Системное Т-клеточное лимфопролиферативное заболевание, ассоциированное с вирусом Эпштейна—Барр: обзор литературы и собственное клиническое наблюдение

Е.А. Шаламова, А.М. Ковригина, И.А. Шуплецова, Е.Е. Никулина, В.Д. Латышев, Н.В. Цветаева

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Алла Михайловна Ковригина, д-р биол. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; e-mail: kovrigina.alla@gmail.com

Для цитирования: Шаламова Е.А., Ковригина А.М., Шуплецова И.А. и др. Системное Т-клеточное лимфопролиферативное заболевание, ассоциированное с вирусом Эпштейна—Барр: обзор литературы и собственное клиническое наблюдение. Клиническая онкогематология. 2021;14(4):477–87.

DOI: 10.21320/2500-2139-2021-14-4-477-487


РЕФЕРАТ

Вирус Эпштейна—Барр (ВЭБ) является широко распространенным и выявляется у 90–95 % взрослого населения. Его реактивация в условиях иммунодефицита часто приводит к клональной трансформации В-лимфоцитов, развитию В-клеточных лимфопролиферативных заболеваний (ЛПЗ) и В-клеточных лимфом. В то же время в странах Северо-Восточной и Восточной Азии, Латинской Америки у пациентов без выявленного иммунодефицита описаны случаи развития Т-клеточных лимфопролиферативных заболеваний, связанных с ВЭБ. В настоящей работе представлено редкое наблюдение системного T-ЛПЗ, ассоциированного с ВЭБ, протекающего с лимфаденопатией, спленомегалией в сочетании с острой формой аутоиммунной гемолитической анемии у мужчины европеоидной расы. Комплексный анализ анамнестических, патоморфологических и лабораторных данных позволил дифференцировать данное заболевание с Т-клеточной лимфомой и выбрать обоснованную тактику ведения пациента.

Ключевые слова: лимфопролиферативное заболевание, вирус Эпштейна—Барр, ВЭБ+ T-ЛПЗ, диагностика, патоморфология.

Получено: 30 мая 2021 г.

Принято в печать: 2 сентября 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Smatti MK, Al-Sadeq DW, Ali NH, et al. Epstein-Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene Among Healthy Population: An Update. Front Oncol. 2018;8:211. doi: 10.3389/fonc.2018.00211.
  2. Kuri A, Jacobs BM, Vickaryous N, et al. Epidemiology of Epstein-Barr virus infection and infectious mononucleosis in the United Kingdom. BMC Public Health. 2020;20(1):912. doi: 10.1186/s12889-020-09049-x.
  3. Rostgaard K, Balfour HH Jr, Jarrett R, et al. Primary Epstein-Barr virus infection with and without infectious mononucleosis. PLoS One. 2019;14(12):e0226436. doi: 10.1371/journal.pone.0226436.
  4. Montes-Mojarro IA, Kim WY, Fend F, Quintanilla-Martinez L. Epstein-Barr virus positive T and NK-cell lymphoproliferations: Morphological features and differential diagnosis. Semin Diagn Pathol. 2020;37(1):32–46. doi: 10.1053/j.semdp.2019.12.004.
  5. Shannon-Lowe C, Rickinson A. The Global Landscape of EBV-Associated Tumors. Front Oncol. 2019;9:713. doi: 10.3389/fonc.2019.00713.
  6. Pei Y, Lewis AE, Robertson ES. Current Progress in EBV-Associated B-Cell Lymphomas. Adv Exp Med Biol. 2017;1018:57–74. doi: 10.1007/978-981-10-5765-6_5.
  7. Martinez OM, Krams SM. The Immune Response to Epstein Barr Virus and Implications for Posttransplant Lymphoproliferative Disorder. 2017;101(9):2009–16. doi: 10.1097/TP.0000000000001767.
  8. Compagno F, Basso S, Panigari A, et al. Management of PTLD After Hematopoietic Stem Cell Transplantation: Immunological Perspectives. Front Immunol. 2020;11:567020. doi: 10.3389/fimmu.2020.567020.
  9. Ковригина А.М. ВЭБ-позитивные лимфопролиферативные заболевания: новая концепция, дифференциальная диагностика (обзор литературы и собственные наблюдения). Клиническая онкогематология. 2018;11(4):326–37. doi: 10.21320/2500-2139-2018-11-4-326-337.
    [Kovrigina AM. EBV-Positive Lymphoproliferative Diseases: A New Concept and Differential Diagnosis (Literature Review and Case Reports). Clinical oncohematology. 2018;11(4):326–37. doi: 10.21320/2500-2139-2018-11-4-326-337. (In Russ)]
  10. Kimura H, Fujiwara S. Overview of EBV-Associated T/NK-Cell Lymphoproliferative Diseases. Front Pediatr. 2019;6:417. doi: 10.3389/fped.2018.00417.
  11. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2017. pp. 358–60.
  12. Coffey AM, Lewis A, Marcogliese AN, et al. A clinicopathologic study of the spectrum of systemic forms of EBV‐associated T‐cell lymphoproliferative disorders of childhood: A single tertiary care pediatric institution experience in North America. Pediatr Blood Cancer. 2019;66(8):e27798. doi: 10.1002/pbc.27798.
  13. Ohshima K, Kimura H, Yoshino T, et al. Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV T-LPD. Pathol Int. 2008;58(4):209–17. doi: 10.1111/j.1440-1827.2008.02213.x.
  14. Kawamoto K, Miyoshi H, Suzuki T, et al. A distinct subtype of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disorder: adult patients with chronic active Epstein-Barr virus infection-like features. 2018;103(6):1018–28. doi: 10.3324/haematol.2017.174177.
  15. Fujiwara S, Kimura H, Imadome K, et al. Current research on chronic active Epstein-Barr virus infection in Japan. Pediatr Int. 2014;56(2):159–66. doi: 10.1111/ped.12314.
  16. van Dongen JJ, Langerak AW, Bruggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317. doi: 10.1038/sj.leu.2403202.
  17. Чернова Н.Г., Сидорова Ю.В., Смирнова С.Ю. и др. Молекулярная диагностика ангиоиммунобластной Т-клеточной лимфомы. Терапевтический архив. 2019;91(7):63–9. doi: 10.26442/00403660.2019.07.000330.
    [Chernova NG, Sidorova YuV, Smirnova SYu, et al. Molecular diagnosis angioimmunoblastic T-cell lymphoma. Terapevticheskii arkhiv. 2019;91(7):63–9. doi: 10.26442/00403660.2019.07.000330. (In Russ)]
  18. Cohen JI, Jaffe ES, Dale JK, et al. Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. 2011;117(22):5835–49. doi: 10.1182/blood-2010-11-316745.
  19. Arai A. Advances in the Study of Chronic Active Epstein-Barr Virus Infection: Clinical Features Under the 2016 WHO Classification and Mechanisms of Development. Front Pediatr. 2019;7:14. doi: 10.3389/fped.2019.00014.
  20. Fournier B, Boutboul D, Bruneau J, et al. Rapid identification and characterization of infected cells in blood during chronic active Epstein-Barr virus infection. J Exp Med. 2020;217(11):e20192262. doi: 10.1084/jem.20192262.
  21. Kawabe S, Ito Y, Gotoh K, et al. Application of flow cytometric in situ hybridization assay to Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases. Cancer Sci. 2012;103(8):1481–8. doi: 10.1111/j.1349-7006.2012.02305.x.
  22. Paik JH, Choe JY, Kim H, et al. Clinicopathological categorization of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disease: an analysis of 42 cases with an emphasis on prognostic implications. Leuk Lymphoma. 2017;58(1):53–63. doi: 10.1080/10428194.2016.1179297.
  23. Kimura H. EBV in T-/NK-Cell Tumorigenesis. Adv Exp Med Biol. 2018;1045:459–75. doi: 10.1007/978-981-10-7230-7_21.
  24. Takada H, Imadome KI, Shibayama H, et al. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells. PLoS One. 2017;12(3):e0174136. doi: 10.1371/journal.pone.0174136.
  25. Okuno Y, Murata T, Sato Y, et al. Defective Epstein-Barr virus in chronic active infection and haematological malignancy. Nat Microbiol. 2019;4(3):404–13. doi: 10.1038/s41564-018-0334-0.
  26. Katano H, Ali MA, Patera AC, et al. Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation. 2004;103(4):1244–52. doi: 10.1182/blood-2003-06-2171.
  27. Beer T, Dorion P. Angioimmunoblastic T-Cell Lymphoma Presenting with an Acute Serologic Epstein-Barr Virus Profile. Hematol Rep. 2015;7(2):5893. doi: 10.4081/hr.2015.5893.
  28. Steciuk MR, Massengill S, Banks PM. In immunocompromised patients, Epstein-Barr virus lymphadenitis can mimic angioimmunoblastic T-cell lymphoma morphologically, immunophenotypically, and genetically: a case report and review of the literature. Hum Pathol. 2012;43(1):127–33. doi: 10.1016/j.humpath.2011.02.024.
  29. Chiba S, Sakata-Yanagimoto M. Advances in understanding of angioimmunoblastic T-cell lymphoma. 2020;34(10):2592–606. doi: 10.1038/s41375-020-0990-y.
  30. Yabe M, Dogan A, Horwitz SM, Moskowitz AJ. Angioimmunoblastic T-Cell Lymphoma. In: Querfeld C, Zain J, Rosen S, eds. T-Cell and NK-Cell Lymphomas. Cancer Treatment and Research. Springer; Vol. 176. pp. 99–126. doi: 10.1007/978-3-319-99716-2_5.
  31. Kato S, Takahashi E, Asano N, et al. Nodal cytotoxic molecule (CM)-positive Epstein-Barr virus (EBV)-associated peripheral T cell lymphoma (PTCL): a clinicopathological study of 26 cases. 2012;61(2):186–99. doi: 10.1111/j.1365-2559.2012.04199.x.
  32. Jeon YK, Kim J-H, Sung J-Y, et al.; Hematopathology Study Group of the Korean Society of P. Epstein-Barr virus-positive nodal T/NK-cell lymphoma: an analysis of 15 cases with distinct clinicopathological features. Hum Pathol. 2015;46(7):981–90. doi: 10.1016/j.humpath.2015.03.002.
  33. Takahashi E, Asano N, Li C, et al. Nodal T/NK-cell lymphoma of nasal type: a clinicopathological study of six cases. 2008;52(5):585–96. doi: 10.1111/j.1365-2559.2008.02997.x.
  34. Ng SB, Chung TH, Kato S, et al. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. 2018;103(2):278–87. doi: 10.3324/haematol.2017.180430.
  35. Edwards ESJ, Bier J, Cole TS, et al. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation and function and EBV immunity. J Allergy Clin Immunol. 2019;143(1):276–291.e6. doi: 10.1016/j.jaci.2018.04.030.
  36. Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev. 2019;291(1):174–89. doi: 10.1111/imr.12791.
  37. Files JK, Boppana S, Perez MD, et al. Sustained cellular immune dysregulation in individuals recovering from SARS-CoV-2 infection. J Clin Invest. 2021;131(1):e140491. doi: 10.1172/JCI140491.
  38. Liu J, Yang X, Wang H, et al. The analysis of the long-term impact of SARS-CoV-2 on the cellular immune system in individuals recovering from COVID-19 reveals a profound NK/T cell impairment. mBio. 2021 (Preprint). doi: 10.1101/2020.08.21.20179358.
  39. Kovoor JG, Scott NA, Tivey DR, et al. Proposed delay for safe surgery after COVID-19. ANZ J Surg. 2021;91(4):495–506. doi: 10.1111/ans.16682.
  40. Dematapitiya C, Perera C, Chinthaka W, et al. Cold type autoimmune hemolytic anemia – a rare manifestation of infectious mononucleosis; serum ferritin as an important biomarker. BMC Infect Dis. 2019;19(1):68. doi: 10.1186/s12879-019-3722-z.
  41. Teijido J, Tillotson K, Liu JM. A Rare Presentation of Epstein-Barr Virus Infection. J Emerg Med. 2020;58(2):e71-e73. doi: 10.1016/j.jemermed.2019.11.043.
  42. Whitelaw F, Brook MG, Kennedy N, Weir WR. Haemolytic anaemia complicating Epstein-Barr virus infection. Br J Clin Pract. 1995;49(4):212–3.
  43. Aveiro M, Ferreira G, Matias C, et al. Hard-To-Treat Idiopathic Refractory Autoimmune Haemolytic Anaemia with Reticulocytopenia. Eur J Case Rep Intern Med. 2020;7(12):002112. doi: 10.12890/2020_002112.
  44. Fattizzo B, Giannotta JA, Serpenti F, Barcellini W. Difficult Cases of Autoimmune Hemolytic Anemia: A Challenge for the Internal Medicine Specialist. J Clin Med. 2020;9(12):3858. doi: 10.3390/jcm9123858.
  45. Barcellini W, Fattizzo B, Zaninoni A, et al. Clinical heterogeneity and predictors of outcome in primary autoimmune hemolytic anemia: a GIMEMA study of 308 patients. 2014;124(19):2930–6. doi: 10.1182/blood-2014-06-583021.
  46. Barcellini W, Fattizzo B. Clinical Applications of Hemolytic Markers in the Differential Diagnosis and Management of Hemolytic Anemia. Dis Markers. 2015;2015:635670. doi: 10.1155/2015/635670.
  47. Fink S, Tsai MH, Schnitzler P, et al. The Epstein–Barr virus DNA load in the peripheral blood of transplant recipients does not accurately reflect the burden of infected cells. Transpl Int. 2017;30(1):57–67. doi: 10.1111/tri.12871.
  48. Andrei G, Trompet E, Snoeck R. Novel Therapeutics for Epstein-Barr Virus. 2019;24(5):997. doi: 10.3390/molecules24050997.