto-SCT. Bone Marrow Transplant. 2016;51(1):67–71. doi: 10.1038/bmt.2015.211.
  19. Hari P, Aljitawi OS, Arce-Lara C, et al. A Phase IIb, Multicenter, Open-Label, Safety, and Efficacy Study of High-Dose, Propylene Glycol-Free Melphalan Hydrochloride for Injection (EVOMELA) for Myeloablative Conditioning in Multiple Myeloma Patients Undergoing Autologous Transplantation. Biol Blood Marrow Transplant. 2015;21(12):2100–5. doi: 10.1016/j.bbmt.2015.08.026.
  20. Blijlevens N, Schwenkglenks M, Bacon P, et al. Prospective oral mucositis audit: oral mucositis in patients receiving high-dose melphalan or BEAM conditioning chemotherapy — European Blood and Marrow Transplantation Mucositis Advisory Group. J Clin Oncol. 2008;26(9):1519–25. doi: 10.1200/JCO.2007.13.6028.
  21. Martino M, Tripepi G, Messina G, et al. A phase II, single-arm, prospective study of bendamustine plus melphalan conditioning for second autologous stem cell transplantation in de novo multiple myeloma patients through a tandem transplant strategy. Bone Marrow Transplant. 2016;51(9):1197–203. doi: 10.1038/bmt.2016.94.
  22. Mark TM, Reid W, Niesvizky R, et al. A phase 1 study of bendamustine and melphalan conditioning for autologous stem cell transplantation in multiple myeloma. Biol Blood Marrow Transplant. 2013;19(5):831–7. doi: 10.1016/j.bbmt.2013.02.013.
  23. Costa LJ, Micallef IN, Inwards DJ, et al. Effect of the dose per body weight of conditioning chemotherapy on severity of mucositis and risk of relapse after autologous haematopoietic stem cell transplantation in relapsed diffuse large B cell lymphoma. Br J Haematol. 2008;143(2):268–73. doi: 10.1111/j.1365-2141.2008.07342.x.
  24. Ullmann AJ, Schmidt-Hieber M, Bertz H, et al. Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016. Ann Hematol. 2016;95(9):1435–55. doi: 10.1007/s00277-016-2711-1.
  25. Gafter-Gvili A, Fraser A, Paul M, et al. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev. 2012;1:CD004386. doi: 10.1002/14651858.CD004386.pub3.
  26. Cruciani M, Malena M, Bosco O, et al. Reappraisal with meta-analysis of the addition of Gram-positive prophylaxis to fluoroquinolone in neutropenic patients. J Clin Oncol. 2003;21(22):4127–37. doi: 10.1200/JCO.2003.01.234.
  27. Kimura S, Akahoshi Y, Nakano H, et al. Antibiotic prophylaxis in hematopoietic stem cell transplantation. A meta-analysis of randomized controlled trials. J Infect. 2014;69(1):13–25. doi: 10.1016/j.jinf.2014.02.013.
  28. Taur Y, Jenq RR, Perales M-A, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174–82. doi: 10.1182/blood-2014-02-554725.
  29. Ullmann AJ, Akova M, Herbrecht R, et al. ESCMID* *This guideline was presented in part at ECCMID 2011. European Society for Clinical Microbiology and Infectious Diseases. guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin Microbiol Infect. 2012;18(Suppl 7):53–67. doi: 10.1111/1469-0691.12041.
  30. Deo SS, Gottlieb DJ. Adoptive T-cell therapy for fungal infections in haematology patients. Clin Transl Immunol. 2015;4(8):e40. doi: 10.1038/cti.2015.16.
  31. Parida SK, Poiret T, Zhenjiang L, et al. T-Cell Therapy: Options for Infectious Diseases. Clin Infect Dis. 2015;61(Suppl 3):S217–24. doi: 10.1093/cid/civ615.
  32. Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and Development of Therapies using Chimeric Antigen Receptor-Expressing T cells. Immunol Rev. 2013;257(1):107–26. doi: 10.1111/imr.12131.
  33. Kumaresan PR, Manuri PR, Albert ND, et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci USA. 2014;111(29):10660–5. doi: 10.1073/pnas.1312789111.
  34. Kumaresan PR, Albert N, Singh H, et al. Bioengineered Dectin-1 CAR+ T cells to control invasive fungal infection. Cancer Immunol Res. 2016;4(1 Supplt): Abstract 193. doi: 10.1158/2326-6074.CRICIMTEATIAACR15-A193.
  35. Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35. doi: 10.1182/blood-2009-08-239186.
  36. Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12(10):1160–6. doi: 10.1038/nm1475.
  37. Leen AM, Heslop HE, Brenner MK. Antiviral T-cell therapy. Immunol Rev. 2014;258(1):12–29. doi: 10.1111/imr.12138.
  38. Krebs K, Bottinger N, Huang L-R, et al. T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology. 2013;145(2):456–65. doi: 10.1053/j.gastro.2013.04.047.
  39. Sautto GA, Wisskirchen K, Clementi N, et al. Chimeric antigen receptor (CAR)-engineered T cells redirected against hepatitis C virus (HCV) E2 glycoprotein. Gut. 2016;65(3):512–23. doi: 10.1136/gutjnl-2014-308316.
  40. Ljungman P, Cordonnier C, Einsele H, et al. Vaccination of hematopoietic cell transplant recipients. Bone Marrow Transplant. 2009;44(8):521–6. doi: 10.1038/bmt.2009.263.
  41. Galmes A, Gutierrez A, Sampol A, et al. Long-term hematological reconstitution and clinical evaluation of autologous peripheral blood stem cell transplantation after cryopreservation of cells with 5% and 10% dimethylsulfoxide at 80 degrees C in a mechanical freezer. Haematologica. 2007;92(7):986–9. doi: 10.3324/haematol.11060.
  42. Detry G, Calvet L, Straetmans N, et al. Impact of uncontrolled freezing and long-term storage of peripheral blood stem cells at -80°C on haematopoietic recovery after autologous transplantation. Report from two centres. Bone Marrow Transplant. 2014;49(6):780–5. doi: 10.1038/bmt.2014.53.
  43. Morris C, de Wreede L, Scholten M, et al. Should the standard dimethyl sulfoxide concentration be reduced? Results of a European Group for Blood and Marrow Transplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide. Transfusion. 2014;54(10):2514–22. doi: 10.1111/trf.12759.
  44. Shu Z, Heimfeld S, Gao D. Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant. 2014;49(4):469–76. doi: 10.1038/bmt.2013.152.
  45. Martino M, Morabito F, Messina G, et al. Fractionated infusions of cryopreserved stem cells may prevent DMSO-induced major cardiac complications in graft recipients. Haematologica. 1996;81(1):59–61.
  46. Hechler G, Weide R, Heymanns J, et al. Storage of noncryopreserved periphered blood stem cells for transplantation. Ann Hematol. 1996;72(5):303–6. doi: 10.1007/s002770050176.
  47. Ruiz-Arguelles GJ, Ruiz-Arguelles A, Perez-Romano B, et al. Non-cryopreserved peripheral blood stem cells autotransplants for hematological malignancies can be performed entirely on an outpatient basis. Am J Hematol. 1998;58(3):161–4. doi: 10.1002/(sici)1096-8652(199807)58:3<161::aid-ajh1>3.0.co;2-p.
  48. Gomez-Almaguer D. The simplification of the SCT procedures in developing countries has resulted in cost-lowering and availability to more patients. Int J Hematol. 2002;76(Suppl 1):380–2. doi: 10.1007/bf03165288.
  49. Lopez-Otero A, Ruiz-Delgado GJ, Ruiz-Arguelles GJ. A simplified method for stem cell autografting in multiple myeloma: a single institution experience. Bone Marrow Transplant. 2009;44(11):715–9. doi: 10.1038/bmt.2009.71.
  50. Schroeder T, Fenk R, Saure C, et al. The Mexican way: a feasible approach to avoid DMSO toxicity. Bone Marrow Transplant. 2011;46(3):469–71. doi: 10.1038/bmt.2010.140.
  51. Ruiz-Delgado GJ, Ruiz-Arguelles GJ. A Mexican way to cope with stem cell grafting. Hematol Amst Neth. 2012;17(Suppl 1):S195–7. doi: 10.1179/102453312X13336169157130.
  52. Wannesson L, Panzarella T, Mikhael J, Keating A. Feasibility and safety of autotransplants with noncryopreserved marrow or peripheral blood stem cells: a systematic review. Ann Oncol. 2007;18(4):623–32. doi: 10.1093/annonc/mdm069.
  53. Matsumoto N, Yoshizawa H, Kagamu H, et al. Successful liquid storage of peripheral blood stem cells at subzero non-freezing temperature. Bone Marrow Transplant. 2002;30(11):777–84. doi: 10.1038/sj.bmt.1703692.
  54. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31(1):107–33. doi: 10.1146/annurev.mi.31.100177.000543.
  55. Уголев А.М. Теория адекватного питания и трофология. СПб.: Наука, 1991. 272 с.[Ugolev AM. Teoriya adekvatnogo pitaniya i trofologiya. (The theory of adequate nutrition and throphology.) Saint Petersburg: Nauka Publ; 1991. 272 p. (In Russ)]
  56. Manzo VE, Bhatt AS. The human microbiome in hematopoiesis and hematologic disorders. Blood. 2015;126(3):311–8. doi: 10.1182/blood-2015-04-574392.
  57. Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6. doi: 10.1126/science.1240537.
  58. Daillere R, Vetizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity. 2016;45(4):931–43. doi: 10.1016/j.immuni.2016.09.009.
  59. Pflug N, Kluth S, Vehreschild JJ, et al. Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncoimmunology. 2016;5(6):e1150399. doi: 10.1080/2162402X.2016.1150399.
  60. Alexander JL, Wilson ID, Teare J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356–65. doi: 10.1038/nrgastro.2017.20.
  61. Niesvizky R, Jayabalan DS, Christos PJ, et al. BiRD (Biaxin [clarithromycin]/Revlimid [lenalidomide]/dexamethasone) combination therapy results in high complete- and overall-response rates in treatment-naive symptomatic multiple myeloma. Blood. 2008;111(3):1101–9. doi: 10.1182/blood-2007-05-090258.
  62. Mark TM, Boyer A, Rossi AC, et al. ClaPD (Clarithromycin, Pomalidomide, Dexamethasone) Therapy in Relapsed or Refractory Multiple Myeloma. ASH Annu Meeting Abstracts. 2012;120(21):77.
  63. Ishimatsu Y, Mukae H, Matsumoto K, et al. Two cases with pulmonary mucosa-associated lymphoid tissue lymphoma successfully treated with clarithromycin. Chest. 2010;138(3):730–3. doi: 10.1378/chest.09-2358.
  64. Ohe M, Hashino S. A case of follicular B-cell lymphoma treated using clarithromycin. Korean J Hematol. 2011;46(3):203–6. doi: 10.5045/kjh.2011.46.3.203.
  65. Ohe M, Hashino S, Hattori A. Successful treatment of diffuse large B-cell lymphoma with clarithromycin and prednisolone. Korean J Hematol. 2012;47(4):293–7. doi: 10.5045/kjh.2012.47.4.293.
  66. Ohe M, Hashino S. Successful treatment of angioimmunoblastic T-cell lymphoma with clarithromycin. Blood Res. 2016;51(2):139–42. doi: 10.5045/br.2016.51.2.139.
  67. Storb R, Gyurkocza B, Storer BE, et al. Allogeneic hematopoietic cell transplantation following minimal intensity conditioning: predicting acute graft-versus-host disease and graft-versus-tumor effects. Biol Blood Marrow Transplant. 2013;19(5):792–8. doi: 10.1016/j.bbmt.2013.02.006.
  68. Andermann TM, Rezvani A, Bhatt AS. Microbiota Manipulation with Prebiotics and Probiotics in Patients Undergoing Stem Cell Transplantation. Curr Hematol Malig Rep. 2016;11(1):19–28. doi: 10.1007/s11899-016-0302-9.
  69. Staffas A, da Silva MB, van den Brink MRM. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood. 2017;129(8):927–33. doi: 10.1182/blood-2016-09-691394.
  70. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15. doi: 10.1056/NEJMOA1205037.
  71. Leffler DA, Lamont JT. Clostridium difficile Infection. N Engl J Med. 2015;372(16):1539–48. doi: 10.1056/NEJMRA1403772.
  72. Kakihana K, Fujioka Y, Suda W, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood. 2016;128(16):2083–8. doi: 10.1182/blood-2016-05-717652.
  73. Atarashi K, Tanoue T, Oshima K, , et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6. doi: 10.1038/nature12331.
  74. Саржевский В.О. Оценка токсических эффектов высокодозной химиотерапии с трансплантацией периферических стволовых гемопоэтических клеток у больных лимфопролиферативными заболеваниями: Автореф. дис. … д-ра мед. наук: М., 2016. 52 с.[Sarzhevskii VO. Otsenka toksicheskikh effektov vysokodoznoi khimioterapii s transplantatsiei perifericheskikh stvolovykh gemopoeticheskikh kletok u bol’nykh limfoproliferativnymi zabolevaniyami. (Assessment Toxicity Effects of High-Dose Chemotherapy with Transplantation of Peripheral Hematopoietic Stem Cells in Patients with Lymphoproliferative Diseases.) [dissertation] Moscow; 2016. 52 p. (In Russ)]
  75. Lee SJ, Astigarraga CC, Eapen M, et al. Variation in Supportive Care Practices in Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant. 2008;14(11):1231–8. doi: 10.1016/j.bbmt.2008.08.008.
  76. Peters WP, Ross M, Vredenburgh JJ, et al. The use of intensive clinic support to permit outpatient autologous bone marrow transplantation for breast cancer. Semin Oncol. 1994;21(4 Suppl 7):25–31.
  77. Faucher C, Le Corroller Soriano AG, Esterni B, et al. Randomized study of early hospital discharge following autologous blood SCT: medical outcomes and hospital costs. Bone Marrow Transplant. 2012;47(4):549–55. doi: 10.1038/bmt.2011.126.
  78. Graff TM, Singavi AK, Schmidt W, et al. Safety of Outpatient Autologous Hematopoietic Cell Transplantation for Multiple Myeloma and Lymphoma. Bone Marrow Transplant. 2015;50(7):947–53. doi: 10.1038/bmt.2015.46.
  79. Solomon SR, Matthews RH, Barreras AM, et al. Outpatient myeloablative allo-SCT: a comprehensive approach yields decreased hospital utilization and low TRM. Bone Marrow Transplant. 2010;45(3):468–75. doi: 10.1038/bmt.2009.234.
  80. Bashey A, Zhang X, Brown S, et al. Myeloablative Allogeneic Hematopoietic Cell Transplantation Performed without Routine Inpatient Admission: A Single Center Experience of 462 Consecutive Patients. Blood. 2016;128(22):661.
  81. Baumann FT, Kraut L, Schule K, et al. A controlled randomized study examining the effects of exercise therapy on patients undergoing haematopoietic stem cell transplantation. Bone Marrow Transplant. 2010;45(2):355–62. doi: 10.1038/bmt.2009.163.
  82. Steinberg A, Asher A, Bailey C, Fu JB. The role of physical rehabilitation in stem cell transplantation patients. Supp Care Cancer. 2015;23(8):2447–60. doi: 10.1007/s00520-015-2744-3.
  83. Chiffelle R, Kenny K. Exercise for fatigue management in hematopoietic stem cell transplantation recipients. Clin J Oncol Nurs. 2013;17(3):241–4. doi: 10.1188/13.CJON.241-244.
  84. Chung HM, Lyckholm LJ, Smith TJ. Palliative care in BMT. Bone Marrow Transplant. 2009;43(4):265–73. doi: 10.1038/bmt.2008.436.
  85. Rioth MJ, Warner J, Savani BN, Jagasia M. Next-generation long-term transplant clinics: improving resource utilization and the quality of care through health information technology. Bone Marrow Transplant. 2016;51(1):34–40. doi: 10.1038/bmt.2015.210.
  86. Basch E, Reeve BB, Mitchell SA, et al. Development of the National Cancer Institute’s Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE). J Natl Cancer Inst. 2014;106(9):dju244. doi: 10.1093/jnci/dju244.
  87. SABCS 2016: IBM Watson for Oncology Platform Shows High Degree of Concordance with Physician Recommendations. The ASCO Post [Internet]. Available from: http://www.ascopost.com/News/44214. Accessed 31.07.2017.

Эффективность поиска неродственного донора гемопоэтических стволовых клеток c помощью российской поисковой системы Bone Marrow Donor Search: опыт НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой

О.А. Макаренко, А.Л. Алянский, Н.Е. Иванова, М.А. Кучер, Е.В. Бабенко, М.А. Эстрина, Д.Э. Певцов, А.А. Головачева, Е.В. Кузьмич, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ГБОУ ВПО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Максим Анатольевич Кучер, канд. мед. наук, ул. Рентгена, д. 12, Санкт-Петербург, Российская Федерация, 197022; тел.: 8(812)338-62-60; e-mail: doctorkucher@yandex.ru

Для цитирования: Макаренко О.А., Алянский А.Л., Иванова Н.Е. и др. Эффективность поиска неродственного донора гемопоэтических стволовых клеток c помощью российской поисковой системы Bone Marrow Donor Search: опыт НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой. Клиническая онкогематология. 2017;10(1):39–44.

DOI: 10.21320/2500-2139-2017-10-1-33-44


РЕФЕРАТ

Актуальность и цели. Ключевым условием для проведения аллогенной трансплантации гемопоэтических стволовых клеток (аллоТГСК) является наличие совместимого по генам HLA-системы родственного или неродственного донора. При отсутствии родственного донора последующий поиск осуществляется в международной базе данных Bone Marrow Donor Worldwide (BMDW), который недостаточно эффективный (полный) из-за особенностей генотипа граждан Российской Федерации и составляет около 80–85 %. Рекрутирование донора в BMDW также требует длительных временных и высоких финансовых затрат. В связи с этим создаются предпосылки для развития альтернативной — российской поисковой системы Bone Marrow Donor Search (BMDS), объединяющей регистры доноров костного мозга в России и обладающей большим потенциалом. Цель исследования — оценить эффективность поиска доноров ГСК и качество трансплантата с помощью системы BMDS.

Методы. С ноября 2012 г. по март 2016 г. в НИИ ДОГиТ им. Р.М. Горбачевой в исследование включено 34 реципиента аллоТГСК с онкологическими и гематологическими заболеваниями, для которых был найден HLA-совместимый донор с помощью поисковой системы BMDS (www.bmds.info), включающей данные 13 российских регистров доноров ГСК.

Результаты. Выполнено 34 неродственных аллоТГСК от доноров из российских регистров: 2012 г. — 1; 2013 г. — 3; 2014 г. — 5; 2015 г. — 21; 1-й квартал 2016 г. — 4. По данным 2015 г., эффективность поиска в BMDS составила рекордные 14 % (n = 17). В 30 случаях (88,2 %) отмечалась полная совместимость (10/10) по 5 локусам HLA-генов в паре донор-реципиент, в 4 (11,8 %) — неполная (9/10). Полная совместимость по антигенам эритроцитов системы AB0 была только в 7 (20,6 %) наблюдениях. В 15 (44,1 %) случаях для заготовки трансплантата использовалась миелоэксфузия, в 19 (55,9 %) — аппаратный цитаферез для получения периферических стволовых клеток крови. Содержание CD34+ в трансплантате составило 1,2–12,0 x 106/кг, медиана — 5,0 x 106/кг. Приживление трансплантата отмечалось у 79,4 % больных (n = 27), неприживление — у 17,7 % (n = 6). Ранняя посттрансплантационная летальность составила 2,9 % (n = 1).

Заключение. Отмечается постепенное повышение эффективности поиска HLA-совместимого неродственного донора ГСК с помощью российской поисковой системы BMDS для граждан РФ при сравнимом с международной базой данных BMDW качестве трансплантата.

Ключевые слова: трансплантация гемопоэтических стволовых клеток, поиск неродственного донора костного мозга, BMDS.

Получено: 13 июля 2016 г.

Принято в печать: 24 ноября 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.) Злокачественные новообразования в России в 2012 г. (заболеваемость и смертность). М.: ФГБУ «МНИОИ им. П.А. Герцена» Минздрава России, 2014. 250 с.
    [Kaprin AD, Starinskii VV, Petrova GV, eds. Malignancies in Russia in 2012 (morbidity and mortality rates). Moscow: FGBU MNIOI im. P.A. Gertsena Minzdrava Rossii Publ.; 2014. 250 p. (In Russ)]
  2. Gratwohl A. Hematopoietic stem cell transplantation: a global perspective. JAMA. 2010;303(16):1617–24. doi: 10.1001/jama.2010.491.
  3. Passweg JR, Baldomero H, Peters C, et al. Hematopoietic SCT in Europe: data and trends in 2012 with special consideration of pediatric transplantation. Bone Marrow Transplant. 2014;49(6):744–50. doi: 10.1038/bmt.2014.55.
  4. Бубнова Л.Н., Павлова И.Е., Глазанова Т.В. и др. Регистры доноров гемопоэтических стволовых клеток. Биомедицинский журнал Medline.ru. 2015;16:751–8.
    [Bubnova LN, Pavlova IE, Glazanova TV, et al. Hematopoietic stem cell donor registers. Biomeditsinskii zhurnal Medline.ru. 2015;16:751–8. (In Russ)]
  5. Афанасьев Б.В., Зубаровская Л.С., Моисеев И.С. Аллогенная трансплантация гемопоэтических стволовых клеток у детей: настоящее, проблемы, перспективы. Российский журнал детской гематологии и онкологии. 2015;2(2):28–42. doi: 10.17650/2311-1267-2015-2-2-28-42.
    [Afanasiev BV, Zubarovskaya LS, Moiseev IS. Allogeneic hematopoietic stem cell transplantation in children: now, problems and prospects. Rossiiskii zhurnal detskoi gematologii i onkologii. 2015;2(2):28–42. doi: 10.17650/2311-1267-2015-2-2-28-42. (In Russ)]
  6. Алянский А.Л., Макаренко О.А., Иванова Н.Е. и др. Развитие регистра неродственных доноров костного мозга в Российской Федерации: опыт НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой. Российский журнал детской гематологии и онкологии. 2016;3(2):68–75. doi: 10.17650/2311-1267-2016-3-2-68-74.
    [Alyanskiy AL, Makarenko OA, Ivanova NE, et al. Development of donor bone marrow registry in Russian Federation: experience of Raisa Gorbacheva Memorial Research Institute of Children Oncology, Hematology and Transplantation. Rossiiskii zhurnal detskoi gematologii i onkologii. 2016;3(2):68–75. doi: 10.17650/2311-1267-2016-3-2-68-74. (In Russ)]
  7. Booth GS, Gehrie EA, Bolan CD, Savani BN. Clinical guide to AB0-incompatible allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(8):1152–8. doi: 10.1016/j.bbmt.2013.03.018.
  8. Ширяев С.Н. Эффективность аллогенной трансплантации костного мозга у детей с острыми лейкозами в зависимости от ЦМВ-статуса реципиента и донора: Автореф. дис. ¼ канд. мед. наук. СПб., 2014. 22 с.
    [Shiryaev SN. Effektivnost’ allogennoi transplantatsii kostnogo mozga u detei s ostrymi leikozami v zavisimosti ot TsMV-statusa retsipienta i donora. (Effectiveness of allogeneic bone marrow transplantation in children with acute leukemias depending on donor’s and recipient’s CMV statuses.) [dissertation] Saint-Petersburg; 2014. 22 p. (In Russ)]
  9. Gindina T, Mamaev N, Alyanskiy A, et al. Outcome of allogeneic hematopoietic stem cell transplantation in patients with KMT2A (MLL)-related leukemia, depending on number of transplanted CD34+ cells. Bone Marrow Transplant. 2015;50(Suppl 1):481.

 

Гиперэкспрессия гена WT1 при злокачественных опухолях системы крови: теоретические и клинические аспекты (обзор литературы)

Н.Н. Мамаев, Я.В. Гудожникова, А.В. Горбунова

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ГБОУ ВПО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Николай Николаевич Мамаев, д-р мед. наук, профессор, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +(7)911-760-50-86; e-mail: nikmamaev524@gmail.com

Для цитирования: Мамаев Н.Н., Гудожникова Я.В., Горбунова А.В. Гиперэкспрессия гена WT1 при злокачественных опухолях системы крови: теоретические и клинические аспекты (обзор литературы). Клиническая онкогематология. 2016;9(3):257-64.

DOI: 10.21320/2500-2139-2016-9-3-257-264


РЕФЕРАТ

В статье обсуждаются полученные в последние годы данные о феномене гиперэкспрессии гена WT1 у пациентов с острыми лейкозами, миелодиспластическими синдромами, хроническим миелолейкозом, неходжкинскими лимфомами и множественной миеломой. Показана большая перспективность мониторинга уровня экспрессии гена WT1 в посттрансплантационный период и после индукционной химиотерапии. Такой подход может использоваться в диагностике минимальной остаточной болезни и раннем выявлении рецидивов лейкозов, а также для их своевременного и контролируемого лечения. Из других исследовательских направлений представляется перспективным тестирование аутотрансплантата на наличие или отсутствие в нем опухолевых элементов, а также оценка эффективности индукционной терапии у больных из группы повышенного прогностического риска.


Ключевые слова: феномен гиперэкспрессии гена WT1, трансплантация гемопоэтических стволовых клеток, химиотерапия, молекулярный мониторинг лечения.

Получено: 8 февраля 2016 г.

Принято в печать: 30 марта 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Call KM, Glaser T, Ito CI, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor gene locus. Cell. 1990;60(3):509–20. doi: 10.1016/0092-8674(90)90601-a.
  2. Rose EA, Glaser T, Jones C, et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms’ tumor gene. Cell. 1990;60(3):495–508. doi: 10.1016/0092-8674(90)90600-j.
  3. Miwa H, Beran M, Saunders GF. Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia. 1992;6(5):405–9.
  4. Inoue K, Ogawa H, Sonoda Y, et al. Aberrant overexpression of the Wilms’ tumour gene (WT1) in human leukemia. Blood. 1997;88(4):1405–12.
  5. Абдулкадыров К.М., Грицаев С.В., Капустин С.И. и др. Экспрессия гена опухоли Вилмса (WT1) в клетках крови больных миелодиспластическим синдромом. Вопросы онкологии. 2004;50(6):668–71.
    [Abdulkadyrov KM, Gritsaev SV, Kapustin SI, et al. Wilms’ tumor gene (WT1) expression in blood cells of patients with myelodysplastic syndrome. Voprosy oncologii. 2004;50(6):668–71. (In Russ)]
  6. Yang L, Han Y, Suarez Saiz F, et al. A tumor suppressor and oncogene: The WT1 story. Leukemia. 2007;21(5):868–76. doi: 1038/sj.leu.2404624.
  7. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при миелодиспластических синдромах и клиническое значение гиперэкспрессии гена WT1. Клиническая онкогематология. 2014;7(4):551–63.
    [Mamayev NN, Gorbunova AV, Gindina TL, et al. Allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and clinical significance of WT1 gene overexpression. Klinicheskaya onkogematologiya. 2014;7(4):551–63. (In Russ)]
  8. Мамаев Н.Н., Горбунова А.В., Бархатов И.М. и др. Молекулярный мониторинг течения острых миелоидных лейкозов по уровню экспрессии гена WT1 после аллогенной трансплантации гемопоэтических столовых клеток. Клиническая онкогематология. 2015;8(3):309–20. doi: 10.21320/2500-2139-2015-8-3-309-320.
    [Mamaev NN, Gorbunova AV, Barkhatov IM, et al. Molecular monitoring of WT1 gene expression level in acute myeloid leukemias after allogeneic hematopoietic stem cell transplantation. Clinical oncohematology. 2015;8(3):309–20. doi: 10.21320/2500-2139-2015-8-3-309-320. (In Russ)]
  9. Israyelyan A, Goldstein L, Tsai W, et al. Real-time assessment of relapse risk based on the WT1 marker in acute leukemia and myelodysplastic syndrome patients after hematopoietic cell transplantation. Bone Marrow Transplant. 2015;50(1):26–33. doi: 10.1038/bmt.2014.209.
  10. Iwasaki T, Sugisaki Ch, Nagata K, et al. Wilms’ tumor 1 message and protein expression in bone marrow failure syndrome and acute leukemia. Pathol Int. 2007;57(10):645–51. doi: 10.1111/j.1440-2007.02153.x.
  11. Tatsumi N, Hojo N, Yamada O, et al. Deficiency in WT1-targeting microRNA-125a leads to myeloid malignancies and urogenital abnormalities. Oncogene. 2015;35(8):1003–14. doi: 10.1038/onc.2015.154.
  12. Inoue K, Sugiyama H, Ogawa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84(9):3071–9.
  13. Drakos E, Rassidakis GZ, Tsioli F, et al. Differential expression of WT1 gene product in non-Hodgkin lymphomas. Appl Immunohistochem. Mol Morphol. 2005;13(2):132–7. doi: 10.1097/01.pai.0000143786.62974.66.
  14. Hatta Y, Takeuchi J, Saitoh T, et al. WT1 expression level and clinical factors in multiple myeloma. J Exp Clin Cancer Res. 2005;24(4):595–9.
  15. Na I-K, Kreuzer K-A, Lupberger J, et al. Quantitative RT-PCR of Wilms tumor gene transcripts(WT1) for the molecular monitoring of patients with accelerated phase bcr/abl + CML. Leuk Res. 2005;29(3):343–5. doi: 10.1016/j.leukres.2004.08.003.
  16. Chiusa L, Francia di Celle P, Campisi P, et al. Prognostic value of quantitative analysis of WT1 gene transcripts in adult acute lymphoblastic leukemia. Haematologica. 2006;91(2):270–1. doi: 10.0000/www.haematologica.org/content/91/2/270.short.
  17. Radich JP, Dai H, Mao M, et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA. 2006;103(8):2794–7. doi: 10.1073/pnas.0510423103.
  18. Cao X, Gu WY, Chen ZX, et al. Bone marrow WT1 gene expression and clinical significance in chronic myelogenous leukemia. Zhonghua Nei Ke Za Zhi. 2007;46(4):277–9.
  19. Otahalova E, Ullmannova-Benson V, Klamova FI, et al. WT1 expression in peripheral leukocytes of patients with chronic myeloid leukemia serves for the prediction of imatinib resistance. Neoplasma. 2009;56(5):393–7. doi: 10.4149/neo_2009_05_393.
  20. Heesch S, Goekbuget N, Stroux A, et al. Prognostic implications and expression of the Wilms tumor 1 (WT1) gene in adult T-lymphoblastic leukemia. 2010;95(6):942–9. doi: 10.3324/haematol.2009.016386.
  21. Аксенова Е.В. Стандартизированное исследование экспрессии генов BCR-ABL, PRAME и WT1 у больных хроническим миелолейкозом: Диc. ¼ канд. мед. наук. М., 2011. 138 с.
    [Aksyenova EV. Standartizirovannoe issledovanie expressii genov BCR-ABL, PRAME I WT1 u bolnykh chronicheskim myeloleukosom. (Standardized evaluation of the BCR-ABL, PRAME and WT1 gene expression in patients with chronic myeloid leukemia.) [dissertation] Moscow; 2011. 138 p. (In Russ)]
  22. Гапонова Т.В. Экспрессия опухолеассоциированных генов PRAME, WT1 и XIAP у больных множественной миеломой в процессе интенсивной терапии и аутотрансплантации: Диc. ¼ канд. мед. наук. М., 2011. 141 с.
    [Gaponova TV. Expressia opucholeassocirovannykh genov PRAME, WT1 i XIAP u bolnykh mnozhestvennoi myelomoi v processe intensivnoi therapii I autotransplantacii. (Tumor-associated PRAME, WT1 and XIAP gene expression in patients with multiple myeloma during intensive therapy and autografting.) [dissertation] Moscow; 2011. 141 p. (In Russ)]
  23. Tyler EM, Jungbluth AA, O’Reilly RJ, Koehne G. WT1-specific responses in high-risk multiple myeloma patients undergoing allogeneic T-cell-depleted hematopoietic stem cell transplantation and donor lymphocyte infusions. 2012;121(2):308–17. doi: 10.1182/blood-2012-06-435040.
  24. Ujj Z, Buglyo G, Udvardy M, et al. WT1 overexpression affecting clinical outcome in non-Hodgkin lymphomas and adult acute lymphoblastic leukemia. Pathol Oncol Res. 2013;20(3):565–70. doi: 10.1007/s12253-013-9729-
  25. Inoue K, Ogawa H, Yamagami T, et al. Long–term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels. Blood. 1996;88(6):2267–78.
  26. Kletzel N, Olzewski M, Huang W, et al. Utility of WT1 as a reliable tool for the detection of minimal disease in children with leukemia. Pediatr Dev Pathol. 2002;5(3):269–75. doi: 10.1007/s10024-001-0208-x.
  27. Cilloni D, Gottardi E, De Micheli D, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring residual disease in acute leukemia patients. 2002;16(10):2115–21. doi: 10.1038/sj.leu.2402675.
  28. Cilloni D, Giuseppe S, Gottardi E, et al. WT1 as a universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Hematol. 2004;112(1–2):79–84. doi: 10.1159/000077562.
  29. Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: A European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–201. doi: 10.1200/jco.2009.22.4865.
  30. Weisser M, Kern W, Rauhut S, et al. Prognostic impact of RTPCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. 2005;19(8):1416–23. doi: 10.1038/sj.leu.2403809.
  31. Candoni A, Toffoletti E, Gallina R, et al. Monitoring of minimal residual disease by quantitative WT1 gene expression following reduced intensity conditioning allogeneic stem cell transplantation in acute myeloid leukemia. Clin Transplant. 2011;25(2):308–16. doi: 10.1111/j.1399-0012.2010.01251.x.
  32. Gray JX, McMillen L, Mollee P, et al. WT1 expression as a marker of minimal residual disease predicts outcome in acute myeloid leukemia when measured post-transplantation. Leuk Res. 2012;36(4):453–8. doi: 10.1016/j.leukres.2011.09.005.
  33. Kwon M, Martinez-Laperche C, Infante M, et al. Evaluation of minimal residual disease by real-time quantitative PCR of Wilms’ Tumor 1 expression in patients with acute myelogenous leukemia after allogeneic stem cell trans-plantation: Correlation with flow cytometry and chimerism. Biol Blood Marrow Transplant. 2012;18(8):1235–42. doi: 10.1016/j.bbmt.2012.01.012.
  34. Polak J, Hajkova H, Haskovec C, et al. Quantitative monitoring of WT1 expression in peripheral blood before and after allogeneic stem cell transplantation for acute myeloid leukemia – a useful tool for early detection of minimal residual disease. 2013;60(1):74–82. doi: 10.4149/neo_2013_011.
  35. Cilloni D, Messa F, Arruga F, et al. Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica. 2008;93(6):921–4. doi: 10.3324/haematol.12165.
  36. Andersson C, Li X, Lorenz F, et al. Reduction in WT1 gene expression during early treatment predicts the outcome in patients with acute myeloid leukemia. Diagn Mol Pathol. 2012;21(4):225–33. doi: 10.1097/pdm.0b013e318257ddb9.
  37. Mossallam GI, Hamid TM, Mahmoud HK, et al. Prognostic significance of WT1 expression at diagnosis and end of induction in Egyptian adult acute myeloid leukemia patients. Hematology. 2013;18(2):69–73. doi: 10.1179/1607845412Y.0000000048.
  38. Ujj Z, Buglyo G, Udvardy M, et al. WT1 expression in adult acute myeloid leukemia: Assessing its presence, magnitude and temporal changes as prognostic factors. Pathol Oncol Res. 2015;22(1):217–21. doi: 10.1007/s12253-015-0002-
  39. Rein LAM, Chao NJ. WT1 vaccination in acute myeloid leukemia: new methods of implementing adoptive immunotherapy. Expert Opin Invest Drugs. 2014;23(3):417–26. doi: 10.1517/13543784.2014.889114.
  40. Paschka P, Marcucci G, Ruppert A.S, et al. Wilms’ tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: A Cancer and Leukemia Group B Study. J Clin Oncol. 2008;26(28):4595–602. doi: 10.1200/jco.2007.15.2058.
  41. Sugiyama H. WT1 (Wilms’ tumor gene 1): biology and cancer immunotherapy. Jpn J Clin Oncol. 2010;40(5):377–87. doi: 10.1093/jjco/hyp194.
  42. Vidovic K, Svensson T, Nilsson B, et al. Wilms’ tumor gene 1 protein represses the expression of the tumor suppressor interferon regulatory factor 8 in human hematopoietic progenitors and in leukemic cells. Leukemia. 2010;24(5):9982–1000. doi: 10.1038/leu.2010.33.
  43. Essafi A, Webb A, Berry RL, et al. A WT1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev Cell. 2011;21(3):559–74. doi: 10.1016/j.devcel.2011.07.014.
  44. Huff V. Wilms’ tumours: about tumour suppressor genes, an oncogene and chameleon gene. Nat Rev Cancer. 2001;11(2):111–21. doi: 10.1038/nrc3002.
  45. Morrison AA, Viney RL, Landomery MR. The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim Biophys Acta. 2008;1785(1):55–62. doi: 10.1016/j.bbcan.2007.10.002.
  46. Owen C, Fitzgibbon J, Paschka P. The clinical relevance of Wilms Tumour 1 (WT1) gene mutations in acute leukemias. Hematol Onc 2010;28(1):13–9. doi: 10.1002/hon.931.
  47. Haber DA, Sohn RL, Buckler AJ, et al. Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci USA. 1991;88(21):9618–22. doi: 10.1073/pnas.88.21.9618.
  48. Keilholz U, Menssen HD, Gaiger A, et al. Wilms’ tumor gene 1(WT1) in human neoplasia. 2005;19(8):1318–23. doi: 10.1038/sj.leu.2403817.
  49. Hosen N, Shirakata T, Nishida S, et al. The Wilms’ tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia. 2007;21(8):1783–91. doi: 10.1038/sj.leu.2404752.
  50. Miller-Hodges E, Hohenstein P. WT1 in disease: shifting the epithelial-mesenchymal balance. J Pathol. 2012;226(2):229–40. doi: 10.1002/path.2977.
  51. Cunningham TJ, Palumbo I, Grosso M, et al. WT1 regulates murine hematopoiesis via maintenance of VEGF isoform ratio. Blood. 2013;122(2):188–92. doi: 10.1182/blood-2012-11-466086.
  52. Patmasirivat P, Fraizer G, Kantarjian H, Saunders GF. WT1 and GATA1 expression in myelodysplastic syndrome and acute leukemia. Leukemia. 1999;13(6):891–900. doi: 10.1038/sj.leu.2401414.
  53. Gaiger A, Linnerth B, Mann G, et al. Wilms’ tumour gene (wt1) expression at diagnosis has no prognostic relevance in childhood acute lymphoblastic leukemia treated by an intensive chemotherapy protocol. Eur J Haematol. 2009;63(2):86–93. doi: 10.1111/j.1600-0609.1999.tb01121.x.
  54. Arlyaratana S, Loeb DM. The role of the Wilms tumour gene (WT1) in normal and malignant hematopoiesis. Expert Rev Mol Med. 2007;9(14):1–17. doi: 10.1017/s1462399407000336.
  55. Ellisen LW, Carlesso N, Cheng T, et al. The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J. 2001;20(8):1897–909. doi: 10.1093/emboj/20.8.1897.
  56. Scharnhorst V, van den Eb AJ, Jochemsen AG. WT1 proteins: functions in growth and differentiation. Gene. 2001;273(2):141–61. doi: 10.1016/s0378-1119(01)00593-5.
  57. Baird PN, Simmons PJ. Expression of the Wllms’ tumor gene (WT1) in normal hematopoiesis. Eur Haematol. 1997;25(4):312–20.
  58. Lange T, Hubmann M, Burkhard R, et al. Monitoring of WT1 expression in PB and CD34+ donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning. 2011;25(3):498–505. doi: 10.1038/leu.2010.283.
  59. Schmid D, Heinze G, Linnert B, et al. Prognostic significance of WT1 gene expression at diagnosis in adult de novo acute myeloid leukemia. Leukemia. 1997;11(5):639–43. doi: 10.1038/sj.leu.2400620.
  60. Lyu X, Xin Y, Mi R, et al. Overexpression of Wilms’ Tumor 1 gene as a negative prognostic indicator in acute myeloid leukemia. PLoS One. 2014;9(3):e92470. doi: 10.1371/journal.pone.0092470.
  61. Wochlecke C, Wittig S, Arndt C, Gruhn B. Prognostic impact of WT1 expression prior to hematopoietic stem cell transplantation in children with malignant hematological diseases. J Cancer Res Clin. Oncol. 2014;141(3):523–9. doi: 10.1007/s00432-014-1832-y.
  62. Zhao X-S, Jin S, Zhu H-H, et al. Wilms’ tumor gene 1 expression: an independent acute leukemia prognostic indicator following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2011;47(4):499–507. doi: 10.1038/bmt.2011.121.
  63. Nomdedeu JF, Hoyos M, Carricondo M, et al. Bone marrow WT1 levels at diagnosis, post-induction and post-intensification in adult de novo AML. Leukemia. 2013;27(11):2157–64. doi: 10.1038/leu.2013.111.
  64. Alonso-Domingues JM, Tenorio M, Velasco D, et al. Correlation of WT1 expression with the burden of total and residual leukemic blasts in bone marrow samples of acute myeloid leukemia patients. Cancer Genet. 2012;205(4):190–1. doi: 10.1016/j.cancergen.2012.02.008.
  65. Tamaki H, Ogawa H, Inoue K, et al. Increased expression of the Wilms tumor gene (WT1) at relapse in acute leukemia. Blood. 1996;88(11):4396–8.
  66. Frairia C, Aydin S, Riera L, et al. WT1 expression in аcute myeloid leukaemia: a useful marker for improving therapy response evaluation. 2013;122(21):2588 (abstract).
  67. Willasch AM, Gruhn B, Coliva T, et al. Standartization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. 2009;23(8):1472–9. doi: 10.1038/leu.2009.51.
  68. Lapillonne H, Renneville A, Auvrignon A, et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol. 2006;24(10):1507–15. doi: 10.1200/jco.2005.03.5303.
  69. Liu J, Wang Yu, Xu L-P, et al. Monitoring mixed lineage leukemia expression may help identify patients with mixed lineage leukemia-rearranged acute leukemia who are at high risk of relapse after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(7):929–36. doi: 10.1016/j.bbmt.2014.03.008.
  70. Ogawa H, Tamaki H, Ikegame K, et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood. 2003;101(5):1698–704. doi: 10.1182/blood-2002-06-
  71. Yoon JH, Kim HJ, Shin SH, et al. BAALC and WT1 expression from diagnosis to hematopoietic stem cell transplantation: consecutive monitoring in adult patients with core-binding-factor-positive AML. Eur J Haematol. 2013;91(2):112–21. doi: 10.1111/ejh.12142.
  72. Yoon JH, Kim H-J, Kim J-W, et al. Identification of molecular and cytogenetic risk factors for unfavorable core-binding factor-positive adult AML with post-remission treatment outcome analysis including transplantation. Bone Marrow Transplant. 2014;49(12):1466–74. doi: 10.1038/bmt.2014.180.
  73. Miyagi T, Ahuja H, Kudota T, et al. Expression of the candidate Wilms’ tumor gene, WT1, in human leukemia cells. Leukemia. 1993;7(7):970–7.
  74. Miyawaki S, Hatsumi N, Tamaki T, et al. Prognostic potential of detection of WT1 mRNA level in peripheral blood in adult acute myeloid leukemia. Leuk Lymphoma. 2010;51(10):1855–61. doi: 10.3109/10428194.2010.507829.
  75. Little M, Wells C. A clinical overview of WT1 gene mutations. Hum Mutat. 1997;9(3):209–25. doi: 10.1002/(sici)1098-1004(1997)9:3<209::aid-humu2>3.0.co;2-2.
  76. Mori N, Okada M, Motoji T, et al. Mutation of the WT1 gene in myelodysplastic syndrome and acute myeloid leukemia post myelodysplastic syndrome. Br J Haematol. 1999;105(3):844–5. doi: 10.1046/j.1365-1999.01497.x.
  77. Damm F, Heuser M, Morgan M, et al. Single nucleotide polymorphism in the mutational hotspot of WT1 predicts a favorable outcome in patients with cytogenetically normal acute myeloid leukemia. J Clin Oncol. 2010;28(4):578–85. doi: 10.1200/jco.2009.23.0342.
  78. Hou HA, Huang TC, Lin LI, et al. WT1 mutation in 470 adult patients with acute myeloid leukemia: stability during disease evolution and implication of its incorporation into a survival scoring system. Blood. 2010;115(25):5222–31. doi: 10.1016/s1040-1741(10)79528-
  79. Shen Y, Zhu Y-M, Fan X, et al. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood. 2011;118(20):5593–603. doi: 10.1182/blood-2011-03-
  80. Luo S, Yu K, Yan QX, et al. Analysis of WT1 mutations, expression levels and single nucleotide polymorphism rs16754 in de novo non-M3 acute myeloid leukemia. Leuk Lymphoma. 2014;56(2):349–57. doi: 10.3109/10428194.2013.791985.
  81. Park SH, Lee HJ, Kim I-S, et al. Incidences and prognostic impact of c-KIT, WT1, CEBPA, and CBL mutations, and mutations associated with epigenetic modification in core binding factor acute myeloid leukemia: a multicenter study in Korean population. Ann Lab Med. 2015;35(3):288–97. doi: 10.3343/alm.2015.35.3.288.
  82. Rampal R, Alkalin A, Madzo J, et al. DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep. 2014;9(5):1841–55. doi: 10.1016/j.celrep.2014.11.004.
  83. Zhang Q, Zhang Q, Li Q. Monitoring of WT1 and its target gene IRF8 expression in acute myeloid leukemia and their significance. Int J Lab Hematol. 2015;37(4):e67–71. doi: 10.1111/ijlh.12309.
  84. Brieger J, Weidmann E, Fenchel K, et al. The expression of the Wilms’ tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells. Leukemia. 1994;8(12):2138.
  85. Brieger J, Weidmann E, Maurer U, et al. The Wilms’ tumor gene is frequently expressed in acute myeloblastic leukemia and may provide a marker for residual blast cells detectable by PCR. Ann Oncol. 1995;6(8):811–66.
  86. Bergmann L, Miething C, Maurer U, et al. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood. 1997;90(3):1217–25.
  87. Ogawa H, Ikegame K, Kawakami M, Tamaki H. WT1 gene transcript assay for relapse in acute leukemia after transplantation. Leuk Lymphoma. 2004;45(9):1747–53. doi: 10.1080/10428190410001687503.
  88. Rodrigues PC, Oliveira SN, Vaina MB, et al. Prognostic significance of WT1 gene expression in pediatric acute myeloid leukemia. Pediatr Blood Cancer. 2007;49(2):133–8. doi: 10.1002/pbc.20953.
  89. Miglino M, Colombo N, Pica C, et al. Wt1 overexpression at diagnosis may predict favorable outcome in patients with de novo non-M3 acute myeloid leukemia. Leuk Lymphoma. 2011;52(10):1961–9. doi: 10.3109/10428194.2011.585673.
  90. Zhao BR, Tang XW, Cen JN, et al. Correlation between clinical outcome and WT1 detection after hematopoietic stem cell transplantation in acute leukemia. Zhonghua Yi Xue Za Zhi. 2011;91(20):1375–8.
  91. Gaiger A, Schmid D, Heinze G, et al. Detection of the WT1 transcript by RT-PCR in complete remission has no prognostic relevance in de novo acute myeloid leukemia. Leukemia. 1998;12(12):1886–94. doi: 10.1038/sj.leu.2401213.
  92. Barragan E, Cervera J, Bolufer P, et al. Prognostic implications of Wilms’ tumor gene (WT1) expression in patients with de novo acute myeloid leukemia. Haematologica. 2004;89(8):926–33.
  93. Yi-ning Y, Xiao-rui W, Chu-xian Z, et al. Prognostic significance of diagnosed WT1 level in acute myeloid leukemia: a meta-analyse. Ann Hematol. 2015;94(6):929–38. doi: 10.1007/s00277-014-2295-
  94. Nowakowska-Kopera A, Sacha T, Florek I, et al. Wilms’ tumor gene 1 expression analysis by real-time quantitative polymerase chain reaction for monitoring of minimal residual disease in acute leukemia. Leuk Lymphoma. 2009;50(8):1326–32. doi: 10.1080/10428190903050021.
  95. Guillaumet-Adkins A, Richter J, Odera MD, et al. Hypermethylation of the alternative AWT1 promotor in hematological malignancies is a highly specific marker for acute myeloid leukemias despite high expression levels. J Hematol Oncol. 2014;7(1):4. doi: 10.1186/1756-8722-7-4.
  96. Capelli D, Attolico I, Saraceli F, et al Early cumulative incidence of relapse in 80 acute myeloid leukemia patients after chemotherapy and transplant post-consolidation treatment: prognostic role of post-induction WT1. 40th EBMT Meeting; 2014 30 March – 2 April; Milan, Italy; 2014: Abstract P287.
  97. Messina C, Candoni A, Carraba MG, et al. Wilms’ tumor gene 1 transcript levels in leukopheresis on peripheral blood hematopoietic cells predict relapse risk in patients autografted for acute myeloid leukemia. Biol Blood Marrow Transpl. 2014;20(10):1586–91. doi: 10.1016/j.bbmt.2014.06.017.
  98. Messina C, Sala E, Carrabba M, et al. Early post-allogeneic transplantation WT1 transcript positivity predicts AML relapse. 40th EBMT Meeting; 2014 30 March – 2 April; Milan, Italy; 2014: Abstract P239.
  99. Gianfaldoni G, Mannelli F, Ponziani V, et al. Early reduction of WT1 transcripts during induction chemotherapy predicts for longer disease free and overall survival in acute myeloid leukemia. Haematologica. 2010;95(5):833–6. doi: 10.3324/haematol.2009.011908.
  100. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Трансплантация гемопоэтических стволовых клеток при остром миелоидном лейкозе с транслокацией t(8;21)(q22;q22). Клиническая онкогематология. 2013;6(4):439–44.
    [Mamayev NN, Gorbunova AV, Gindina TL, et al. Hemopoietic stem cell transplantation in AML patients with t(8;21)(q22;q22) translocation. Klinicheskaya onkogematologiya. 2013;6(4):439–44. (In Russ)]
  101. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Стойкое восстановление донорского гемопоэза у больной с посттрансплантационным рецидивом острого миеломонобластного лейкоза с inv(3)(q21q26), моносомией 7 и экспрессией онкогена EVI1 после трансфузий донорских лимфоцитов и использования гипометилирующих агентов. Клиническая онкогематология. 2014;7(1):71–5.
    [Mamayev NN, Gorbunova AV, Gindina TL, et al. Stable donor hematopoiesis reconstitution after post-transplantation relapse of acute myeloid leukemia in patient with inv(3)(q21q26), –7 and EVI1 oncogene overexpression treated by donor lymphocyte infusions and hypomethylating agents. Klinicheskaya onkogematologiya. 2014;7(1):71–5. (In Russ)]
  102. Barragan E, Pajuelo JC, Ballester S, et al. Minimal residual disease detection in acute myeloid leukemia by mutant nucleophosmin (NPM1): comparison with WT1 gene expression. Clin Chim Acta. 2008;395(1–2):120–3. doi: 10.1016/j.cca.2008.05.021.
  103. Ostergaard M, Olesen LH, Hasle H, et al. WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukemia patients – results from a single-centre study. Br J Haematol. 2004;125(5):590–600. doi: 10.1111/j.1365-2004.04952.x.
  104. Zhao XS, Yan CH, Liu DH, et al. Combined use of WT1 and flow cytometry monitoring can promote sensitivity of predicting relapse after allogeneic HSCT without affecting specificity. Ann Hematol. 2013;92(8):1111–9. doi: 10.1007/s00277-013-1733-
  105. Candoni A, Tiribelli M, Toffoletti E, et al. Quantitative assessment of WT1 gene expression after allogeneic stem cell transplantation is a useful tool for monitoring minimal residual disease in acute myeloid leukemia. Eur J Haematol. 2009;82(1):61–8. doi: 10.1111/j.1600-2008.01158.x.
  106. Ommen HB, Nyvold CG, Braendstrup K, et al. Relapse prediction in acute myeloid leukemia patients in complete remission using WT1 as a molecular marker: development of a mathematical model to predict time from molecular to clinical relapse and define optimal sampling intervals. Br J Haematol. 2008;141(6):782–991. doi: 10.1111/j.1365-2008.07132.x.
  107. Yamauchi T, Negoro E, Lee S, et al. Detectable Wilms’ tumor-1 transcription at treatment completion is associated with poor prognosis of acute myeloid leukemia: a single institution’s experience. Anticancer Res. 2013;33(8):3335–40.
  108. Woehlecke C, Wittig S, Sanft J, et al. Detection of relapse after hematopoietic stem cell transplantation in childhood by monitoring of WT1 expression and chimerism. J Cancer Res Clin Oncol. 2015;141(7):1283–90. doi: 10.1007/s00432-015-1919-
  109. Jin S, Liu DH, Xu LP, et al. The significance of dynamic detection of WT1 expression on patients of hematologic malignancy following allogeneic hematopoietic stem cell transplantation. Zhonghua Nei Ke Za Zhi. 2008;47(7):578–81.
  110. Rossi G, Minervini MM, Carella AM, et al. Comparison between multiparameter flow cytometry and WT1-RNA quantification in monitoring minimal residual disease in acute myeloid leukemia without specific molecular targets. Leuk Res. 2012;36(4):401–6. doi: 10.1016/j.leukres.2011.11.020.
  111. Zhao Q, Zhao Q, Li Q, et al. Monitoring of WT1 and its target gene IRF8 expression in acute myeloid leukemia and their significance. Int J Lab Hematol. 2014;37(4):e67–71. doi: 10.1111/ijlh.12309.
  112. Mear J-B, Salaun V, Dina N, et al. WT1 and flow cytometry minimal residual disease follow-up after allogeneic transplantation in practice. 40th EBMT Meeting; 2014 30 March – 2 April; Milan, Italy; 2014: Abstract P655.
  113. Tamaki H, Ogawa H, Ohyashiki K, et al. The Wilms’ tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. 1999;13(3):393–9. doi: 10.1038/sj.leu.2401341.
  114. Cilloni D, Gottardi E, Messa F, et al. Significant correlation between the degree of WT1 expression and the International Scoring System score in patients with myelodysplastic syndromes. J Clin Oncol. 2003;21(10):1988–95. doi: 10.1200/jco.2003.10.503.
  115. Bader P, Niemeyer C, Weber G, et al. WT1 gene expression: useful marker for minimal residual disease in childhood myelodysplastic syndromes and juvenile myelomonocytic leukemia. Eur J Haematol. 2004;73(1):25–8. doi: 10.1111/j.1600-2004.00260.x.
  116. Tamura H, Dan K, Yokose N, et al. Prognostic significance of WT1 mRNA and antiWT1 antibody levels in peripheral blood in patients with myelodysplastic syndromes. Leuk Res. 2010;34(8):986–90. doi: 10.1016/j.leukres.2009.11.029.
  117. Yamauchi T, Matsuda Y, Takai M, et al. Wilms’ tumor-1 transcript in peripheral blood helps diagnose acute myeloid leukemia and myelodysplastic syndrome in patients with pancytopenia. Anticancer Res. 2012;32(10):4479–83.
  118. Qin Y-Z, Zhu H-H, Liu Y-R, et al. PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes. Leuk Lymphoma. 2013;54(7):1442–9. doi: 10.3109/10428194.2012.743656.
  119. Ueda Y, Mizutani C, Nannya Y, et al. Clinical evaluation of WT1 mRNA expression levels in peripheral blood and bone marrow in patients with myelodysplastic syndromes. Leuk Lymphoma. 2013;54(7):1450–18. doi: 10.3109/10428194.2012.745074.
  120. Minetto P, Guolo F, Clavio M, et al. Combined assessment of WT1 and BAALC gene expression at diagnosis may improve leukemia-free survival prediction in patients with myelodysplastic syndrome. Leuk Res. 2015;39(8):866–73. doi: 10.1016/j.leukres.2015.04.011.
  121. Santamaria C, Ramos F, Puig N, et al. Simultaneous analysis of the expression of 14 genes with individual prognostic value in myelodysplastic syndrome patients at diagnosis: WT1 detection in peripheral blood adversely affects survival. Ann Hematol. 2012;91(12):1887–95. doi: 10.1007/s00277-012-1538-
  122. Menssen HD, Renkl HJ, Rodeck U, et al. Presence of Wilms’ tumor gene wt1 transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia. 1995;9(6):1060–7.
  123. He YZ, Liang Z, Wu MR, et al. Overexpression of EPS8 is associated with poor prognosis in patients with acute lymphoblastic leukemia. Leuk Res. 2015;39(6):575–81. doi: 10.1016/j.leukres.2015.03.007.
  124. Xu B, Song S, Yip NC, et al. Simultaneous detection of MDR and WT1 gene expression to predict the prognosis of adult acute lymphoblastic leukemia. Hematology. 2010;15(2):74–80 doi: 10.1179/ 102453310X12583347009937.
  125. Azuma T, Otsuki T, Kuzushima K, et al. Myeloma cells are highly sensitive to the granule exocytosis pathway mediated by WT1-specific cytotoxic T lymphocytes. Clin Cancer Res. 2004;10(21):7402–12. doi: 10.1158/1078-ccr-04-0825.
  126. Hamalainen MM, Kairisto V, Junonen V, et al. Wilms tumour gene 1 overexpression in bone marrow as a marker for minimal residual disease in acute myeloid leukemia. Eur J Haematol. 2008;80(3):201–7. doi: 10.1111/j.1600-2007.01009.x.
  127. Wartheim GB, Bagg A. Minimal residual disease testing to predict relapse following transplant for AML and high-grade myelodysplastic syndromes. Expert Rev Mol Drug. 2011;11(4):361–6. doi: 10.1586/erm.11.19.
  128. Lambert J, Lambert J, Niboured O, et al. MRD assessed by WT1 and NPM1 transcript levels identifies distinct outcomes in AML patients and is influenced by gemtuzumab ozogamicin. Oncotarget. 2014;5(15):6280–8. doi: 10.18632/oncotarget.2196.
  129. Steinbach D, Bader P, Willasch A, et al. Prospective validation of a new method of monitoring minimal residual disease in childhood acute myeloid leukemia. Clin Cancer Res. 2014;21(6):1353–9. doi: 10.1158/1078-ccr-14-1999.
  130. Gray JX, McMillen L, Mollee P, et al. WT1 expression as a marker of minimal residual disease predicts outcome in acute myeloid leukemia when measured post-consolidation. Leuk Res. 2012;36(4):453–8. doi: 10.1016/j.leukres.2011.09.005.
  131. Noronha SA, Farrar JE, Alonzo TA, et al. WT1 expression at diagnosis does not predict survival in pediatric AML: a report from the children’s oncology group. Pediatr Blood Cancer. 2009;53(6):1136–9. doi: 10.1002/pbc.22142.
  132. Kim HJ, Choi EJ, Sohn HJ, et al. Combinatorial molecular marker assays of WT1, survivin, and TERT at initial diagnosis of adult acute myeloid leukemia. Eur J Haematol. 2013;91(5):411–22. doi: 10.1111/ejh.12167.
  133. Niavarani A, Currie E, Reyal Y, et al. APOBEC3A is implicated in a novel class of G-to-A mRNA editing in WT1 transcripts. PloS One. 2015;10(3):e0120089. doi: 10.1371/journal.pone.0120089.
  134. Taira C, Matsuda K, Kamijyo Y, et al. Quantitative monitoring of single nucleotide mutations by allele-specific quantitative PCR can be used for the assessment of minimal residual disease in patients with hematological malignancies throughout their clinical course. Clin Chim Acta. 2011;412(1–2):53–8. doi: 10.1016/j.cca.2010.09.011.
  135. Morita Y, Heike1 Y, Kawakami M, et al. Monitoring of WT1-specific cytotoxic T lymphocytes after allogeneic hematopoietic stem cell transplantation. Int J Cancer. 2006;119(6):1360–7. doi: 10.1002/ijc.21960.
  136. Tsuboi A, Oka Y, Nakajima H, et al. Wilms tumor gene WT1 peptide-based immunotherapy induced a minimal response in a patient with advanced therapy-resistant multiple myeloma. Int J Hematol. 2007;86(5):414–7. doi: 10.1007/bf02983998.
  137. Narita M, Masuko M, Kurasaki T, et al. WT1 peptide vaccination in combination with imatinib for a patient with CML in the chronic phase. Int J Med Sci. 2010;7(2):72–81. doi: 10.7150/ijms.7.72.

Трансплантация гемопоэтических стволовых клеток при остром миелоидном лейкозе с транслокацией t(8;21)(q22;q22)

Н.Н. Мамаев, А.В. Горбунова, Т.Л. Гиндина, И.М. Бархатов, С.Н. Бондаренко, М.Ю. Аверьянова, О.В. Пирогова, О.В. Голощапов, Е.В. Кондакова, Б.В. Афанасьев

Институт детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой СПбГМУ им. акад. И.П. Павлова, Санкт-Петербург, Российская Федерация


РЕФЕРАТ

Представлены результаты трансплантации гемопоэтических стволовых клеток (ТГСК) при рецидивах острого миелоидного лейкоза (ОМЛ) у 7 больных с прогностически благоприятной транслокацией t(8;21)(q22;q22). Трансплантация 2 больным выполнена в первой ремиссии, а 5 — в период резистентного течения ОМЛ. У 3 больных были проведены аллогенные неродственные ТГСК с использованием различных источников гемопоэтических стволовых клеток; у других 3 — аллогенная родственная, аутологичная и гаплоидентичная, по одной каждого вида ТГСК. У 7-го пациента последовательно выполнены ауто- и гаплоТГСК от родственного донора. Мониторинг течения заболевания осуществляли с помощью серийного определения уровня экспрессии генов AML/ETO и WT1. Высокий уровень экспрессии гена AML1-ETO, так же как и транслокация t(8;21), имел место у всех пациентов, в то время как мутации гена FLTне были зарегистрированы ни у одного пациента. В то же время у 1 больного была обнаружена типичная мутация гена JAK2 — V617F. По мере устранения рецидива заболевания у 2 больных уровень экспрессии генов AML1-ETO, так же как и WT1, снижался, а у других 3 — оставался повышенным, несмотря на нормализацию морфологической картины костного мозга, что у 2 из них совпало с развитием экстрамедуллярных рецидивов ОМЛ. Уровень экспрессии этих генов при рецидивах был высоким. Согласно данным наблюдения, при ОМЛ с транслокацией t(8;21) определенной части больных показана трансплантация костного мозга. Для оценки эффективности лечения могут быть использованы серийные определения в крови или костном мозге уровня экспрессии гена WT1.


Ключевые слова: острый миелоидный лейкоз с транслокацией t(8;21), трансплантация гемопоэтических стволовых клеток, мониторинг экспрессии генов AML1/ETO и WT1, молекулярный контроль лечения лейкозов.

Читать статью в PDF pdficon


Литература

  1. Zander A.R., Bacher U., Finke J. Allogeneic stem cell transplantation in acute myeloid leukemia establishment of indications on the basis of individual risk stratification. Arztebl. Int. 2008; 105(39): 663–9.
  2. Numata A., Fujimaki K., Aoshima T. et al. Retrospective analysis of treatment outcomes in 70 patients with t(8;21) acute myeloid leukemia. Rinsho Ketsueki 2012; 53(7): 698–704.
  3. Kawamura M., Kaku H., Ito T. et al. FLT3-internal tandem duplication in a pediatric patient with t(8;21) acute myeloid leukemia. Cancer Genet. Cytogenet. 2010; 203(2): 292–6.
  4. Chen Y.M., Liu T.F., Ruan M. et al. Prognosis and chromosomal abnormalities in 79 children with t(8;21) acute myeloid leukemia. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2009; 31(5): 542–6.
  5. Mamaev N., Mamaeva S. Two cases of acute myeloblastic leukemia (M2 type) with karyotypes 45X,-X,t(6;8)(q27;q22),inv(9) and 46,XY,t(8;21) (q22;q22),del(9)(q22). Cancer Genet. Cytogenet. 1985; 18(2): 105–11.
  6. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Лейкозы и миело- диспластические синдромы с высокой экспрессией гена EVI1: теоретиче- ские и клинические аспекты. Клин. онкогематол. 2012; 5(4): 361–4. [Mamayev N.N., Gorbunova A.V., Gindina T.L. i dr. Leykozy i miyelodisplasticheskiye sindromy s vysokoy ekspressiyey gena EVI1: teoreticheskiye i klinicheskiye aspekty (Leukemias and myelodisplastic syndromes with high EVI1 gene expression: theoretical and clinical aspects. In: Clin. oncohematol.). Klin. onkogematol. 2012; 5(4): 361–4.]
  7. Forman S.J., Rowe J.M. The myth of the second remission of acute leukemia in the adult. Blood 2013; 121(7): 1077–82.
  8. Kuwatsuka Y., Miyamura K., Suzuki R. et al. Hematopoietic stem cell transplantation for core binding factor acute myeloid leukemia: t(8;21) and inv(16) represent different clinical outcomes. Blood 2009; 113: 2096–103.
  9. Zhao X.S., Jin S., Zhu H.H. et al. Wilms’ tumor gene 1 expression: an independent acute leukemia prognostic indicator following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2012; 47(4): 499–507.
  10. Candoni A., Toffoletti E., Gallina R. et al. Monitoring of minimal residual disease by quantitative WT1 gene expression following reduced intensity conditioning allogeneic stem cell transplantation in acute myeloid leukemia. Clin. Transplant. 2011; 25: 308–16.
  11. Lange T., Hubmann M., Burkhardt R. et al. Monitoring of WT1 expression in PB and CD34+ donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning. Leukemia 2011; 25: 498–505.
  12. Kwon M., Martinez-Laperche C., Infante M. et al. Evaluation of minimal residual disease by real-time quantitative PCR of Wilms’ Tumor 1 expression in patients with acute myelogenous leukemia after allogeneic stem cell transplantation: Correlation with flow cytometry and chimerism. Biol. Blood Marrow Transplant. 2012; 18: 1235–42.

 

Современные методы лечения AL амилоидоза: обзор литературы и собственные данные

А.Г. Смирнова1, С.Н. Бондаренко1, А.А. Кисина2, А.В. Смирнов2, А. Цандер3, Б.В. Афанасьев1

1 Институт детской гематологии, онкологии и трансплантологии им. Р.М. Горбачевой СПбГМУ им. акад. И.П. Павлова, Санкт-Петербург, Российская Федерация

2 Научно-исследовательский институт нефрологии СПбГМУ им. акад. И.П. Павлова, Санкт-Петербург, Российская Федерация

3 Центр трансплантации костного мозга Медицинского университета Гамбург-Эппендорф, Гамбург, Германия


РЕФЕРАТ

AL амилоидоз — достаточно редкое заболевание из группы плазмоклеточных дискразий, имеющее крайне неоднородную клиническую картину и плохой прогноз. В статье представлено краткое описание данной патологии, проведен обзор современных методов лечения, представлены собственные результаты терапии. В исследование включено 46 больных с диагнозом AL амилоидоза, которые получали лечение как с использованием аутологичной трансплантации гемопоэтических стволовых клеток, так и стандартной химиотерапии, включающей комбинацию мелфалана с дексаметазоном и бортезомиба с дексаметазоном.


Ключевые слова: AL амилоидоз, лечение, трансплантация гемопоэтических стволовых клеток, мелфалан, бортезомиб.

Читать статью в PDF pdficon


ЛИТЕРАТУРА 

  1. Falk R.H., Comenzo R.L., Skinner M. The systemic amyloidoses. N. Engl. J. Med. 1997; 337: 898–909.
  2. Kyle R.A., Gertz M.A. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin. Hematol. 1995; 32: 45–59.
  3. Dispenzieri A., Gertz M.A., Kyle R.A. et al. Prognostication of survival using cardiac troponins and N-terminal pro-brain natriuretic peptide in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood 2004; 104: 1881–7.
  4. Dispenzieri A., Gertz M.A., Kyle R.A. et al. Serum cardiac troponins and N-terminal pro-brain natriureticpeptide: a staging system for primary systemic amyloidosis. J. Clin. Oncol. 2004; 22: 3751–7.
  5. Palladini G., Merlini G. Transplantation vs. conventional-dose therapy for amyloidosis. Curr. Opt. Oncol. 2011; 23: 214–20.
  6. Palladini G., Lavatelli F., Russo P. et al. Circulating amyloidogenic free light chains and serum N-terminal natriuretic peptide type B decrease simultaneously in association with improvement of survival in AL. Blood 2006; 107: 3854–8.
  7. Bochtler T., Hegenbart U., Heiss C. et al. Evaluation of the serum-free light chain test in untreated patients with AL amyloidosis. Haematologica 2008; 93: 459–62.
  8. Dispenzieri A., Lacy M.Q., Katzmann J.A. et al. Absolute values of immunoglobulin free light chains are prognostic in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood 2006; 107: 3378–83.
  9. Kumar S., Dispenzieri A., Katzmann J.A. et al. Serum immunoglobulin free light-chain measurement in primary amyloidosis: prognostic value and correlations with clinical features. Blood 2010; 116(24): 5126–9.
  10. Lachmann H.J., Gallimore R., Gillmore J.D. et al. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Br. J. Haematol. 2003; 122: 78–84.
  11. Gertz M.A. Definition of organ involvement and response to treatment in AL amyloidosis: An updated consensus opinion. Amyloid 2010; 17(Suppl. 1): 48–49, abstr. CP-B.
  12. Leung N., Dispenzieri A., Lacy M.Q. et al. Severity of Baseline Proteinuria Predicts Renal Response in Immunoglobulin Light Chain–Associated Amyloidosis after Autologous Stem Cell Transplantation. Clin. J. Am. Soc. Nephrol. 2007; 2: 440–4.
  13. Kyle R.A., Gertz M.A., Greipp Ph.R. et al. Long-term survival (10 years or more) in 30 patients with AL amyloidosis. Blood 1999; 93: 1062–6.
  14. Kyle R.A., Greipp, P.R. Primary systemic amyloidosis: comparison of melphalan and prednisone versus placebo. Blood 1978; 52: 818–27.
  15. Kyle R.A., Greipp, P.R., O’Fallon M. Primary systemic amyloidosis: multivariate analysis for prognostic factors in 168 cases. Blood 1986; 68: 220–4.
  16. Kyle R.A., Gertz M.A., Greipp P.R. et al. A trial of three regimen for primary amyloidosis: colchicine alone, melphalan and prednisolone, and melphalan, prednisolone, and colchicine. N. Engl. J. Med. 1997; 336: 1202–7.
  17. Skinner M., Anderson J., Simms R. et al. Treatment of 100 patients with primary amyloidosis: a randomized trial of melphalan, prednisone, and colchicine versus colchicine only. Am. J. Med. 1996; 100: 290–8.
  18. Dhodapkar M.V., Hussein M.A., Rasmussen E. et al. Clinical efficacy of high-dose dexamethasone with maintenance dexamethasone/alpha interferon in patients with primary systemic amyloidosis: results of United States Intergroup Trial Southwest Oncology Group (SWOG) S9628. Blood 2004; 104: 3520–6.
  19. Palladini G., Perfetti V., Obici L. et al. Association of melphalan and highdose dexamethasone is effective and well tolerated in patients with AL (primary) amyloidosis who are ineligible for stem cell transplantation. Blood 2004; 103: 2936–8.
  20. Dispenzieri A., Lacy M.Q., Rajkumar S.V. et al. Poor tolerance of thalidomide in patients with primary systemic amyloidosis. Amyloid 2003; 10: 257–61.
  21. Palladini G., Perfetti V., Perlini S. et al. The combination of thalidomide and intermediate-dose dexamethasone is an effective but toxic treatment for patients with primary amyloidosis (AL). Blood 2005; 105: 2949–51.
  22. Wechalekar А., Goodman H.J.B., Lachmann H.J. et al. Safety and efficacy of risk-adapted cyclophosphamide, thalidomide, and dexamethasone in systemic AL amyloidosis. Blood 2007; 109: 457–64.
  23. Dispenzieri A., Lacy M.Q., Zeldenrust S.R. et al. The activity of lenalidomide with or without dexamethasone in patients with primary systemic amyloidosis. Blood 2007; 109: 465–70.
  24. Sanchorawala V., Wright D.G., Rosenzweig M. et al. Lenalidomide and dexamethasone in the treatment of AL amyloidosis: results of a phase 2 trial. Blood 2007; 109: 492–6.
  25. Dispenzieri A., Gertz M.A., Hayman S.R. et al. Pomalidomide and dexamethasone for previously treated AL: a phase 2 study. Amyloid J. Protein Folding Dis. 2010; 17: 87.
  26. Dispenzieri A., Buadi F., Laumann K. et al. The activity of pomalidomide in patients with immunoglobulin light chain amyloidosis. Blood 2012; 119: 5397–404.
  27. Wechalekar A., Lachmann H.J., Offer M. et al. Efficacy of bortezomib in systemic AL amyloidosis with relapsed/refractory clonal disease. Haematologica 2008; 93(2): 295–8.
  28. Kastritis E., Anagnostopoulos A., Roussou M. et al. Treatment of light chain (AL) amyloidosis with the combination of bortezomib and dexamethasone. Haematologica 2007; 92: 1351–8.
  29. Zonder J.A., Sanchorawala V., Snyder R.M. et al. Melphalan and Dexamethasone Plus Bortezomib Induces Hematologic and Organ Responses in AL-Amyloidosis with Tolerable Neurotoxicity. Blood 2009; 114: 310–1.
  30. Zonder J., Sanchorawala V., Snyder R. et al. Rapid haematologic and organ responses in patients with AL amyloid treated with bortezomib plus melphalan and dexamethasone. Amyloid J. Protein Folding Dis. 2010; 17: 86–7.
  31. Mikhael J.R., Schuster S.R., Jimenez-Zepeda V.H. et al. The Combination of Cyclophosphamide-Bortezomib-Dexamethasone (CYBOR-D) Is a Highly Effective and Well Tolerated Regimen that Produces Rapid and Complete Hematological Response In Patients with AL Amyloidosis. ASH Annual Meeting Abstracts 2010; 116: 3063.
  32. Comenzo R.L., Vosburgh E., Simms R.W. et al. Dose-intensive melphalan with blood stem cell support for the treatment of AL amyloidosis: One-year follow-up in five patients. Blood 1996; 88: 2801–6.
  33. Comenzo R.L., Vosburgh E., Falk R.H. et al. Dose intensive melphalan with blood stem-cell support for the treatment of AL (amyloid light-chain) amyloidosis: survival and responses in 25 patients. Blood 1998; 91: 3662–70.
  34. Moreau P., Leblond V., Bourquelot P. et al. Prognostic factors for survival and response after high-dose therapy and autologous stem cell transplantation in systemic AL amyloidosis: a report on 21 patients. Br. J. Haematol. 1998; 101: 766–9.
  35. Gillmore J.D. High-dose melphalan and stem cell rescue for AL amyloidosis. In: Amyloid and Amyloidosis. Ed. by R.A. Kyle, M.A. Gertz). Pearl River: Parthenon Publishing, 1999: 102–4.
  36. Gertz M.A., Lacy M.Q., Gastineau D.A. et al. Blood stem cell transplantation as therapy for primary systemic amyloidosis (AL). Bone Marrow Transplant. 2000; 26: 963–9.
  37. Sanchorawala V. An overview of the use of high dose melphalan with autologous stem cell transplantation for the treatment of AL amyloidosis. Bone Marrow Transplant. 2001; 28: 637–42.
  38. Skinner M., Sanchorawala V., Seldin D.C. et al. High-dose melphalan and autologous stem-cell transplantation in patients with AL amyloidosis: an 8-year study. Ann. Intern. Med. 2004; 140: 85–93.
  39. Dispenzieri A., Kyle R.A., Lacy M.Q. et al. Superior survival in primary systemic amyloidosis patients undergoing peripheral blood stem cell transplantation: a case-control study. Blood 2004; 103: 3960–3.
  40. Schonland S.O. Current status of hematopoietic cell transplantation in the treatment of systemic amyloid light-chain amyloidosis. Bone Marrow Transplant. 2011 Jul 25: 1–11.
  41. Gertz M.A., Lacy M.Q., Dispenzieri A. et al. Stem cell transplantation for the management of primary systemic amyloidosis. Am. J. Med. 2002; 113: 549–55.
  42. Comenzo R.L., Gertz M.A. Autologous stem cell transplantation for primary systemic amyloidosis. Blood 2002; 99: 4276–82.
  43. Cibeira M.T., Sanchorawala V., Seldin D.C. et al. Outcome of AL amyloidosis after high-dose melphalan and autologous stem cell transplantation: long-term results in a series of 421 patients. Blood 2011; 118(16): 4346–52.
  44. Sanchorawala V., Wright D.G., Quillen K. et al. Tandem cycles of high-dose melphalan and autologous stem cell transplantation increases the response rate in AL amyloidosis. Bone Marrow Transplant. 2007; 40: 557–62.
  45. Quillen K., Seldin D.C., Finn K.T., Sanchorawala V. A second course of high-dose melphalan and auto-SCT for the treatment of relapsed AL amyloidosis. Bone Marrow Transplant. 2011; 46: 976–80.
  46. Cohen A.D., Zhou P., Reich L. et al. Adjuvant dexamethasone (D) ± thalidomide (T) improves hematologic and organ responses after risk-adapted high-dose melphalan with autologous stem cell transplant (SCT) for patients with systemic AL amyloidosis (AL) [abstract]. Blood 2005; 106: 340a, abstr. 1163.
  47. Landau H., Hassoun H., Rosenzweig M.A. et al. Maintained Hematologic and Organ Responses at Two Years Following Stem Cell Transplant In Systemic Light-Chain Amyloidosis (AL) Using Short-Course Bortezomib and Dexamethasone Consolidation Therapy. ASH Annual Meeting Abstracts 2010; 116: 2391.
  48. Sanchorawala V., Wright D.G., Seldin D.C. et al. High-dose intravenous melphalan and autologous stem cell transplantation as initial therapy or following two cycles of oral chemotherapy for the treatment of AL amyloidosis: results of a prospective randomized trial. Bone Marrow Transplant. 2004; 33: 381–8.
  49. Perz J.B., Schonland S.O., Hundemer M. et al. High-dose melphalan with autologous stem cell transplantation after VAD induction chemotherapy for treatment of amyloid light chain amyloidosis: a single centre prospective phase II study. Br. J. Haematol. 2004; 127: 543–51.
  50. Schonland S.O., Lokhorst H., Buzyn A. et al. Allogeneic and syngeneic hematopoietic cell transplantation in patients with amyloid light-chain amyloidosis: a report from the European Group for Blood and Marrow Transplantation. Blood 2006; 107: 2578–84.
  51. Lewis W.D., Skinner M., Simms R.W. et al. Orthotopic liver transplantation for familial amyloidotic polyneuropathy. Clin. Transplant. 1994; 8: 107–10.
  52. Holmgren G., Ericzon B.G., Groth C.G. et al. Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet 1993; 341: 1113–6.
  53. Gillmore J.D., Goodman H.J., Lachmann H.J. et al. Sequential heart and autologous stem cell transplantation for systemic AL amyloidosis. Blood 2006; 107: 1227–9.
  54. Isoniemi H., Kyllonen L., Ahonen J. et al. Improved outcome of renal transplantation in amyloidosis. Transpl. Int. 1994; 7(Suppl. 1): S298–300.
  55. Hrncic R., Wall J., Wolfenbarger D.A. et al. Antibody-mediated resolution of light chain-associated amyloid deposits. Am. J. Pathol. 2000; 157: 1239–46.
  56. Zhou P., Comenzo R.L. CD32B is highly expressed on clonal plasma cells from patients with systemic light-chain amyloidosis and provides a target for monoclonal antibody-based therapy. Blood 2008; 111: 3403–6.
  57. Palladini G. Dispenzieri A., Gertz M.A. et al. Validation of the criteria of response to treatment in AL amyloidosis. Blood 2010; 116: 1364a.

Некоторые аспекты трансплантации костного мозга у пациентов с крайне неблагоприятным прогнозом острого лимфобластного лейкоза: обзор литературы и собственное наблюдение

Субботина Н.Н., Попа А.В., Долгополов И.С., Бояршинов В.К., Пименов Р.И., Дайлидите В.В., Менткевич Г.Л.

ФГБНУ «Российский онкологический научный центр им. Н.Н. Блохина», Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Наталья Николаевна Субботина, канд. мед. наук, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(499)324-45-08; e-mail: natik-23@yandex.ru

Для цитирования: Субботина Н.Н., Попа А.В., Долгополов И.С. и др. Некоторые аспекты трансплантации костного мозга у пациентов с крайне неблагоприятным прогнозом острого лимфобластного лейкоза: обзор литературы и собственное наблюдение. Клиническая онкогематология. 2015;8(3):331–6.


РЕФЕРАТ

Известно, что с увеличением количества факторов риска рецидивов острых лимфобластных лейкозов (ОЛЛ) более выраженными становятся различия в выживаемости пациентов, получавших только химиотерапию либо химиотерапию с трансплантацией гемопоэтических стволовых клеток (ТГСК). Для детей и молодых взрослых с ОЛЛ стандартом остаются миелоаблативные режимы кондиционирования перед выполнением ТГСК. Наиболее высокие показатели выживаемости демонстрирует исторический «режим ТОТ-ЦФ» с последующей ТГСК от совместимого родственного донора. Выживаемость пациентов с рецидивами ОЛЛ после аллогенной ТГСК остается низкой. Повторная ТГСК остается единственным возможным лечебным подходом для достижения длительной выживаемости не более чем у 10–15 % больных. Поздние рецидивы после первой ТГСК и возраст пациентов менее 10 лет являются статистически значимыми факторами более благоприятного прогноза. В статье приводится собственное клиническое наблюдение больной ОЛЛ из группы очень высокого риска, которой проводились химиотерапия, 3 аллогенных родственных ТГСК с привлечением разных доноров, а также дополнительная трансфузия периферических стволовых клеток крови от второго HLA-совместимого донора. Ко времени подготовки публикации (23 мес. после гаплоидентичной ТГСК) пациентка остается под наблюдением в ФГБНУ «РОНЦ им. Н.Н. Блохина».


Ключевые слова: острый лимфобластный лейкоз, крайне неблагоприятный прогноз, трансплантация гемопоэтических стволовых клеток, режим кондиционирования.

Получено: 3 марта 2015 г.

Принято в печать: 3 июня 2015 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Favre C, Foa R, Locatelli F, et al. Hematopoietic stem cell transplantation for children with high-risk acute lymphoblastic leukemia in first complete remission: a report from the AIEOP registry. Haematologica. 2013;98(8):1273–81. doi: 10.3324/haematol.2012.079707.
  2. Silverman LB, Gelber RD, Clavell LA, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood. 2001;97(5):1211–8. doi: 10.1182/blood.v97.5.1211.
  3. Arico M, Valsecchi MG, Messina C, et al. Improved outcome in high-risk childhood acute lymphoblastic leukemia defined by prednisone poor response treated with double Berlin-Frankfurt-Muenster protocol II. Blood. 2002;100(2):420–6. doi: 10.1182/blood.v100.2.420.
  4. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. The Lancet. 2008;371(9617):1030–43. doi: 10.1016/s0140-6736(08)60457-2.
  5. Pulte D, Gondos A, Brenner H. Trends in 5-and 10-year survival after diagnosis with childhood hematologic malignancies in the United States 1990–2004. J Natl Cancer Inst. 2008;100(18):1271–3. doi: 10.1093/jnci/djn276.
  6. Burke PW, Douer D. Acute lymphoblastic leukemia in adolescents and young adults. Acta Haematol. 2014;132(3–4):264–73. doi: 10.1159/000360204.
  7. Barry EV, Silverman LB. Acute lymphoblastic leukemia in adolescents and young adults. Curr Hematol Malig Rep. 2008;3(3):161–6. doi: 10.1007/s11899-008-0023-9.
  8. Balduzzi A, Klingebiel T, Peters C, et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomization in an international prospective study. The Lancet. 2005;366(9486):635–42. doi: 10.1016/s0140-6736(05)66998-x.
  9. Kato M, Horikoshi Y, Okamoto Y, et al. Second allogeneic hematopoietic SCT for relapsed ALL in children. Bone Marrow Transplant. 2012;47(10):1307–11. doi: 10.1038/bmt.2012.29.
  10. Poon LM, Bassett R. Jr, Kebriaei P, et al. Outcomes of second allogeneic hematopoietic stem cell transplantation for patients with acute lymphoblastic leukemia. Bone Marrow Transplant. 2013;48(5):666–70. doi: 10.1038/bmt.2012.195.
  11. Spyridonidis A, Labopin M, Rocha V, et al. Immunotherapy Subcommittee of Acute Leukemia Working Party. Outcomes and prognostic factors of adults with acute lymphoblastic leukemia who relapse after allogeneic hematopoietic cell transplantation. An analysis on behalf of the Acute Leukemia Working Party of EBMT. Leukemia. 2012;26(6):1211–7. doi: 10.1038/leu.2011.351.
  12. Mohty M, Nagler A, Rocha V, et al. Acute Leukemia Working Party of EBMT. Reduced-intensity versus conventional myeloablative conditioning allogeneic stem cell transplantation for patients with acute lymphoblastic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation. Blood. 2010;116(22):4439–43. doi: 10.1182/blood-2010-02-266551.
  13. Eom KS, Shin SH, Lee S, et al. Comparable long-term outcomes after reduced-intensity conditioning versus myeloablative conditioning allogeneic stem cell transplantation for adult high-risk acute lymphoblastic leukemia in complete remission. Am J Hematol. 2013;88(8):634–41. doi: 10.1002/ajh.23465.
  14. Verneris MR, Eapen M, Davies SM, et al. Reduced-Intensity Conditioning Regimens for Allogeneic Transplantation in Children with Acute Lymphoblastic Leukemia. Biol Blood Marrow Transplant. 2010;16(9):1237–44. doi: 10.1016/j.bbmt.2010.03.009.
  15. Bunin N, Cnaan A, Simms S, et al. Randomized trial of busulfan vs total body irradiation containing conditioning regimens for children with acute lymphoblastic leukemia: a Pediatric Blood and Marrow Transplant Consortium study. Bone Marrow Transplant. 2003;32(6):543–8. doi: 10.1038/sj.bmt.1704198.
  16. Davies SM, Ramsay NK, Horowitz MM, et al. Comparison of preparative regimens in transplants for children with acute lymphoblastic leukemia. J Clin Oncol. 2000;18(2):340–7.
  17. Blaise D, Maraninchi D, Archimbaud E, et al. Allogeneic bone marrow transplantation for acute myeloid leukemia in first remission: A randomized trial of a busulfan-cytoxan versus cytoxan-total body irradiation as preparative regimen. A report from the Groupe d’Etudes de la Greffe de Moelle Osseuse. Blood. 1992;79:2578–82.
  18. Dusenbery KE, Daniels KA, McClure JS, et al. Randomized comparison of cyclophosphamide-total body irradiation versus busulfan-cyclophosphamide conditioning in autologous bone marrow transplantation for acute myeloid leukemia. Int J Radiat Oncol Biol Phys. 1995;31(1):119–28. doi: 10.1016/0360-3016(94)00335-i.
  19. Ringden O, Ruutu T, Remberger M, et al. A randomized trial comparing busulfan with total body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia: A report from the Nordic Bone Marrow Transplantation Group. Blood. 1994;83(9):2723–30.
  20. Ringden O, Labopin M, Tura S, et al. A comparison of busulfan versus total body irradiation combined with cyclophosphamide as conditioning for autograft or allograft bone marrow transplantation in patients with acute leukemia. Br J Haematol. 1996;93(3):637–45. doi: 10.1046/j.1365-2141.1996.d01-1681.x.
  21. Rozman C, Carreras E, Qian C, et al. Risk factors for hepatic veno-occlusive disease following HLA-identical sibling bone marrow transplantation for leukemia. Bone Marrow Transplant. 1996;17(1):75–80.
  22. Bhatia S, Ramsay NK, Neglia JP, et al. Malignant neoplasms following bone marrow transplantation. Blood. 1996;87(9):3633–9.
  23. Deeg HJ, Gluckman E, Storb R, et al. Malignancies after marrow transplantation for aplastic anemia and Fanconi anemia: a joint Seattle and Paris analysis of results in 700 patients. Blood. 1996;87(1):386–92.
  24. Chou RH, Wong GB, Wara WM, et al. Toxicities of total-body irradiation for pediatric bone marrow transplantation. Int J Radiat Oncol Biol Phys. 1996;34(4):843–51.

Молекулярный мониторинг течения острых миелоидных лейкозов по уровню экспрессии гена WT1 после аллогенной трансплантации гемопоэтических стволовых клеток

Мамаев Н.Н., Горбунова А.В., Бархатов И.М., Гудожникова Я.В., Гиндина Т.Л., Катерина В.А., Волчков Е.В., Алянский А.Л., Бабенко Е.В., Слесарчук О.А., Станчева Н.В., Бондаренко С.Н., Афанасьев Б.В.

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Николай Николаевич Мамаев, д-р мед. наук, профессор, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)233-12-43; e-mail: nikmamaev524@gmail.com

Для цитирования: Мамаев Н.Н., Горбунова А.В., Бархатов И.М. и др. Молекулярный мониторинг течения острых миелоидных лейкозов по уровню экспрессии гена WT1 после аллогенной трансплантации гемопоэтических стволовых клеток. Клиническая онкогематология. 2015;8(3):309–20.


РЕФЕРАТ

Цель. Оценить возможности серийного определения уровня экспрессии гена WTдля предсказания и диагностики посттрансплантационных рецидивов острых миелоидных лейкозов (ОМЛ).

Методы. С помощью количественной полимеразной цепной реакции в реальном времени проведено серийное измерение уровня экспрессии гена WT1 в посттрансплантационный период у 34 больных ОМЛ. Всем 34 пациентам выполнена аллогенная трансплантация гемопоэтических стволовых клеток: неродственная (n = 22), родственная (n = 12), в т. ч. гаплоидентичная (n = 4). У 5 из 34 больных имел место ОМЛ как результат трансформации миелодиспластических синдромов. Параллельно оценивали уровень донорского химеризма и количество бластных клеток в костном мозге и крови. У 8 больных определяли уровень экспрессии генов AML1/ETO (n = 4) и EVI1 (n = 4), результаты были сопоставлены с таковыми гена WT1.

Результаты. На основании изучения данных по экспрессии гена WT1 выделены две равных группы больных. Группу 1 составили пациенты со стойкой нормальной экспрессией изученного молекулярного показателя в посттрансплантационный период, а 2-ю — с его нарушенной экспрессией. Исходный уровень экспрессии гена WTпрактически не зависел от морфоцитохимического и цитогенетического вариантов ОМЛ. В посттрансплантационный период уровень экспрессии коррелировал с таковым генов AML1/ETO и EVI1. Повышение экспрессии гена WTчасто значительно опережало характерное для посттрансплантационных рецидивов ОМЛ снижение уровня донорского химеризма и нарастание содержания бластных клеток в костном мозге и крови.

Заключение. Повышенный уровень экспрессии гена WTможет служить не только маркером своевременной диагностики посттрансплантационных рецидивов у больных ОМЛ, но и мониторинговым тестом качества их лечения.


Ключевые слова: острые миелоидные лейкозы, трансплантация гемопоэтических стволовых клеток, мониторинг экспрессии генов WT1, AML1/ETO и EVI1, диагностика посттрансплантационных рецидивов, молекулярный контроль лечения.

Получено: 19 марта 2015 г.

Принято в печать: 1 июня 2015 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Wertheim GB, Bagg A. Minimal residual disease testing to predict relapse following transplant for AML and high-grade myelodysplastic syndromes. Exp Rev Mol Diagn. 2011;11(4):361–6. doi: 10.1586/erm.11.19.
  2. Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–66. doi: 10.1056/nejmoa0903840.
  3. Rocquain J, Carbuccia N, Trouplin V, et al. Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer. 2010;10(1):401. doi: 10.1186/1471-2407-10-401.
  4. Cilloni D, Gottardi E, De Micheli D, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring residual disease in acute leukemia patients. Leukemia. 2002;16(10):2115–21. doi: 10.1038/sj.leu.2402675.
  5. Cilloni D, Gottardi E, Messa F, et al. WT1 as a universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Hematol. 2004;112(1−2):79–84. doi: 10.1159/000077562.
  6. Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative PCR (RQ-PCR) detection of minimal residual disease (MRD) by optimized WT1 assay to enhance risk stratification in acute myeloid leukemia (AML): A European LeukemiaNet Study. J Clin Oncol. 2009;27(31):5195–201. doi: 10.1200/jco.2009.22.4865.
  7. Nomdedeu JF, Hoyos M, Carricondo M, et al. Bone marrow WT1 levels at diagnosis, post-induction and post-intensification in adult de novo AML. Leukemia. 2013;27(11):2157–64. doi: 10.1038/leu.2013.111.
  8. Yoon JH, Kim HJ, Shin SH, et al. BAALC and WT1 expressions from diagnosis to hematopoietic stem cell transplantation: consecutive monitoring in adult patients with core-binding-factor-positive AML. Eur J Haematol. 2013;91(2):112–21. doi: 10.1111/ejh.12142.
  9. Tamaki H, Ogawa H, Inoue K, et al. Increased expression of the Wilms tumor gene (WT1) at relapse in acute leukemia. Blood. 1996;88(11):4396–8.
  10. Ogawa H, Tamaki H, Ikegame K, et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood. 2003;101(5):1698–704. doi: 10.1182/blood-2002-06-1831.
  11. Bader P, Niemeyer C, Weber G, et al. WT1 gene expression: useful marker for minimal residual disease in childhood myelodysplastic syndromes and juvenile myelomonocytic leukemia? Eur J Haematol. 2004;73(1):25–8. doi: 10.1111/j.1600-0609.2004.00260.x.
  12. Lange T, Hubmann M, Burkhard R, et al. Monitoring of WT1 expression in PB and CD34+ donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning. Leukemia. 2011;25(3):498–505. doi: 10.1038/leu.2010.283.
  13. Ueda Y, Mizutani C, Nannya Y, et al. Clinical evaluation of WT1 mRNA expression levels in peripheral blood and bone marrow in patients with myelodysplastic syndromes. Leuk Lymphoma. 2013;54(7):1450–8. doi: 10.3109/10428194.2012.745074.
  14. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при миелодиспластических синдромах и клиническое значение гиперэкспрессии гена WT1. Клиническая онкогематология. 2014;7(4):551–63.
    [Mamayev NN, Gorbunova AV, Gindina TL, et al. Allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and clinical significance of WT1 gene overexpression. Klinicheskaya onkogematologiya. 2014;7(4):551–63. (In Russ)]
  15. Heesch S, Goekbuget N, Stroux A, et al. Prognostic implications and expression of the Wilms tumor 1 (WT1) gene in adult T-lymphoblastic leukemia. Haematologica. 2010;95(6):942–9. doi: 10.3324/haematol.2009.016386.
  16. Ujj Z, Buglyo G, Udvardy M, et al. WT1 overexpression affecting clinical outcome in non-Hodgkin lymphomas and adult acute lymphoblastic leukemia. Pathol Oncol Res. 2014;20(3):565–70. doi: 10.1007/s12253-013-9729-7.
  17. Drakos E, Rassidakis GZ, Tsioli F, et al. Differential expression of WT1 gene product in non-Hodgkin lymphomas. Appl Immunohistochem Mol Morphol. 2005;13(2):132–7. doi: 10.1097/01.pai.0000143786.62974.66.
  18. Inoue K, Sugiyama H, Ogawa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84(9):3071–9.
  19. Inoue K, Ogawa H, Yamagami T, et al. Long–term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels. Blood. 1996;88:2267–78.
  20. Inoue K, Ogawa H, Sonoda Y, et al. Aberrant overexpression of the Wilms’ tumor gene (WT1) in human leukemia. Blood. 1997;89(4):1405–12.
  21. Candoni A, Toffoleti E, Gallina R, et al. Monitoring of minimal residual disease by quantitative WT1 gene expression following reduced intensity conditioning allogeneic stem cell transplantation in acute myeloid leukemia. Clin Transplant. 2011;25(2):308–16. doi: 10.1111/j.1399-0012.2010.01251.x.
  22. Kwon M, Martinez-Laperche C, Infante M, et al. Evaluation of minimal residual disease by real-time quantitative PCR of Wilms’ Tumor 1 expression in patients with acute myelogenous leukemia after allogeneic stem cell transplantation: Correlation with flow cytometry and chimerism. Biol Blood Marrow Transplant. 2012;18(8):1235–42. doi: 10.1016/j.bbmt.2012.01.012.
  23. Polak J, Hajkova H, Haskovec C, et al. Quantitative monitoring of WT1 expression in peripheral blood before and after allogeneic stem cell transplantation for acute myeloid leukemia – a useful tool for early detection of minimal residual disease. Neoplasma. 2013;60(1):74–82. doi: 10.4149/neo_2013_011.
  24. Frairia C, Aydin S, Riera L, et al. WT1 expression in аcute myeloid leukaemia: a useful marker for improving therapy response evaluation. Blood. 2013;122(21): Abstract 2588.
  25. Alonso-Dominiquez JM, Tenorio M, Velasco D, et al. Correlation of WT1 expression with the burden of total and residual leukemic blasts in bone marrow samples of acute myeloid leukemia patients. Cancer Genet. 2012;205(4):190–1. doi: 10.1016/j.cancergen.2012.02.008.
  26. Zhao XS, Yan CH, Liu DH, et al. Combined use of WT1 and flow cytometry monitoring can promote sensitivity of predicting relapse after allogeneic HSCT without affecting specificity. Ann Hematol. 2013;92(8):1111–9. doi: 10.1007/s00277-013-1733-1.
  27. Yoon J-H, Kim H-J, Kim J-W, et al. Identification of molecular and cytogenetic risk factors for unfavorable core-binding factor-positive adult AML with post remission treatment outcome analysis including transplantation. Bone Marrow Transplant. 2014;49(12);1466−74. doi: 101038/bmt.2014.180.
  28. Hosen N, Shirakata T, Nishida S, et al. The Wilm’s tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia. 2007;21(8):1783–91. doi: 10.1038/sj.leu.2404752.
  29. Huff V. Wilm’s tumours about tumour suppressor genes, an oncogene and chameleon gene. Nat Rev Cancer. 2011;11(2):111–21. doi: 10.1038/nrc3002.
  30. Zhang Q, Zhang Q, Li Q, et al. Monitoring of WT1 and its target gene IRF8 expression in acute myeloid leukemia and their significance. Int J Lab Hematol. 2014;37(4):e67–e71. doi: 10.1111/ijlh.12309.
  31. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Трансплантация гемопоэтических стволовых клеток при остром миелоидном лейкозе с транслокацией t(8;21)(q22;q22). Клиническая онкогематология. 2013;6(4):439–44.
    [Mamayev NN, Gorbunova AV, Gindina TL, et al. Hematopoietic stem cell transplantation in AML patients with t(8;21)(q22;q22) translocation. Klinicheskaya onkogematologiya. 2013;6(4):439–44. (In Russ)]
  32. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Стойкое восстановление донорского гемопоэза у больной с посттрансплантационным рецидивом острого миеломонобластного лейкоза с inv(3)(q21q26), моносомией 7 и экспрессией онкогена EVI1 после трансфузий донорских лимфоцитов и использования гипометилирующих агентов. Клиническая онкогематология. 2014;7(1):71–5.
    [Mamayev NN, Gorbunova AV, Gindina TL, et al. Stable donor hematopoiesis recovery after post-transplantation relapse of acute myeloid leukemia in patient with inv(3)(q21q26), monosomy 7 and EVI1 oncogene overexpression after donor lymphocyte infusions and administration of hypomethylating agents. Klinicheskaya onkogematologiya. 2014;7(1):71–5. (In Russ)]
  33. Messina C, Candoni A, Carraba MG, et al. Wilms’ tumor gene 1 transcript levels in leukopheresis on peripheral blood hematopoietic cells predict relapse risk in patients autografted for acute myeloid leukemia. Biol Blood Marrow Transplant. 2014;20(10):1–6. doi: 10.1016/j.bbmt.2014.06.017.