Рибонуклеазы с антипролиферативной активностью: молекулярно-биологические и биохимические свойства

В.С. Покровский1, Е.М. Трещалина1, Н.В. Андронова1, С.М. Деев2

1 ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

2 ФГБУН «Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова» РАН, ул. Миклухо-Маклая, д. 16/10, Москва, Российская Федерация, 117997

Для переписки: Вадим Сергеевич Покровский, канд. мед. наук, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(499)324-14-09; e-mail: vadimpokrovsky@yandex.ru

Для цитирования: Покровский В.С., Трещалина Е.М., Андронова Н.В., Деев С.М. Рибонуклеазы с антипролиферативной активностью: молекулярно-биологические и биохимические свойства. Клиническая онкогематология. 2016;9(2):130–7.

DOI: 10.21320/2500-2139-2016-9-2-130-137


РЕФЕРАТ

Статья посвящена рибонуклеазам (РНКазы), цитотоксический эффект которых определяется ферментативной активностью, т. е. способностью катализировать расщепление фосфодиэфирных связей РНК. Представлены известные и собственные данные о РНКазах с противоопухолевыми свойствами различного происхождения, проведен поиск параллелей между механизмами цитотоксичности, биохимическими и молекулярно-биологическими свойствами. Анализ данных литературы дает возможность считать, что все перечисленные свойства вносят свой вклад в антипролиферативное действие РНКаз. Основной проблемой для этого ряда ферментов остается достижение селективной биодоступности. Это решается путем создания конъюгатов, как это показано для ранпирназы и барназы. По основным фармакологическим характеристикам активные противоопухолевые РНКазы перспективны не только в онкогематологии, но и при терапии солидных опухолях.


Ключевые слова: рибонуклеаза, ранпирназа, амфиназа, биназа, барназа, фармакологические характеристики.

Получено: 4 января 2016 г.

Принято в печать: 7 января 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Deutscher MP, Li Z. Exoribonucleases and their multiple roles in RNA metabolism. Prog Nucl Acid Res Mol Biol. 2001;66:67–105. doi: 10.1016/s0079-6603(00)66027-0.
  2. Зеленихин П.В., Мамедзаде К.Р., Ильинская О.Н. Цитофлуориметрическая характеристика влияния РНКаз на клетки про- и эукариот. Гены и клетки. 2012;3(7):62–5.
    [Zelenikhin PV, Mamedzade KR, Ilinskaya ON. The cytofluorimetric characteristics of RNAse influence towards pro- and eucariotic cells. Geny i kletki. 2012;3(7):62–5. (In Russ)]
  3. Ledoux L. Action of ribonuclease on two solid tumours in vivo. Nature. 1955;176(4470):36–7. doi: 10.1038/176036a0.
  4. Edelweiss E, Balandin TG, Ivanova JL, et al. Barnase as a new therapeutic agent triggering apoptosis in human cancer cells. PLoS ONE. 2008;3(6):e2434. doi: 10.1371/journal.pone.0002434.
  5. Глинка Е.М., Эдельвейс Э.Ф., Деев С.М. Эукариотические экспрессирующие векторы и иммуноконъюгаты для терапии рака. Биохимия. 2006;71:597–60.
    [Glinka EM, Edel’veis EF, Deev SM. Eukaryotic expressing vectors and immunoconjugates for treatment of cancer. Biokhimiya. 2006;71:597–60. (In Russ)]
  6. Deyev SM, Lebedenko EN, Petrovskaya LE, et al. Man-made antibodies and immunoconjugates with desired properties: function optimization using structure engineering. Russ Chem Rev. 2015;84(1):1–26. doi: 10.1070/RCR4459.
  7. Mitkevich VA, Tchurikov NA, Zelenikhin PV, et al. Binase cleaves cellular noncoding RNAs and affects coding mRNAs. FEBS J. 2010;277(1):186–96. doi: 10.1111/j.1742-4658.2009.07471.x.
  8. Кабрера Фуентес Э.А., Зеленихин П.В., Колпаков А.И. и др. Сравнительная цитотоксичность биназы по отношению к опухолевым и нормальным клеткам. Ученые записки Казанского университета. Серия: Естественные науки. 2010;152(3):143–8.
    [Caberra Fuentes HA, Zelenikhin PV, Kolpakov AI, et al. Comparative Toxicity of Binase towards Tumor and Normal Cells. Uchenye zapiski Kazanskogo universiteta. Seriya: Estestvennye nauki. 2010;152(3):143–8. (In Russ)]
  9. Darzynkiewicz Z, Carter SP, Mikulski SM, et al. Cytostatic and cytotoxic effects of Pannon (P-30 Protein), a novel anticancer agent. Cell Tissue Kinet. 1988;21(3):169–82. doi: 10.1111/j.1365-2184.1988.tb00855.x.
  10. Ardelt W, Mikulski SM, Shogen K. Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. Biol Chem. 1991;266(1):245–51.
  11. Raines RT. Active site of ribonuclease A. In: Zenkova MA, ed. Artificial Nucleases. Heidelberg: Springer Verlag; 2004. pp. 19–32.
  12. Juan G, Ardelt B, Mikulski SM, et al. G1 arrest of U-937 cells by onconase is associated with suppression of cyclin D3 expression, induction of p16INK4A, p21WAF1/CIP1 and p27KIP and decreased pRb phosphorylation. Leukemia. 1998;12(8):1241–8. doi: 10.1038/sj.leu.2401100.
  13. Deptala A, Halicka HD, Ardelt B, et al. Potentiation of tumor necrosis factor induced apoptosis by onconase. Int J Oncol. 1998;13(1):11–6. doi: 10.3892/ijo.13.1.11.
  14. Tsai SY, Ardelt B, Hsieh TC, et al. Treatment of Jurkat acute T-lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF-kappaB. Int J Oncol. 2004;25(6):1745–52. doi: 10.3892/ijo.25.6.1745.
  15. Rodriguez M, Torrent G, Bosch M, et al. Intracellular pathway of Onconase that enables its delivery to the cytosol. J Cell Sci. 2007;120(8):1405–11. doi: 10.1242/jcs.03427.
  16. Marquez M, Nilsson S, Lennartsson L, et al. Charge dependent targeting: Results in six tumor cell lines. Anticancer Res. 2004;24:1347–51.
  17. Leland PA, Raines RT. Cancer chemotherapy: ribonucleases to the rescue. Chem Biol. 2001;8(5):405–13. doi: 10.1016/s1074-5521(01)00030-8.
  18. Wu Y, Mikulski SM, Ardelt W, et al. A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J Biol Chem. 1993;268(14):10686–93.
  19. Saxena SK, Sirdeshmukh R, Ardelt W, et al. Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J Biol Chem. 2002;277(17):15142–6. doi: 10.1074/jbc.m10811520020.
  20. Suhasini AN, Sirdeshmukh R. Transfer RNA cleavages by onconase reveal unusual cleavage sites. J Biol Chem. 2006;281(18):12201–9. doi: 10.1074/jbc.m504488200.
  21. Gong J, Li X, Darzynkiewicz Z. Different patterns of apoptosis of HL-60 cells induced by cycloheximide and camptothecin. J Cell Physiol. 1993;157(2):263–70. doi: 10.1002/jcp.1041570208.
  22. Ardelt B, Ardelt W, Darzynkiewicz Z. Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle 2003;2(1):22–4. doi: 10.4161/cc.2.1.232.
  23. Zhao H, Ardelt B, Ardelt W, et al. The cytotoxic ribonuclease Onconase targets RNA interference (siRNA). Cell Cycle. 2008;7(20):3258–61. doi: 10.4161/cc.7.20.6855.
  24. Volinia S, Calin GA, Liu CG, et al. A microRNAs expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103(7):2257–61. doi: 10.1073/pnas.0510565103.
  25. Basseres DS, Baldwin AS. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 2006;30(25):6817–30. doi: 10.1038/sj.onc.1209942.
  26. Lee I, Kalota A, Gewirtz AM, Shogen K. Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice. Anticancer Res. 2007;27(1A):299–307.
  27. Lee I, Lee YH, Mikulski SM, Shogen K. Effect of onconase +/- tamoxifen on ASPC-1 human pancreatic tumors in nude mice. Adv Exp Med Biol. 2003;530:187–96. doi: 10.1007/978-1-4615-0075-9_18
  28. Rybak SM, Pearson JW, Fogler WE, et al. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. J Natl Cancer Inst. 1996;88(11):747–53. doi: 10.1093/jnci/88.11.747.
  29. Ita M, Halicka HD, Tanaka T, et al. Remarkable enhancement of cytotoxicity of onconase and cepharanthine when used in combination on various tumor cell lines. Cancer Biol Ther. 2008;7(7):1104–8. doi: 10.4161/cbt.7.7.6172.
  30. Smolewski P, Witkowska M, Zwolinska M, et al. Cytotoxic activity of the amphibian ribonucleases onconase and r-amphinase on tumor cells from B cell lymphoproliferative disorders. Int J Oncol. 2014;45(1):419–25. doi: 10.3892/ijo.2014.2405.
  31. Majchrzak A, Witkowska M, Medra A, et al. In vitro cytotoxicity of ranpirnase (onconase) in combination with components of R-CHOP regimen against diffuse large B cell lymphoma (DLBCL) cell line. Postepy Hig Med Dosw. 2013;67:1166–72. doi: 10.5604/17322693.107838632.
  32. Porta C, Paglino C, Mutti L. Ranpirnase and its potential for the treatment of unresectable malignant mesothelioma. Biologics. 2008;2(4):601–9. doi: 10.2147/btt.s2383.
  33. Costanzi J, Sidransky D, Navon A, et al. Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest. 2005;23(7):643–50. doi: 10.1080/07357900500283143.
  34. Mikulski SM, Costanzi JJ, Vogelzang NJ, et al. Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J Clin Oncol. 2002;20(1):274–81. doi: 10.1200/jco.20.1.274.
  35. Vasandani VM, Burris JA, Sung C. Reversible nephrotoxicity of onconase and effect of lysine pH on renal onconase uptake. Cancer Chemother Pharmacol. 1999;44(2):164–9. doi: 10.1007/s002800050962.
  36. Singh UP, Ardelt W, Saxena SK, et al. Enzymatic and Structural Characterisation of Amphinase, a Novel Cytotoxic Ribonuclease from Rana pipiens Oocytes. J Mol Biol. 2007;371(1):93–111. doi: 10.1016/j.jmb.2007.04.071.
  37. Ardelt B, Ardelt W, Pozarowski P, et al. Cytostatic and cytotoxic properties of Amphinase: a novel cytotoxic ribonuclease from Rana pipiens oocytes. Cell Cycle. 2007;6(24):3097–102. doi: 10.4161/cc.6.24.5045.
  38. Sevcik J, Sanishili RG, Pavlovsky AG, Polyakov KM. Comparison of active sites of some microbial ribonucleases: structural basis for guanylic specificity. Trends Biochem Sci. 1990;15(4):158–62. doi: 10.1016/0968-0004(90)90217-y.
  39. Makarov AA, Ilinskaya ON. Cytotoxic ribonucleases: molecular weapons and their targets. FEBS Lett. 2003;540(1–3):15–20. doi: 10.1016/s0014-5793(03)00225-4.
  40. Makarov AA, Kolchinski A, Ilinskaya ON. Binase and other microbial RNases as potential anticancer agents. BioEssays. 2008;30(8):789–90. doi: 10.1002/bies.20789.
  41. Ильинская О.Н., Макаров А.А. Почему рибонуклеазы вызывают гибель раковых клеток. Молекулярная биология. 2005;39(1):3–13.
    [Il’inskaya ON, Makarov AA. Why ribonucleases cause tumor cell death. Molekulyarnaya biologiya. 2005;39(1):3–13. (In Russ)]
  42. Ильинская О.Н., Зеленихин П.В., Колпаков А.И. и др. Избирательная цитотоксичность биназы в отношении фибробластов, экспрессирующих онкогены ras и AML/ETO. Ученые записки Казанского университета. Серия: Естественные науки. 2008;150(4):268–73.
    [Ilinskaya ON, Zelenikhin PV, Kolpakov AI, et al. Selective Cytotoxicity of Binase towards Fibroblasts with Expression of the ras- and AML/ETO Oncogenes. Uchenye zapiski Kazanskogo universiteta. Seriya: Estestvennye nauki. 2008;150(4):268–73. (In Russ)]
  43. Mitkevich VA, Petrushanko IY, Spirin PV, et al. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and АML1-ETO oncogenes. Cell Cycle. 2011;10(23):4090–7. doi: 10.4161/cc.10.23.18210.
  44. Mitkevich VA, Kretova OV, Petrushanko IY, et al. Ribonuclease binase apoptotic signature in leukemic Kasumi-1 cells. Biochimie. 2013;95(6):1344–9. doi: 10.1016/j.biochi.2013.02.016.
  45. Петрушанко И.Ю., Зеленихин П.В., Митькевич В.А. и др. Биназа обладает избирательным цитотоксическим действием на kit-трансформированные предшественники миелоидных клеток. Биофизика. 2007;52(5):876–81.
    [Petrushanko IYu, Zelenikhin PV, Mit’kevich VA, et al. Binasa produces selective cytotoxic effect on kit-transformed myeloid cell precursors. Biofizika. 2007;52(5):876–81. (In Russ)]
  46. Зеленихин П.В., Колпаков А.И., Черепнев Г.В., Ильинская О.Н. Индукция апоптоза опухолевых клеток биназой. Молекулярная биология. 2005;39(3):457–63.
    [Zelenikhin PV, Kolpakov AI, Cherepnev GV, Il’inskaya ON. Induction of tumor cell apoptosis by binasa. Molekulyarnaya biologiya. 2005;39(3):457–63. (In Russ)]
  47. Трещалина Е.М. Коллекция опухолевых штаммов человека. М.: Практическая медицина, 2009. 70 с.
    [Treshchalina EM. Kollektsiya opukholevykh shtammov cheloveka. (Collection of human tumor strains.) Moscow: Prakticheskaya Meditsina Publ.; 2009. 70 p. (In Russ)]
  48. Трещалина Е.М. Иммунодефицитные мыши разведения РОНЦ им. Н.Н. Блохина РАМН. Возможности использования. М.: Издательская группа РОНЦ, 2010. 16 с.
    [Treshchalina EM. Immunodefitsitnye myshi razvedeniya RONTs im. N.N. Blokhina RAMN. Vozmozhnosti ispol’zovaniya. (Mice with immune deficiency bred in NN Blokhin Russian Cancer Research Center. Opportunities for use.) Moscow: Izdatel’skaya gruppa RONTs Publ.; 2010. 16 p. (In Russ)]
  49. Трещалина Е.М., Жукова О.С., Герасимова Г.К. и др. Методические рекомендации по доклиническому изучению противоопухолевой активности лекарственных средств. В кн.: Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К, 2012. С. 642–57.
    [Treshchalina EM, Zhukova OS, Gerasimova GK, et al. Guidelines for pre-clinical studies of antitumor activity of drugs. In: Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. (Guidelines for pre-clinical studies of medicinal agents.) Part 1. Moscow: Grif i K Publ.; 2012. pp. 642–57. (In Russ)]
  50. Ulyanova V, Vershinina V, Ilinskaya O. Barnase and binase: twins with distinct fates. FEBS J. 2011;8(19):3633–43. doi: 10.1111/j.1742-4658.2011.08294.x.
  51. Hoefling M, Gottschalk KE. Barnase–barstar: from first encounter to final complex. J Struct Biol. 2010;171(1):52–63. doi: 10.1016/j.jsb.2010.03.001.
  52. Deyev SM, Yazynin SA, Kuznetsov DA, et al. Ribonuclease-charged vector for facile direct cloning with positive selection. Mol Gen Genet. 1998;259(4):379–82. doi: 10.1007/s004380050825.
  53. Semenyuk EG, Stremovskiy OA, Edelweiss EF, et al. Expression of single-chain antibody–barstar fusion in plants. Biochimie. 2007;89(1):31–8. doi: 10.1016/j.biochi.2006.07.012.
  54. Liao YD, Huang HC, Chan HJ, Kuo SJ. Large-scale preparation of a ribonuclease from Rana catesbeiana (bullfrog) oocytes and characterization of its specific cytotoxic activity against tumor cells. Prot Express Purif. 1996;7(2):194–202. doi: 10.1006/prep.1996.0027.
  55. Tatsuta T, Sugawara S, Takahashi K, et al. Cancer-selective induction of apoptosis by leczyme. Front Oncol. 2014;4:139. doi: 10.3389/fonc.2014.00139.
  56. Zhang R, Zhao L, Wang H, Ng TB. A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina. Int J Mol Med. 2014;33(1):209–14.
  57. Tatsuta T, Sugawara S, Takahashi K, et al. Leczyme: A New Candidate Drug for Cancer Therapy. BioMed Re Intern. 2014. doi: 10.1155/2014/421415.
  58. Nitta K, Ozaki K, Ishikawa M, et al. Inhibition of cell proliferation by Rana catesbeiana and Rana japonica lectins belonging to the ribonuclease superfamily. Cancer Res. 1994;54(4):920–7.
  59. Tatsuta T, Hosono M, Sugawara S, et al. Sialic acid-binding lectin (leczyme) induces caspase-dependent apoptosis-mediated mitochondrial perturbation in Jurkat cells. Intern J Oncol. 2013;43(5):1402–12. doi: 10.3892/ijo.2013.2092.
  60. Glinka EM, Edelweiss EF, Sapozhnikov AM, Deyev SM. A new vector for controllable expression of an anti-HER2/neu mini-antibody-barnase fusion protein in HEK 293T cells. Gene. 2006;366(1):97–103. doi: 10.1016/j.gene.2005.06.042.
  61. Chang CH, Sapra P, Vanama SS, et al. Effective therapy of human lymphoma xenografts with a novel recombinant ribonuclease/anti-CD74 humanized IgG4 antibody immunotoxin. Blood. 2005;106(13):4308–14. doi: 10.1182/blood-2005-03-1033.
  62. Newton DL, Stockwin LH, Rybak SM. Anti-CD22 Onconase: preparation and characterization. Meth Mol Biol. 2009;525:425–43. doi: 10.1007/978-1-59745-554-1_22.
  63. Newton DL, Hansen HJ, Mikulski SM, et al. Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma. Blood. 2001;97(2):528–35. doi: 10.1182/blood.v97.2.528.
  64. Глинка Е.M., Эдельвейс Э.Ф., Деев С.М. Эукариотические экспрессирующие векторы и иммуноконъюгаты для терапии рака. Биохимия. 2006;71(6):742–53.
    [Glinka EM, Edel’veis EF, Deev SM. Eukaryotic expressing vectors and immunoconjugates for treatment of cancer. Biokhimiya. 2006;71(6):742–53. (In Russ)]
  65. Deyev SM, Lebedenko EN. Modern technologies for creating synthetic antibodies for clinical application. Acta Naturae. 2009;1(1):32–50.
  66. Эдельвейс Э.Ф. Иммунобарназные конъюгаты для диагностики и терапии рака: Автореф. дис. ¼ канд. биол. наук. М., 2010. 24 с.
    [Edel’veis EF. Immunobarnaznye kon’yugaty dlya diagnostiki i terapii raka. (Immunobarnase conjugates for diagnosis and treatment of cancer.) [dissertation] Moscow; 2010. 24 p. (In Russ)]
  67. Эдельвейс Э.Ф., Баландин Т.Г., Стремовский О.А. и др. Иммуноконъюгат анти-EGFR-мини-антитело–барназа высокотоксичен для опухолевых клеток человека. Доклады Академии наук. 2010;434(4):558–61.
    [Edel’veis EF, Balandin TG, Stremovskii OA, et al. Anti-anti-EGFR–barnase immunoconjugate is highly toxic for human tumor cells. Doklady Akademii nauk. 2010;434(4):558–61. (In Russ)]
  68. Schirrmann T, Krauss J, Arndt MA, et al. Targeted therapeutic RNases (ImmunoRNases). Expert Opin Biol Ther. 2009;9:79–95. doi: 10.1517/14712590802631862.
  69. De Lorenzo C, Arciello A, Cozzolino R, et al. A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res. 2004;64(14):4870–4. doi: 10.1158/0008-5472.can-03-3717.
  70. De Lorenzo C, Tedesco A, Terrazzano G, et al. A human, compact, fully functional anti-ErbB2 antibody as a novel antitumour agent. Br J Cancer. 2004;91(6):1200–4. doi: 10.1038/sj.bjc.6602110.
  71. Покровский В.С., Трещалина Е.М. Ферментные препараты в онкогематологии: актуальные направления экспериментальных исследований и перспективы клинического применения. Клиническая онкогематология. 2014;7(1):28–39.
    [Pokrovskii VS, Treshchalina EM. Enzymes in oncohaematology: relevant directions of experimental studies and prospects of clinical use. Klinicheskaya onkogematologiya. 2014;7(1):28–39. (In Russ)]
  72. Покровский В.С., Лесная Н.А., Трещалина Е.М. и др. Перспективы разработки новых ферментных противоопухолевых препаратов. Вопросы онкологии. 2011;57(2):155–64.
    [Pokrovskii VS, Lesnaya NA, Treshchalina EM, et al. Perspectives of development of novel enzymatic antitumor agents. Voprosy onkologii. 2011;57(2):155–64. (In Russ)]
  73. Hatlen MA, Wang L, Nimer SD. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med. 2012;6(3):248–62. doi: 10.1007/s11684-012-0206-6.
  74. Ziai JM, Siddon AJ, et al. Pathology Consultation on Gene Mutations in Acute Myeloid Leukemia. Am J Clin Pathol. 2015;144(4):539–54. doi: 10.1309/AJCP77ZFPUQGYGWY.

 

Ферментные препараты в онкогематологии: актуальные направления экспериментальных исследований и перспективы клинического применения

В.С. Покровский, Е.М. Трещалина

ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва, Российская Федерация


РЕФЕРАТ

Последние годы в области разработки новых противоопухолевых препаратов на основе ферментов продемонстрированы существенные достижения. Помимо L-аспарагиназы, которая применяется в онкогематологии уже более 30 лет, два фермента — L-аргининдезиминаза и ранпирназа — прошли несколько этапов клинических исследований. Для целого ряда ферментов показана противоопухолевая активность на доклиническом этапе в экспериментах in vivo: L-метионин-гамма-лиаза, L-лизин-альфа-оксидаза, биназа. В настоящем обзоре представлены ферменты, продемонстрировавшие на различных этапах исследований противоопухолевую активность, и перспективы их использования в онкогематологии.


Ключевые слова: противоопухолевые ферменты, L-аспарагиназа, L-метионин-гамма-лиаза, L-лизин-альфа-оксидаза, L-аргининдезиминаза, L-фенилаланин-аммиак-лиаза, ранпирназа.

 Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Kidd J.G. Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum. J. Exp. Med. 1953; 98: 565–82.
  2. Broome J.D. Evidence that the L-asparaginase activity of guinea pig serum is responsible for its antilymphoma effects. Nature 1961; 191: 1114–5.
  3. Трещалина Е.М. Противоопухолевая активность веществ природного происхождения. М.: Практическая медицина, 2005. [Treshchalina Ye.M. Protivoopukholevaya aktivnost veshchestv prirodnogo proiskhozhdeniya (Anti-tumor activity of substances of natural origin). M.: Prakticheskaya meditsina, 2005.]
  4. Jaccard A., Petit B., Girault S. et al. L-asparaginase-based treatment of 15 western patients with extranodal NK/T-cell lymphoma and leukemia and a review of the literature. Ann Oncol. 2009; 20(1): 110–6.
  5. Obama K., Tara M., Niina K. L-asparaginase induced complete remission in Epstein-Barr virus positive, multidrug resistant, cutaneous T-cell lymphoma. Int. J. Hematol. 1999; 69(4): 260–2.
  6. Yong W., Zheng W., Zhang Y. et al. L-аsparaginase-based regimen in the treatment of refractory midline nasal/nasal-type T/NK-cell lymphoma. Int. J. Hematol. 2003; 78(2): 163–7.
  7. Ollenschlager G., Roth E., Linkesch W. et al. Asparaginase-induced derangements of glutamine metabolism: the pathogenetic basis for some drugrelated side-effects. Eur. J. Clin Invest. 1988; 18(5): 512–6.
  8. Villa P., Corada M., Bartosek I. L-asparaginase effects on inhibition of protein synthesis and lowering of the glutamine content in cultured rat hepatocytes. Toxicol. Lett. 1986; 32(3): 235–41.
  9. Warrell R.P.Jr., Chou T.C., Gordon C. et al. Phase I evaluation of succinylated Acinetobacter glutaminase-asparaginase in adults. Cancer Res. 1980; 40(12): 4546–51.
  10. Reinert R.B., Oberle L.M., Wek A.S. et al. Role of glutamine depletion in directing tissue-specific nutrient stress responses to L-asparagine. J. Biol. Chem. 2006; 281: 31222–33.
  11. Woods J.S., Handschumacher R.E. Hepatic homeostasis of plasma L-asparagine. Am. J. Physiol. 1971; 221: 1785–90.
  12. Bendich A., Kafkewitz D., Abuchowski A., Davis F.F. Immunological effects of native and polyethylene glycol-modified asparaginases from Vibrio succinogenes and Escherichia coli in normal and tumour-bearing mice. Clin. Exp. Immunol. 1982; 48: 273–8.
  13. Distasio J.A., Salazar A.M., Nadji M., Durden D.L. Glutaminase-free asparaginase from vibrio succinogenes: an antilymphoma enzyme lacking hepatotoxicity. Int. J. Cancer. 1982; 30(3): 343–7.
  14. Capizzy R.L., Cheng Y.C. Therapy of neoplasia with asparaginase. In: Enzymes as drug. Ed. by J.S. Holcenberg, J. Roberts. NY: John Wiley and Sons, 1981: 1–24.
  15. Storti E., Quaglino D. Dysmetabolic and neurological complications in leukemic patients treated with L-asparaginase. In: Experimental and clinical effects of L-asparaginase. Ed. by E. Grundmann, H.F. Oettgen. Berlin, Heidelberg, NY: Springer Verlag, 1970: 344–9.
  16. Roberts J., Schmid F.A., Old L.J., Stockert E. A comparative study of the antitumor effectiveness of E. coli and Erwinia asparaginases. Cancer Biochem. Biophys. 1976; 1(4): 175–8.
  17. Steiner M., Attarbaschi A., Kastner U. et al. Distinct fluctuations of ammonia levels during asparaginase therapy for childhood acute leukemia. Pediatr. Blood Cancer 2007; 9(5): 640–2.
  18. Watanabe S., Miyake K., Ogawa C. et al. The ex vivo production of ammonia predicts L-asparaginase biological activity in children with acute lymphoblastic leukemia. Int. J. Hematol. 2009; 90(3): 347–52.
  19. Гладилина Ю.А., Соколов Н.Н., Красоткина Ю.В. Клонирование, экспрессия и выделение L-аспарагиназы Helicobacter pylori. Биомед. хим. 2008; 54(4): С. 482–6. [Gladilina Yu.A., Sokolov N.N., Krasotkina Yu.V. Cloning, expression, and isolation of Helicobacter pylori L-asparaginase. Biomed. khim. 2008; 54(4): S. 482–6. (In Russ.)].
  20. Cappelletty D., Chiarelli L.R., Pasquetto M.V. et al. Helicobacter pylori L-asparaginase: A promising new chemotherapeutic agent. Biochem. Biophys. Res. Commun. 2008; 377: 1222–6.
  21. Derst C., Henseling J., R hm K.H. Engineering the substrate specificity of Escherichia coli asparaginase II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Sci. 2000; 9: 2009–17.
  22. Avramis V.I., Panosyan E.H. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: the past, the present and recommendations for the future. Clin Pharmacokinet. 2005; 44: 367–93.
  23. Avramis V.I., Tiwari P.N. Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int. J. Nanomed. 2006; 1(3): 241–54.
  24. Panosyan E.H., Grigoryan R.S., Avramis I.A. et al. Deamination of glutamine is a prerequisite for optimal asparagine deamination by asparaginases in vivo (CCG-1961). Anticancer Res. 2004; 24(2C): 1121–5.
  25. Rotoli B.M., Uggeri J., Dall’Asta V. et al. Inhibition of glutamine synthetase triggers apoptosis in asparaginase-resistant cells. Cell Physiol. Biochem. 2005; 15(6): 281–92.
  26. Tardito S., Uggeri J., Bozzetto C. et al. The inhibition of glutamine synthetase sensitizes human sarcoma cells to L-asparaginase. Cancer Chemother. Pharmacol. 2007; 60(5): 751–8.
  27. Abuchowski A., Kazo G.M., Verhoest C.R. Jr. et al. Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycolasparaginase conjugates. Cancer Biochem. Biophys. 1984; 7(2): 175–86.
  28. Asselin B.L., Whitin J.C., Coppola D.J. et al. Comparative pharmacokinetic studies of three asparaginase preparations. J. Clin. Oncol. 1993; 11: 1780–6. 29. Khan A., Hill J.M. Atopic hypersensitivity to L-asparaginase: resistance to immunosupression. Int. Arch. Allergy Appl. Immunol. 1971; 40(3): 463–569.
  29. Alvarez O.A., Zimmerman G. Pegaspargase-induced pancreatitis. Med. Pediatr. Oncol. 2000; 34(3): 200–5.
  30. Кучумова А.В., Красоткина Ю.В., Хасигов П.З., Соколов Н.Н. Пегили- рование рекомбинантной аспарагиназы Erwinia carotovora полиэтиленгликолем 5000. Биомед. хим. 2007; 53(1): 107–11. [Kuchumova A.V., Krasotkina Yu.V., Khasigov P.Z., Sokolov N.N. Pegylation of recombinant Erwinia carotovora asparaginase with polyethilenglycol. 5000. Biomed. khim. 2007; 53(1): 107–11. (In Russ.)].
  31. Gaspar M.M., Perez-Soler R., Cruz M.E. Biological characterization of L-asparaginase liposomal formulations. Cancer Chemother. Pharmacol. 1996; 38(4): 373–7.
  32. Jean-Francois J., D’Urso E.M., Fortier G. Immobilization of L-asparaginase into a biocompatible poly(ethylene glycol)-albumin hydrogel: evaluation of performance in vivo. Biotechnol. Appl. Biochem. 1997; 26(Pt. 3): 203–12.
  33. Gaspar M.M., Blanco D., Cruz M.E., Alonso M.J. Formulation of L-asparaginase load poly(lactide-to-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release. J. Control. Release 1998; 52: 53–62.
  34. Qian G., Zhou J., Wang D., He B. The chemical modification of E. coli L-asparaginase by N, O-carboxymethyl chitosan. Artif. Cell. Blood Substit. Immobil. Biotechnol. 1996; 24: 567–77.
  35. Uren J.R., Hargis B.J., Beardsley P. Immunological and pharmacological characterization of poly-DL-alanyl-modified Erwinia carotovora L-asparaginase. Cancer Res. 1982; 42: 4068–71.
  36. Jorge J.C., Perez-Soler R., Morais J.G., Cruz M.E. Liposomal palmitoylL-asparaginase: characterization and biological activity. Cancer Chemother. Pharmacol. 1994; 34(3): 230–4.
  37. Zhang Y.Q., Zhou W.L., Shen W.D. et al. Synthesis, characterization and immunogenicity of silk fibroin-L-asparaginase bioconjugates. J. Biotechnol. 2005; 120(3): 315–26.
  38. Leal-Egana A., Scheibel T. Silk-based materials for biomedical applications. Biotechnol. Appl. Biochem. 2010; 55(3): 155–67.
  39. Spiess K., Lammel A., Scheibel T. Recombinant spider silk proteins for applications in biomaterials. Macromol. Biosci. 2010; 10(9): 998–1007.
  40. Kwon Y.M., Chung H.S., Moon C. et al. L-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia. J. Control. Release 2009; 139(3): 182–9.
  41. Moola Z.B., Scawen M.D., Atkinson T., Nicholls D.J. Erwinia chrysanthemi L-asparaginase: epitope mapping and production of antigenically modified enzymes. Biochem. J. 1994; 302(Pt. 3): 921–7.
  42. Goldberg A.I., Cooney D.A., Glynn J.P. et al. The effects of immunization to L-asparaginase on antitumor and enzymatic activity. Cancer Res. 1973; 33: 256–61.
  43. Vrooman L.M., Supko J.G., Neuberg D.S. et al. Erwinia asparaginase after allergy to E. coli asparaginase in children with acute lymphoblastic leukemia. Pediatr. Blood Cancer 2010; 54(2): 199–205.
  44. Zalewska-Szewczyk B., Gach A., Wyka K. et al. The cross-reactivity of anti-asparaginase antibodies against different L-asparaginase preparations. Clin. Exp. Med. 2009; 2: 113–6.
  45. Distasio J.A., Niederman R.A. Purification and characterization of Lasparaginase with anti-lymphoma activity from Vibrio succinogenes. J. Biol. Chem. 1976; 251(22): 6929–33.
  46. Абакумова О.Ю., Подобед О.В., Борисова А.А. и др. Противоопухолевая активность L-аспарагиназы из Yersinia pseudotuberculosis. Биомед. хим. 2008; 54(6): 712–9. [Abakumova O.Yu., Podobed O.V., Borisova A.A. et al. Anti-tumor activity of Yersinia pseudotuberculosis L-asparaginase. Biomed. khim. 2008; 54(6): 712–9. (In Russ.)].
  47. Carta De-Angeli L., Pocchiari F. et al. Effect of L-asparaginase from Aspergillus terreus on ascites sarcoma in the rat. Nature (London) 1970; 225: 549–50.
  48. Peterson L.E., Ciegler A. L-asparaginase production by Erwinia aroideae. Appl. Microbiol. 1969; 18: 64–7.
  49. Pritsa A.A., Papazisis K.T., Kortsaris A.H. et al. Antitumor activity of Lasparaginase from Thermus thermophilus. Anticancer Drugs 2001; 12: 137–42.
  50. Reddy V.V.S., Jayaram H.N., Sirsi M., Ramakrishnan T. Inhibitory activity of L-asparaginase from Mycobacterium tuberculosis on Yoshida ascites sarcoma in rats. Arch. Biochem. Biophys. 1969; 132: 262–7.
  51. Rowley B., Wriston J.C. Partial purification and antilymphoma activity of Serratia marcescens L-asparaginase. Biochem. Biophys. Res. Commun. 1967; 28: 160–5.
  52. Pokrovskaya M.V., Pokrovsky V.S., Aleksandrova S.S. et al. Recombinant intracellular Rhodospirillum riubrum L-asparaginase with low L-glutaminase activity and antiproliferative effect. Biochem. (Mosc.). Suppl. Series B: Biomed. Chem. 2012; 6: 121–31.
  53. Appel I.M., Hop W.C., Pieters R. Changes in hypercoagulability by asparaginase: a randomized study between two asparaginases. Blood Coagul. Fibrinol. 2006; 17: 139–46.
  54. Duval M., Suciu S., Ferster A. et al. Comparison of Escherichia coliasparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer-Children’s Leukemia Group phase 3 trial. Blood 2002; 99(8): 2734–9.
  55. Durden D.L., Salazar A.M., Distasio J.A. Kinetic analisys of hepatotoxicity associated with antineoplastic asparaginases. Cancer Res. 1983; 43: 1602–5.
  56. Eden O.B., Shaw M.P., Lilleyman J.S., Richards S. Non-randomised study comparing toxicity of Escherichia coli and Erwinia asparaginase in children with leukaemia. Med. Pediatr. Oncol. 1990; 18(6): 497–502.
  57. Howard J.B., Carpenter F.H. L-asparaginase from Erwinia carotovora. Substrate specificity and enzymatic properties. J. Biol. Chem. 1972; 247: 1020–30.
  58. Bach S.J., Lasnitzki I. Some aspects of the role of arginine and arginase in mouse carcinoma 63. Enzymologia 1947; 12(3): 198–205.
  59. Bach S.J., Maw G.A. Creatine synthesis by tumor-bearing rats. Biochem. Biophys. Acta 1953; 11(1): 69–78.
  60. Osunkoya B.O., Adler W.H., Smith R.T. Effect of arginine deficiency on synthesis of DNA and immunoglobulin receptor of Burkitt lymphoma cells. Nature 1970; 227: 398–9.
  61. Storr J.M., Burton A.F. The effects of arginine deficiency on lymphoma cells. Br. J. Cancer 1974; 30: 50–9.
  62. Cheng P.N., Lam T.L., Lam W.M. et al. Pegylated recombinant human arginase inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res. 2007; 67(1): 309–17.
  63. Savoca K.V., Davis F.F., van Es T. et al. Cancer therapy with chemically modified enzymes. II. The therapeutic effectiveness of arginase, and arginase modified by the covalent attachment of polyethylene glycol, on the taper liver tumor and the L5178Y murine leukemia. Cancer Biochem. Biophys. 1984; 7(3): 261–8.
  64. Hernandez C.P., Morrow K., Lopez-Barcons L.A. et al. Pegylated arginase I: a potential therapeutic approach in T-ALL. Blood 2010; 115(25): 5214–21.
  65. Hsueh E.C., Knebel S.M., Lo W.H. et al. Deprivation of arginine by recombinant human arginase in prostate cancer cells. J. Hematol. Oncol. 2012; 5: 17. doi: 10.1186/1756-8722-5-17.
  66. Shibatani T., Kakimoto T., Chibata I. Crystallization and properties of L-arginine deiminase of Pseudomonas putida. J. Biol. Chem. 1975; 250(12): 4580–3.
  67. Takaku H., Takase M., Abe S. et al. In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int. J. Cancer. 1992; 51(2): 244–9.
  68. Park I.S., Kang S.W., Shin Y.J. et al. Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth. Br. J. Cancer 2003; 89: 907–14.
  69. Ni Y., Li Z., Sun Z. et al. Expression of arginine deiminase from Pseudomonas plecoglossicida CGMCC2039 in Escherichia coli and its anti-tumor activity. Curr. Microbiol. 2009; 58(6): 593–8.
  70. Ensor C.M., Holtsberg F.W., Bomalaski J.S., Clark M.A. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 2002; 62: 5443–50.
  71. Gong H., Zolzer F., von Recklinghausen G. et al. Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia 2000; 14(5): 826–9.
  72. Noh E.J., Kang S.W., Shin Y.J. et al. Arginine deiminase enhances dexamethasone-induced cytotoxicity in human T-lymphoblastic leukemia CCRF-CEM cells. Int. J. Cancer 2004: 112: 502–8.
  73. Ascierto P.A., Scala S., Castello G. et al. Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J. Clin. Oncol. 2005; 23: 7660–8.
  74. Curley S.A., Bomalaski J.S., Ensor C.M. et al. Regression of hepatocellular cancer in a patient treated with arginine deiminase. Hepatogastroenterology 2003; 50(53): 1214–6.
  75. Glazer E.S., Piccirillo M., Albino V. et al. Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J. Clin. Oncol. 2010; 28(13): 2220–6.
  76. Izzo F., Marra P., Beneduce G. et al. Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies. J. Clin. Oncol. 2004; 22: 1815–22.
  77. Glazer E.S., Piccirillo M., Albino V. et al. Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J. Clin. Oncol. 2010; 28(13): 2220–6.
  78. Ott P.A., Carvajal R.D., Pandit-Taskar N. et al. Phase I/II study of pegylated arginine deiminase (ADI-PEG20) in patients with advanced melanoma. Invest. New Drugs 2013; 31(2): 425–34.
  79. Delage B., Luong P., Maharaj L. et al. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis. 2012; 3: e342.
  80. Wu L., Li L., Meng S. et al. Expression of argininosuccinate synthetase in patients with hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2013; 28(2): 365–8.
  81. Szlosarek P.W., Luong P., Phillips M.M. et al. Metabolic response to pegylated arginine deiminase in mesothelioma with promoter methylation of argininosuccinate synthetase. J. Clin. Oncol. 2013; 31(7): e111–3.
  82. Feun L.G., Marini A., Walker G. et al. Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase. Br. J. Cancer 2012; 106(9): 1481–5.
  83. Kelly M.P., Jungbluth A.A., Wu B.W. et al. Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br. J. Cancer 2012; 106(2): 324–32.
  84. Manca A., Sini M.C., Izzo F. et al. Induction of arginosuccinate synthetase (ASS) expression affects the antiproliferative activity of arginine deiminase (ADI) in melanoma cells. Oncol. Rep. 2011; 25(6): 1495–502.
  85. Bowles T.L., Kim R., Galante J. et al. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int. J. Cancer 2008; 123: 1950–5.
  86. Kim H.J., Kim J.H., Yu Y.S. et al. Anti-tumor activity of arginine deiminase via arginine deprivation in retinoblastoma. Oncol. Rep. 2007; 18: 1373–7.
  87. Kim R.H., Coates J.M., Bowles T.L. et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 2009; 69: 700–8.
  88. Sigimura K., Ohno T., Kusuyama T., Azuma I. High sensitivity of human melanoma cell lines to the growth inhibitory activity of mycoplasmal arginine deiminase in vitro. Melanoma Res. 1992; 2: 191–6.
  89. Szlosarek P.W., Klabatsa A., Pallaska A. et al. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin. Cancer Res. 2006; 12: 7126–31.
  90. Yoon C.Y., Shim Y.J., Kim E.H. et al. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int. J. Cancer 2008; 120: 897–905.
  91. Tsai W.B., Aiba I., Lee S.Y. et al. Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1alpha/Sp4. Mol. Cancer Ther. 2009; 8(12): 3223–33.
  92. Ni Y., Liu Y., Schwaneberg U. et al. Rapid evolution of arginine deiminase for improved anti-tumor activity. Appl. Microbiol. Biotechnol. 2011; 90(1): 193–201.
  93. Holtsberg F.W., Ensor C.M., Steiner M.R. et al. Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties. J. Control. Release 2002; 80: 259–71.
  94. Kreis W., Hession C. Biological effects of enzymatic deprivation of Lmethionine in cell culture and an experimental tumor. Cancer Res. 1973; 33(8): 1866–9.
  95. Занин В.А., Лукина В.И., Березов Т.Т. Выделение и некоторые фи- зико-химические и каталитические свойства L-лизин-альфа-оксидазы из Pseudomonas putida. Вопр. мед. хим. 1989; 4: 84–9. [Zanin V.A., Lukina V.I., Berezov T.T. Isolation and some physicochemical and catalytical properties of Pseudomonas putida L-lysine alpha-oxidase. Vopr. med. khim. 1989; 4: 84–9. (In Russ.)].
  96. Манухов И.В., Мамаева Д.В., Морозова Е.А. и др. L-Метионин-гамма- лиаза Citrobacter freundii: клонирование гена и кинетические параметры фермента. Биохим. 2006; 74(4): 454–63. [Manukhov I.V., Mamayeva D.V., Morozova Ye.A. et al. Citrobacter freundii L-methionine gamma-lyase: gene cloning and clinical parameters of enzyme. Biokhim. 2006; 74(4): 454–63. (In Russ.)].
  97. Ito S., Nakamura T., Eguchi Y. Purification and characterization of methioninase from Pseudomonas putida. J. Biochem. 1976; 79(6): 1263–72.
  98. Lockwood B.C., Coombs G.H. Purification and characterization of methionine gamma-lyase from Trichomonas vaginalis. Biochem. J. 1991; 279: 675–82.
  99. Sato D., Yamagata W., Kamei K. et al. Expression, purification and crystallization of L-methionine gamma-lyase 2 from Entamoeba histolytica. Acta Crystallogr. 2006; 62(10): 1034–6.
  100. Tanaka H., Esaki N., Yamamoto T., Soda K. Purification and properties of methioninase from Pseudomonas ovalis. FEBS Lett. 1976; 66(2): 307–11.
  101. El-Sayed A.S. Purification and characterization of a new L-methioninase from solid cultures of Aspergillus flavipes. J. Microbiol. 2011; 49(1): 130–40.
  102. Пехов А.А., Жукова О.С., Занин В.А., Березов Т.Т. Цитостатический эффект L-метионин-g-лиазы на раковые клетки в культуре. Бюл. эксп. биол. мед. 1983; 5: 87–9. [Pekhov A.A., Zhukova O.S., Zanin V.A., Berezov T.T. Cytostatic effect of L-methionine g-lyase on cultured cancer cells. Byul. eksp. biol. med. 1983; 5: 87–9. (In Russ.)].
  103. Hu J., Cheung N.K. Methionine depletion with recombinant methioninase: in vitro and in vivo efficacy against neuroblastoma and its synergism with chemotherapeutic drugs. Int. J. Cancer 2009; 124(7): 1700–6.
  104. Kokkinakis D.M., Schold S.C.Jr., Hori H., Nobori T. Effect of long-term depletion of plasma methionine on the growth and survival of human brain tumor xenografts in athymic mice. Nutr. Cancer 1997; 29(3): 195–204.
  105. Tan Y., Sun X., Xu M. et al. Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin. Cancer Res. 1999; 5(8): 2157–63.
  106. Tan Y., Xu M., Guo H. et al. Anticancer efficacy of methioninase in vivo. Anticancer Res. 1996; 16(6C): 3931–6.
  107. Yoshioka T., Wada T., Uchida N. et al. Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res. 1998; 58(12): 2583–7.
  108. Hori H., Takabayashi K., Orvis L. et al Gene cloning and characterization of Pseudomonas putida L-methionine-alpha-deamino-gamma-mercaptomethane-lyase. Cancer Res. 1996; 56(9): 2116–22.
  109. El-Sayed A.S., Shouman S.A., Nassrat H.M. Pharmacokinetics, immunogenicity and anticancer efficiency of Aspergillus flavipes L-methioninase. Enzyme Microb. Technol. 2012; 51(4): 200–10.
  110. Tan Y., Zavala J.Sr., Xu M. et al. Serum methionine depletion without side effects by methioninase in metastatic breast cancer patients. Anticancer Res. 1996; 16(6C): 3937–42.
  111. Sun X., Yang Z., Li S. et al. In vivo efficacy of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5¢-phosphate supplementation. Cancer Res. 2003; 63(23): 8377–83.
  112. Xin L., Cao J., Cheng H. et al. Stealth cationic liposomes modified with anti-CAGE single-chain fragment variable deliver recombinant methioninase for gastric carcinoma therapy. J. Nanosci. Nanotechnol. 2013; 13(1): 178–83.
  113. Смирнова И.П., Хадуев С.Х. L-лизин-альфа-оксидазная активность некоторых видов Trichoderma. Микробиология 1984; 53: 163–5. [Smirnova I.P., Khaduyev S.Kh. L-lysine alpha-oxidase activity of some Trichoderma spp. Mikrobiologiya 1984; 53: 163–5. (In Russ.)].
  114. Kusakabe H., Kodama K., Kuninaka A. et al. A new antitumor enzyme, L-lysine alpha-oxidase from Trichoderma viride. Purification and enzymological properties. J. Biol. Chem. 1980; 255(3): 976–81.
  115. Жукова О.С., Хадуев С.Х., Добрынин Я.В. и др. Влияние L-лизин-a- оксидазы на кинетику клеточного цикла культивируемых клеток лимфомы Беркитта. Экспер. онкол. 1985; 7(6): 42–4. [Zhukova O.S., Khaduyev S.Kh., Dobrynin Ya.V. et al. Influence of L-lysine a-oxidase on kinetics of cell cycle of Burkitt’s lymphoma cultured cells. Eksper. onkol. 1985; 7(6): 42–4. (In Russ.)].
  116. Гогичаева Н.В., Лукашева Е.В., Гаврилова Е.М. и др. Получение конъюгатов L-лизин-a-оксидазы с антителами. Вопр. мед. хим. 2000; 46(4): 410–8. [Gogichayeva N.V., Lukasheva Ye.V., Gavrilova Ye.M. et al. Synthesis of conjugates of L-lysine a-oxidase with antibodies. Vopr. med. khim. 2000; 46(4): 410–8. (In Russ.)].
  117. Лукашева Е.В., Березов Т.Т. L-лизин-a-оксидаза: физико-химиче- ские и биологические свойства. Биохимия 2002; 67(10): 1394–402. [Lukasheva Ye.V., Berezov T.T. L-lysine a-oxidase: physicochemical and biological properties. Biokhimiya 2002; 67(10): 1394–402. (In Russ.)].
  118. Sarkissian C.N., Shao Z., Blain F. et al. A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc. Natl. Acad. Sci. U S A 1999; 96(5): 2339–44.
  119. Calabrese J.C., Jordan D.B., Boodhoo A. et al. Crystal structure of phenylalanine ammonia-lyase: multiple helix dipoles implicated in catalysis. Biochemistry 2004; 43: 11403–16.
  120. Ritter H., Schulz G.E. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 2004; 16: 3426–36.
  121. Bourget L., Chang T.M. Artificial cell-microencapsulated phenylalanine ammonia-lyase. Applied Biochem. Biotechnol. 1984; 10: 57–9.
  122. Sarkissian C.N., Gamez A. Phenylalanine ammonia lyase, enzyme substitution therapy for phenylketonuria, where are we now? Mol. Gen. Metab. 2005; 86(Suppl. 1): S22–6.
  123. Abell C.W., Hodgins D.S., Stith W.J. An in vivo evaluation of the chemotherapeutic potency of phenylalanine ammonia-lyase. Cancer Res. 1973; 33(10): 2529–32.
  124. Stith W.J., Hodgins D.S., Abell C.W. Effects of phenylalanine ammonialyase and phenylalanine deprivation on murine leukemic lymphoblasts in vitro. Cancer Res. 1973; 33(5): 966–71.
  125. Ambrus C.M., Anthone S., Horvath C. et al. Extracorporeal enzyme reactors for depletion of phenylalanine in phenylketonuria. Ann. Intern. Med. 1987; 106: 531–7.
  126. Ledoux L. Action of ribonuclease on two solid tumours in vivo. Nature 1955; 176(4470): 36–7.
  127. Mitkevich V.A., Tchurikov N.A., Zelenikhin P.V. et al. Binase cleaves cellular noncoding RNAs and affects coding mRNAs. FEBS J. 2010; 277(1): 186–96.
  128. Darzynkiewicz Z., Carter S.P., Mikulski S.M. et al. Cytostatic and cytotoxic effects of Pannon (P-30 Protein), a novel anticancer agent. Cell Tissue Kinet. 1988; 21(3): 169–82.
  129. Ardelt W., Mikulski S.M., Shogen K. Amino acid sequence of an antitumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. Biol. Chem. 1991; 266(1): 245–51.
  130. Wu Y., Mikulski S.M., Ardelt W. et al. A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J. Biol. Chem. 1993; 268(14): 10686–93.
  131. Juan G., Ardelt B., Li X. et al. G1 arrest of U937 cells by onconase is associated with suppression of cyclin D3 expression, induction of p16INK4A, p21WAF1/CIP1 and p27KIP and decreased pRb phosphorylation. Leukemia 1998; 12(8): 1241–8.
  132. Deptala A., Halicka H.D., Ardelt B. et al. Potentiation of tumor necrosis factor induced apoptosis by onconase. Int. J. Oncol. 1998; 13(1): 11–6.
  133. Lee I., Kalota A., Gewirtz A.M., Shogen K. Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice. Anticancer Res. 2007; 27(1A): 299–307.
  134. Lee I., Lee Y.H., Mikulski S.M., Shogen K. Effect of onconase +/- tamoxifen on ASPC-1 human pancreatic tumors in nude mice. Adv. Exp. Med. Biol. 2003; 530: 187–96.
  135. Воробьев И.И., Пономаренко Н.А., Дурова О.М. и др. Структурно- функциональное исследование рекомбинантных форм онконазы. Био- орган. хим. 2001; 27(4): 257–64. [Vorobyev I.I., Ponomarenko N.A., Durova O.M. et al. Structural-functional evaluation of Onconase recombinant forms. Bioorgan. khim. 2001; 27(4): 257–64. (In Russ.)].
  136. Notomista E., Cafaro V., Fusiello R. et al. Effective expression and purification of recombinant onconase, an antitumor protein. FEBS Lett. 1999; 463(3): 211–5.
  137. Ita M., Halicka H.D., Tanaka T. et al. Remarkable enhancement of cytotoxicity of onconase and cepharanthine when used in combination on various tumor cell lines. Cancer Biol Ther. 2008; 7(7): 1104–8.
  138. Costanzi J., Sidransky D., Navon A. et al. Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest. 2005; 23(7): 643–50.
  139. Mikulski S.M., Costanzi J.J., Vogelzang N.J. et al. Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J. Clin. Oncol. 2002; 20(1): 274–81.
  140. Porta C., Paglino C., Mutti L. Ranpirnase and its potential for the treatment of unresectable malignant mesothelioma. Biologics 2008; 2(4): 601–9.
  141. Chang C.H., Sapra P., Vanama S.S. et al. Effective therapy of human lymphoma xenografts with a novel recombinant ribonuclease/anti-CD74 humanized IgG4 antibody immunotoxin. Blood 2005; 106(13): 4308–14.
  142. Calabrese J.C., Jordan D.B., Boodhoo A. et al. Crystal structure of phenylalanine ammonia-lyase: multiple helix dipoles implicated in catalysis. Biochemistry 2004; 43: 11403–16.
  143. Ardelt B., Ardelt W., Pozarowski P. et al. Cytostatic and cytotoxic properties of Amphinase: a novel cytotoxic ribonuclease from Rana pipiens oocytes. Cell Cycle 2007; 24: 3097–102.
  144. Ильинская О.Н., Зеленихин П.В., Колпаков А.И. и др. Избирательная цитотоксичность биназы в отношении фибробластов, экспрессирующих онкогены ras и AML/ETO. Учен. зап. Казан. ун-та. Серия «Естественные науки» 2008; 150(4): 268–73. [Ilinskaya O.N., Zelenikhin P.V., Kolpakov A.I. et al. Selective binase cytotoxicity against ras- and AML/ETO-oncogene-expressing fibroblasts. Uchen. zap. Kazan. un-ta. Seriya «Estestvennye nauki» 2008; 150(4): 268–73. (In Russ.)].
  145. Mitkevich V.A., Kretova O.V., Petrushanko I.Y. et al. Ribonuclease binase apoptotic signature in leukemic Kasumi-1 cells. Biochemie 2013; 95(6): 1344–9.
  146. Mitkevich V.A., Petrushanko I.Y., Spirin P.V. et al. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and АML1-ETO oncogenes. Cell Cycle 2011; 10(23): 4090–7.