Развернутая и маскированная истинная полицитемия в структуре Ph-негативных миелопролиферативных заболеваний

Ж.В. Трацевская, А.М. Ковригина, Д.И. Чеботарев, А.Л. Меликян, А.О. Абдуллаев, А.Б. Судариков

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Алла Михайловна Ковригина, д-р биол. наук, профессор, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.:+7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

Для цитирования: Трацевская Ж.В., Ковригина А.М., Чеботарев Д.И. и др. Развернутая и маскированная истинная полицитемия в структуре Ph-негативных миелопролиферативных заболеваний. Клиническая онкогематология. 2020;13(1):58–66.

DOI: 10.21320/2500-2139-2020-13-1-58-66


РЕФЕРАТ

Цель. Изучение структуры Ph-негативных миелопролиферативных заболеваний (МПЗ Ph–) и выявление морфологических признаков для диагностики маскированной истинной полицитемии (ИП).

Материалы и методы. На основании базы данных патологоанатомического отделения ФГБУ «НМИЦ гематологии» МЗ РФ исследованных трепанобиоптатов костного мозга, охватывающих период с января 2014 г. по июнь 2017 г., проанализированы случаи диагностики МПЗ Ph–. Исследованию подвергнуты трепанобиоптаты пациентов, проходивших обследование и лечение в НМИЦ гематологии, и пациентов из других медицинских учреждений Российской Федерации с учетом клинико-лабораторных и молекулярных данных.

Результаты. У 1611 пациентов с МПЗ Ph– преобладала ИП, которая составила 40,6 % всех наблюдений. В группе с установленной ИП маскированная форма диагностирована у 29 % пациентов. Первичный миелофиброз (ПМФ) диагностирован в 26,6 % всех наблюдений, включая 10 % случаев с префиброзной/ранней стадией. На 3-м месте по частоте оказалась эссенциальная тромбоцитемия (ЭТ), составившая 16 %. Драйверная мутация гена JAK2 выявлена у всех 654 больных ИП. Из них в 4 случаях обнаружена мутация в экзоне 12. Аналогичная мутация имела место при ПМФ (53 %) и ЭТ (60 %). У 36 % пациентов с ПМФ и 27 % — с ЭТ обнаружена мутация CALR. Мутация MPL выявлена в 4 % наблюдений при ПМФ и отсутствовала при ЭТ. Пациенты с тройным негативным статусом составили 7 % при ПМФ и 13 % при ЭТ. Частота диагностики нозологии «миелопролиферативное заболевание, неклассифицируемое» составила 16,8 %. В работе рассматриваются критерии морфологической диагностики маскированной ИП при исследовании трепанобиоптатов костного мозга. У 30 % пациентов с маскированной ИП (по критериям ВОЗ 2017 г.), протекающей со спленомегалией (> 14 см), выявлены тромбозы сосудов портальной системы.

Заключение. В группе МПЗ Ph– по частоте диагностики ИП была на 1-м месте (40,6 %). При гистологическом исследовании трепанобиоптатов костного мозга у пациентов с маскированной формой, которая составила 29 % всех случаев ИП, выявлены морфологические признаки, характерные для развернутой ИП. Гистологическое исследование костного мозга является надежным методом диагностики развернутой и маскированной ИП. Среди морфологических особенностей костного мозга у пациентов с маскированной ИП, протекающей с тромбозами портальной вены, следует выделить степень ретикулярного фиброза MF-1 (29 % случаев) и рыхлые кластеры мегакариоцитов (71,4 %).

Ключевые слова: Ph-негативные миелопролиферативные заболевания/неоплазии, маскированная истинная полицитемия, патоморфология, трепанобиопсия костного мозга.

Получено: 14 сентября 2019 г.

Принято в печать: 12 декабря 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Lyon: IARC Press; 2017. 585 p.

  2. Gianelli U, Bossi A, Cortinovis I, et al. Reproducibility of the WHO histological criteria for the diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasms. Mod Pathol. 2014;27(6):814–22. doi: 10.1038/modpathol.2013.196.

  3. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.

  4. Pietra D, Rumi E, Ferretti VV, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30(2):431–8. doi: 10.1038/leu.2015.277.

  5. Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472–7. doi: 10.1038/leu.2014.3.

  6. Zamora L, Xicoy B, Cabezon M, et al. Co-existence of JAK2 V617F and CALR mutations in primary myelofibrosis. Leuk Lymphoma. 2015;56(10):2973–4. doi: 10.3109/10428194.2015.1015124.

  7. Lin Y, Liu E, Sun Q, et al. The prevalence of JAK2, MPL, and CALR mutations in Chinese patients with BCR-ABL1-negative myeloproliferative neoplasms. Am J Clin Path. 2015;144(1):165–71. doi: 10.1309/AJCPALP51XDIXDDV.

  8. Ahmed RZ, Rashid M, Ahmed N, et al. Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms — Do They Designate a New Subtype? Asian Pacif J Cancer Prevent. 2016;17(3):923–6. doi: 10.7314/apjcp.2016.17.3.923.

  9. Bowman RL, Busque L, Levine RL. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell. 2018;22(2):157–70. doi: 10.1016/j.stem.2018.01.011.

  10. Shlush LI. Age-related clonal hematopoiesis. Blood. 2018;131(5):496–504. doi: 10.1182/blood-2017-07-746453.

  11. Steensma DP, Bejar R. Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16. doi: 10.1182/blood-2015-03-631747.

  12. Gianelli U, Iurlo A, Vener C, et al. The Significance of Bone Marrow Biopsy and JAK2V617F Mutation in the Differential Diagnosis Between the “Early” Prepolycythemic Phase of Polycythemia Vera and Essential Thrombocythemia. Am J Clin Pathol. 2008;130(3):336–42. doi: 10.1309/6BQ5K8LHVYAKUAF4.

  13. Thiele J, Kvasnicka HM, Zankovich R, Diehl V. The value of bone marrow histology in differentiating between early stage polycythemia vera and secondary (reactive) polycythemias. Haematologica. 2001;86(4):368–74.

  14. Barbui T, Thiele J, Vannucchi AM, et al. Rethinking the diagnostic criteria of polycythemia vera. Leukemia. 2013;28(6):1191–5. doi: 10.1038/leu.2013.380.

  15. Thiele J, Kvasnicka HM, Diehl V. Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol. 2005;113(4):213–9. doi: 10.1159/000084673.

  16. Barbui T, Thiele J, Carobbio A, et al. Masked polycythemia vera diagnosed according to WHO and BCSH classification. Am J Hematol. 2014;89(2):199–202. doi: 10.1002/ajh.23617.

  17. Kvasnicka HM, Orazi A, Thiele J, et al. European LeukemiaNet study on the reproducibility of bone marrow features in masked polycythemia vera and differentiation from essential thrombocythemia. Am J Hematol. 2017;92(10):1062–7. doi 10.1002/ajh.24837.

  18. Ковригина А.М., Байков В.В. Истинная полицитемия: новая концепция диагностики и клинические формы. Клиническая онкогематология. 2016;9(2):115–22. doi: 10.21320/2500-2139-2016-9-2-115-122.

    [Kovrigina AM, Baikov VV. Polycythemia Vera: New Diagnostic Concept and Its Types. Clinical oncohematology. 2016;9(2):115–22. doi: 10.21320/2500-2139-2016-9-2-115-122. (In Russ)]

  19. Spivak JL, Silver RT. The revised World Health Organization diagnostic criteria for polycythemia vera, essential thrombocytosis, and primary myelofibrosis: An alternative proposal. Blood. 2008;112(2):231–9. doi: 10.1182/blood-2007-12-128454.

  20. Silver RT, Chow W, Orazi A, et al. Evaluation of WHO criteria for diagnosis of polycythemia vera: A prospective analysis. Blood. 2013;122(11):1881–6. doi: 10.1182/blood-2013-06-508416.

  21. McMullin MF, Reilly JT, Campbell P, et al. Amendment to the guideline for diagnosis and investigation of polycythaemia/erythrocytosis. Br J Haematol. 2007;138(6):821–2. doi: 10.1111/j.1365-2141.2007.06741.x.

  22. Murphy S. Diagnostic criteria and prognosis in polycythemia vera and essential thrombocythemia. Semin Hematol. 1999;36(1 Suppl 2):9–13.

  23. Lussana F, Carobbio A, Randi ML, et al. A lower intensity of treatment may underlie the increased risk of thrombosis in young patients with masked polycythaemia Vera. Br J Haematol. 2014;167(4):541–6. doi: 10.1111/bjh.13080.

  24. Меликян А.Л., Туркина А.Г., Ковригина А.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2016 г.). Гематология и трансфузиология. 2017;62(1, прил. 1):25–60. doi: 10.18821/0234-5730-2017-62-1-S1-1-60.

    [Melikyan AL, Turkina AG, Kovrigina AM, et al. Clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2016). Gematologiya i transfuziologiya. 2017;62(1 Suppl 1):25–60. doi: 10.18821/0234-5730-2017-62-1-S1-1-60. (In Russ)]

  25. Суборцева И.Н., Колошейнова Т.И., Пустовая Е.И. и др. Истинная полицитемия: обзор литературы и собственные данные. Клиническая онкогематология. 2015;8(4):397–412. doi: 10.21320/2500-2139-2015-8-4-397-412.

    [Subortseva IN, Kolosheinova TI, Pustovaya EI, et al. Polycythemia Vera: Literature Review and Own Data. Clinical oncohematology. 2015;8(4):397–412. doi: 10.21320/2500-2139-2015-8-4-397-412. (In Russ)]

  26. Barbui T, Thiele J, Vannucchi AM, Tefferi A. Myeloproliferative neoplasms: Morphology and clinical practice. Am J Hematol. 2016;91(4):430–3. doi: 10.1002/ajh.24288.

  27. Wong WJ, Hasserjian RP, Pinkus GS, et al. JAK2, CALR, MPL and ASXL1 mutational status correlates with distinct histological features in Philadelphia chromosome-negative myeloproliferative neoplasms. Haematologica. 2018;103(2):e63–e68. doi: 10.3324/haematol.2017.178988.

  28. Alvarez-Larran A, Ancochea A, Gracia M, et al. WHO-histological criteria for myeloproliferative neoplasms: reproducibility, diagnostic accuracy and correlation with gene mutations and clinical outcomes. Br J Haematol. 2014;166(6):911–9. doi: 10.1111/bjh.12990.