Актуальные вопросы канцерогенеза

И.В. Высоцкая1, В.П. Летягин2, М.А. Шабанов2, В.Ю. Кирсанов1, Е.А. Ким1, Н.В. Левкина1

1 ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России, ул. Трубецкая, д. 8, стр. 2, Москва, Российская Федерация, 119991

2 ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Ирина Викторовна Высоцкая, д-р мед. наук, профессор, ул. Трубецкая, д. 8, стр. 2, Москва, Российская Федерация, 119991; e-mail: vysotskaya.irina@mail.ru

Для цитирования: Высоцкая И.В., Летягин В.П., Шабанов М.А. и др. Актуальные вопросы канцерогенеза. Клиническая онкогематология. 2019;12(1):101–6.

DOI: 10.21320/2500-2139-2019-12-1-101-106


РЕФЕРАТ

В обзоре приведены современные данные об основных патогенетических механизмах, обусловливающих неконтролируемый рост и метастазирование опухоли, развитие ее резистентности к традиционным методам терапии. Генетическая нестабильность клетки, связанная с накоплением мутаций в генах контроля клеточного роста и дифференцировки, является ключевым моментом опухолевой прогрессии. Понимание и детальное изучение процессов канцерогенеза лежит в основе создания новых противоопухолевых препаратов, что, в свою очередь, позволяет оптимизировать и индивидуализировать лечение пациентов с онкологическими заболеваниями.

Ключевые слова: канцерогенез, инициация, промоция, репарация, протоонкогены, гены-супрессоры, Ras, TP53, таргетная терапия.

Получено: 27 июня 2018 г.

Принято в печать: 20 декабря 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Лихтенштейн А.В., Шапот В.С. Опухолевый рост: ткани, клетки, молекулы. Патологическая физиология. 1997;3:35–48.

    [Likhtenshtein AV, Shapot VS. Tumor growth: tissues, cells, molecules. Patologicheskaya fiziologiya. 1997;3:35–48. (In Russ)]

  2. Вельшер Л.З., Матякин Е.Г., Дудицкая Т.К., Поляков Б.И. Онкология: учебник для вузов. М.: ГЭОТАР-Медиа, 2009. 512 с.

    [Vel’sher LZ, Matyakin EG, Duditskaya TK, Polyakov BI. Onkologiya: uchebnik dlya vuzov. (Oncology: textbook for universities.) Moscow: GEOTAR-Media Publ.; 512 p. (In Russ)]

  3. Имянитов Е.Н., Хансон К.П. Молекулярная онкология: клинические аспекты. СПб.: МАПО, 2007. 211 с.

    [Imyanitov EN, Khanson KP. Molekulyarnaya onkologiya: klinicheskie aspekty. (Molecular oncology: clinical aspects.) Saint Petersburg: MAPO Publ.; 2007. 211 p. (In Russ)]

  4. Черезов А.Е. Общая теория рака: тканевый подход. М.: Изд-во МГУ, 1997. 252 с.

    [Cherezov AE. Obshchaya teoriya raka: tkanevyi podkhod. (General theory of cancer: tissue approach.) Moscow: MGU Publ.; 1997. 252 p. (In Russ)]

  5. Рукавишников А.И. Азбука рака. Волгоград: Изд-во ВГМУ, 360 с.

    [Rukavishnikov AI. Azbuka raka. (The ABCs of cancer.) Volgograd: VGMU Publ.; 2007. 360 p. (In Russ)]

  6. Лекции по общей патологической анатомии. Под ред. М.А. Пальцева. М., 2003. 254 с.

    [Pal’tsev MA, ed. Lektsii po obshchei patologicheskoi anatomii. (Lectures on general pathological anatomy.) Moscow; 20 254 p. (In Russ)]

  7. Ермоленко А.Е. Этиологическая классификация опухолей и механизмы канцерогенеза. Математическая морфология: электронная математика и медико-биологический журнал. 2012;1(2):24–34.

    [Ermolenko AE. The etiological classification of tumors and the mechanisms of carcinogenesis. Matematicheskaya morfologiya: Elektronnyi matematicheskii i mediko-biologicheskii zhurnal. 2012;1(2):24–34. (In Russ)]

  8. Патологоанатомическая диагностика опухолей человека: руководство в 2 томах. Под ред. Н.А. Краевского, А.В. Смольянникова, Д.С. Саркисова. М.: Медицина, 1993.

    [Kraevskii, NA, Smol’yannikov AV, Sarkisov DS, Patologoanatomicheskaya diagnostika opukholei cheloveka: rukovodstvo v 2 tomakh (Pathology diagnostics of human tumors: guidelines in 2 volumes.) Moscow: Meditsina Publ.; 1993. (In Russ)]

  9. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971;68(4):820–3. doi: 10.1073/pnas.68.4.820.

  10. Гарькавцева Р.Ф., Гарькавцев И.В. Молекулярно-генетические аспекты злокачественных новообразований. Вестник РАМН. 1999;2:38–44.

    [Gar’kavtseva RF, Gar’kavtsev IV. Molecular genetic aspects of malignant neoplasms. Vestnik RAMN. 1999;2:38–44. (In Russ)]

  11. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability – an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220–8. doi: 1038/nrm2858.

  12. Павлов В.Н., Измайлов А.А., Викторова Т.В. и др. Генетические факторы риска развития рака мочевого пузыря. Экспериментальная и клиническая урология. 2010;2:25–31.

    [Pavlov VN, Izmailov AA, Viktorova TV, et al. Genetic risk factors in the development of bladder cancer. Eksperimental’naya i klinicheskaya urologiya. 2010;2:25–31. (In Russ)]

  13. Webb СР, Vande Woude GF. Genes that regulate metastases and angiogenesis. J Neurooncol. 2000;50(1–2):71–87.

  14. Новик А.А., Новик Т.А., Камилова А.А., Цыган В.Н. Генетика в клинической медицине. СПб.: ВМедА, 2001. 219 с.

    [Novik AA, Novik TA, Kamilova AA, Tsygan VN. Genetika v klinicheskoi meditsine. (Genetics in clinical medicine.) Saint Petersburg: VMedA Publ.; 2001. 219 p. (In Russ)]

  15. Аничков Н.М., Плотникова Н.А. О морфологии и классификации опухолеподобных и раковых поражений предстательной железы. Архив патологии. 2001;63(5):44–50.

    [Anichkov NM, Plotnikova NA. On the morphology and classification of prostate tumors and cancerous lesions. Arkhiv patologii. 2001;63(5):44–50. (In Russ)]

  16. Лихтенштейн А.В. Исследования рака: бег с препятствиями. Биохимия. 2014;79(5):493–500.

    [Likhtenshtein AV. Cancer research: a hurdle race. Biokhimiya. 2014;79(5):493–500. (In Russ)]

  17. Копнин Б.П. Мишени действия онкогенов и опухолевых супрессоров: ключ к пониманию базовых механизмов канцерогенеза. Биохимия. 2000;65(1):5–33.

    [Kopnin BP. Targets of oncogenes and tumor suppressors: the key to understanding basic mechanisms of carcinogenesis. 2000;65(1):5–33. (In Russ)]

  18. Рак предстательной железы. Под ред. Н.Е. Кушлинского, Ю.Н. Соловьева, М.Ф. Трапезниковой. М.: Изд-во РАМН, 2002. 432 c.

    [Kushlinskii NE, Solov’ev YuN, Trapeznikova MF, eds. Rak predstatel’noi zhelezy. (Prostate cancer.) Moscow: RAMN Publ.; 432 р. (In Russ)]

  19. Кушлинский Н.Е., Немцова М.В. Молекулярно-биологические характеристики злокачественных новообразований. Вестник РАМН. 2014;69(1–2):5–15. doi: 10.15690/vramn.v69i1-2.934.

    [Kushlinskii NE, Nemtsova MV. Molecular biological characteristics of cancer. Annals of the Russian academy of medical sciences. 2014;69(1–2):5–15. doi: 10.15690/vramn.v69i1-2.934. (In Russ)]

  20. Зильбер Л.А. Специфические антигены опухолей. Успехи в изучении рака. М.: Изд-во иностранной литературы, 1960. С. 186–277.

    [Zil’ber LA. Spetsificheskie antigeny opukholei. Uspekhi v izuchenii raka. (Tumor-specific antigens. Advances in cancer research.) Moscow: Inostrannaya Literatura Publ.; рр. 186–277. (In Russ)]

  21. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007;7(11):834–46. doi: 11038/nrc2256.

  22. Coghlin C, Murray GI. Current and emerging concepts in tumour metastasis. J Pathol. 2010;222(1):1–15. doi: 1002/path.2727.

  23. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18(6):884–901. doi: 1016/j.devcel.2010.05.012.

  24. Williams GM. Mechanisms of chemical carcinogenesis and application in human cancer risk assessment. Toxicology. 2001;166(1–2):3–10. doi:1016/s0300-483x(01)00442-5.

  25. Аничков Н.М. Биологические и клинико-морфологические аспекты учения о метастазировании злокачественных опухолей. Медицинский академический журнал. 2003;1:3–13.

    [Anichkov NM. Biological and morphological aspects of the doctrine of metastasis of malignant tumors. Meditsinskii akademicheskii zhurnal. 2003;1:3–13. (In Russ)]

  26. Худолей В.В. Канцерогены: характеристики, закономерности, механизмы действия. СПб.: Изд-во СПбГУ, 1999. 419 с.

    [Khudolei VV. Kantserogeny: kharakteristiki, zakonomernosti, mekhanizmy deistviya. (Carcinogens: characteristics, patterns, mechanisms of action.) Saint Petersburg: SPbGU Publ.; 1999. 419 p. (In Russ)]

  27. Aльтштейн А.Д. Вирусный канцерогенез и роль вирусов в возникновении опухолей человека. В кн.: Канцерогенез. Под ред. Д.Г. Заридзе. М.: Медицина, 2004. С. 251–74.

    [Al’tshtein AD. Viral carcinogenesis and the role of viruses in the occurrence of human tumors. In: Zaridze DG, ed. Kantserogenez. (Carcinogenesis.) Moscow: Meditsina Publ.; 2004. рр. 251–74. (In Russ)]

  28. Киселев Ф.Л. Онкогенный потенциал вирусов и механизмы его проявления. В кн.: Канцерогенез. Под ред. Д.Г. Заридзе. М.: Медицина. С. 274–87.

    [Kiselev FL. Oncogenic potential of viruses and mechanisms of its manifestation. In: Zaridze DG, ed. Kantserogenez. (Carcinogenesis.) Moscow: Meditsina Publ.; 2004. рр. 274–87. (In Russ)]

  29. Hausen H. Infections causing human cancers. New York: Wiley-VCH, Weinheim; 2006. 517 p.

  30. Fernandez AF, Rosales C, Lopez-Nieva P. et al. The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genome Res. 2009;19(3):438–51. doi: 1101/gr.083550.108.

  31. Fernandez A, Esteller M. Viral epigenomes in human tumorigenesis. Oncogene. 2010;29(10):1405–20. doi: 1038/onc.2009.517.

  32. Junttila MR, Evan GL. p53 – a Jack of all trades but master of none. Nat Rev Cancer. 2009;9(11);821–9. doi: 1038/nrc2728.

  33. Bertram JS. The molecular biology of cancer. Mol Aspects Med. 2001;21(6):167–223. doi: 10.1016/s0098-2997(00)00007-8.

  34. Плешкан В.В., Алексеенко И.В., Зиновьева М.В. и др. Промоторы со специфической активностью в раковых клетках при генной терапии меланомы. Acta Naturae. 2011;3(2):14–23.

    [Pleshkan VV, Alekseenko IV, Zinov’eva MV. Promoters with cancer cell-specific activity for melanoma gene therapy. Acta Naturae. 2011;3(2):14–23. (In Russ)]

  35. Burdall SE, Hanby AM, Lansdown MR, Speirs V. Breast cancer cell lines: friend or foe? Breast Cancer Res. 2003;5(2):89–95. doi: 10.1186/bcr577.

  36. Ковалева О.В., Назарова О.Р., Матвеев В.Б., Грачев А.Н. Молекулярные особенности почечно-клеточного рака: ранняя диагностика и перспективы терапии. Успехи молекулярной онкологии. 2014;1(2):36–43.

    [Kovaleva OV, Nazarova OR, Matveev VB, Grachev AN. Molecular features of renal cell carcinoma: early diagnosis and perspectives for therapy. Uspekhi molekulyarnoi onkologii. 2014;1(2):36–43. (In Russ)]

  37. Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. 2011;476(7359):163–9. doi: 10.1038/nature10275.

  38. Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009;23(5):537–48. doi: 1101/gad.1756509.

  39. Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19(5):698–711. doi: 1016/j.devcel.2010.10.005.

  40. Артамонова Е.В., Огнерубов Н.А., Тупицын Н.Н., Летягин В.П. Рак молочной железы: иммунологические факторы прогноза. Воронеж: Изд-во ВГУ, 2005. 240 с.

    [Artamonova EV, Ognerubov NA, Tupitsyn NN, Letyagin VP. Rak molochnoi zhelezy: immunologicheskie faktory prognoza. (Breast cancer: immunological prognostic) Voronezh: VGU Publ.; 2005. 240 p. (In Russ)]

  41. Артамонова Е.В. Иммунологическая микрогетерогенность РМЖ: Дис.… канд. мед. наук. М., 1992.

    [Artamonova EV. Immunologicheskaya mikrogeterogennost’ raka molochnoi zhelezy. (Immunological microheterogeneity of breast cancer.) [dissertation] Moscow; 1992. (In Russ)]

  42. Тешелова В.Т. Канцерогенез и активация периферических лимфоцитов. Успехи современной биологии. 2003;123(5):495–505.

    [Teshelova VT. Carcinogenesis and activation of peripheral lymphocytes. Uspekhi sovremennoi biologii. 2003;123(5):495–505. (In Russ)]

  43. Bindea G, Mlecnik B, Fridman WH. Natural immunity to cancer in humans. Curr Opin Immunol. 2010;22(2):215–22. doi: 1016/j.coi.2010.02.006.

  44. Grivennikov S, Greten FR, Karin M. Immunity, inflammation and cancer. Cell. 2010;140(6):883–99. doi: 1016/j.cell.2010.01.025.

  45. Mougiakakos D, Choudhury A, Lladser A, et al. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117. doi: 1016/S0065-230X(10)07003-X.

  46. Brabletz T, Jung A, Spaderna S, et al. Migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5(9):744–9. doi: 1038/nrc1694.

  47. Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med. 2009;15(9):1010–2. doi: 1038/nm0909-1010.

  48. Semenza GL. Tumor metabolism: cancer cells give and take lactate. J Clin Invest. 2008;118(12):3835–7. doi: 1172/JCI37373.

  49. Sleeman JP. The metastatic niche and stromal progression. Cancer Metast Rev. 2012;31(3–4):429–40. doi: 1007/s10555-012-9373-9.

  50. Straus DC, Thomas JM. Transmission of donor melanoma by organ transplantation. Lancet Oncol. 2010;11(8):790–6. doi: 1016/S1470-2045(10)70024-3.

  51. Gazdar AF, Girard L, Lockwood WW, et al. Lung cancer cell lines as tools for biomedical discovery and research. J Natl Cancer Inst. 2010;102(17):1310–21. doi: 1093/jnci/djq279.

Аутофагия: клеточная гибель или способ выживания?

О.В. Ковалева, М.С. Шитова, И.Б. Зборовская

ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва, Российская Федерация


РЕФЕРАТ

Взаимодействие процессов пролиферации, дифференцировки и гибели клеток служит неотъемлемой частью жизнедеятельности многоклеточных организмов. Нарушение баланса между этими процессами лежит в основе развития многих заболеваний человека. Понимание их молекулярных механизмов необходимо для поиска новых диагностических и терапевтических мишеней. В последнее десятилетие большой интерес у ученых вызывает процесс аутофагии и ее роль в жизнедеятельности клетки как в норме, так и при патологии. Аутофагия — это процесс утилизации клеточных органелл и макромолекул. Аутофагия сопровождает жизнедеятельность любой нормальной клетки в обычных условиях. Однако при определенных обстоятельствах аутофагия может приводить к клеточной гибели. Нарушения аутофагии играют роль в развитии онкологических, мышечных и нейродегенеративных заболеваний, кардиомиопатии и др.


Ключевые слова: апоптоз, аутофагия, канцерогенез

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Galluzzi L., Vitale I., Abrams J.M. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012; 19(1): 107–20.
  2. Kerr J.F., Wyllie A.H., Currie A.R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 1972; 26: 239–57.
  3. Wong R.S. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011; 26: 30–87.
  4. Hu Y., Benedict M.A., Ding L., Nunez G. Role of cytochrome c and dATP/ ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J. 1999; 18: 3586–95.
  5. Saelens X., Festjens N., Vande Walle L. et al. Toxic proteins released from mitochondria in cell death. Oncogene 2004; 23(16): 2861–74.
  6. Altieri D.C. Surviving in apoptosis control and cell cycle regulation in cancer. Prog. Cell Cycle Res. 2003; 5: 447–52.
  7. Tamm I., Wang Y., Sausville E. et al. IAP-family protein surviving inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 1998; 58(23): 5315–20.
  8. Padanilam B.J. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am. J. Physiol. Renal. Physiol. 2003; 284(4): F608–27.
  9. Hoste E., Kemperman P., Devos M. et al. Caspase-14 is required for filaggrin degradation to natural moisturizing factors in the skin. J. Invest. Dermatol. 2011; 131(11): 2233–41.
  10. Levine B., Klionsky D.J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 2004; 6(4): 463–77.
  11. Okada H., Mak T.W. Pathways of apoptotic and non-apoptotic death in tumor cells. Nat. Rev. Cancer 2004; 4(8): 592–603.
  12. Kaminskyy V., Zhivotovsky B. Proteases in autophagy. Biochimica er Biophysica Acta. 2012; 1824: 44–50.
  13. Mijaljica D., Prescott M., Devenish R.J. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy 2011; 7: 673–82.
  14. Klionsky DJ., Codogno P., Cuervo A.M. et al. A comprehensive glossary of autophagy-related molecules and processes. Autophagy 2010; 6(4): 438–48.
  15. Massey A.C., Zhang C., Cuervo A.M. Chaperone-mediated autophagy in aging and disease. Curr. Top. Dev. Biol. 2006; 73: 205–35.
  16. Kimmelman A.C. The dynamic nature of autophagy in cancer. Genes Dev. 2011; 25(19): 1999–2010.
  17. Reggiori F., Tucker K.A., Stromhaug P.E., Klionsky D.J. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev. Cell 2004; 6(1): 79–90.
  18. Wang C.W., Klionsky D.J. The molecular mechanism of autophagy. Mol. Med. 2003; 9: 65–76.
  19. Teter S.A., Klionsky D.J. Transport of proteins to the yeast vacuole: autophagy, cytoplasm-to-vacuole targeting, and role of the vacuole in degradation. Semin. Cell Dev. Biol. 2000; 11(3): 173–9.
  20. Chen N., Debnath J. Autophagy and Tumorigenesis. FEBS Lett. 2010; 584(7): 1427–35.
  21. Guertin D.A., Sabatini D.M. Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9–22.
  22. He C., Klionsky D.J. Regulation Mechanisms and Signaling Pathways of Autophagy. Annu. Rev. Genet. 2009; 43: 67–93.
  23. Zhou H., Huang S. The complexes of mammalian target of rapamycin. Curr. Protein Pept. Sci. 2010; 11: 409–24.
  24. Teter T., Hall M.N. TOR, a central controller of cell growth. Cell 2000; 103(2): 253–62.
  25. Tee A.R., Manning B.D., Roux P.P., Cantley L.C., Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 2003; 13: 1259–68.
  26. Shackelford D.B., Shaw R.J. The LKB1-AMPK pathway: metabolism and growth control in tumor suppression. Nat. Rev. Cancer 2009; 9: 563–75.
  27. Liang J., Shao SH., Xu Z.X. et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 2007; 9: 218–24.
  28. Feng Z., Hu W., Stanchina E. et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 2007; 67: 3043–53.
  29. Mortensen M., Watson A.S., Simon A.K. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation. Autophagy 2011; 7(9): 1069–70.
  30. Mortensen M., Soilleux E.J., Djordjevic G. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med. 2011; 208: 455–67.
  31. Pua H.H., Komatsu M., He Y.W. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 2009; 182: 4046–55.
  32. Pua H.H., Dzhagalov I., Chuck M. et al. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 2007; 204: 25–31.
  33. Pua H.H., He Y.W. Maintaining T lymphocyte homeostasis: another duty of autophagy. Autophagy 2007; 3: 266–7.
  34. Miller B.C., Zhao Z., Stephenson L.M. et al. The autophagy gene Atg5 plays an essential role in B lymphocyte development. Autophagy 2008; 4: 309–14.
  35. Novak I., Kirkin V., McEwan D.G. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010; 11(1): 45–51.
  36. Kundu M., Lindsten T., Yang C.Y. et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 2008; 112: 1493–502.
  37. Raslova H., Kauffmann A., Sekkai D. et al. Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach. Blood. 2007; 109: 3225–34.
  38. Delgado M.A., Elmaoued R.A., Davis A.S., Kyei G., Deretic V. Toll-like receptors control autophagy. EMBO J. 2008; 27: 1110–21.
  39. Shi C.S., Kehrl J.H. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem. 2008; 283: 33175–82.
  40. Xu Y., Jagannath C., Liu X.D. et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity. 2007; 27: 135–44.
  41. Канцерогенез. Под ред. Д.Г. Заридзе. М.: Медицина, 2004. [Kantserogenez. Pod red. D.G. Zaridze (Carcinogenesis. Ed. by: D.G. Zaridze). M.: Meditsina, 2004.]
  42. Liang X.H., Jackson S., Seaman M. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672–6.
  43. Yue Z., Jin S., Yang C., Levine A.J., Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. U S A 2003; 100: 15077–82.
  44. Qu X., Yu J., Bhagat G. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 2003; 112: 1809–20.
  45. Karantza-Wadsworth V., Patel S., Kravchuk O. et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 2007; 21: 1621–35.
  46. Meek D.W. Tumor suppression by p53: a role for the DNA damage response? Nat. Rev. Cancer 2009; 9: 714–23.
  47. Degenhardt K., Mathew R., Beaudoin B. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006; 10: 51–64.
  48. DeNardo D., Johansson M., Coussens L. Immune cells as mediators of solid tumor metastasis. Cancer Metast. Rev. 2008; 27: 11–8.
  49. DeNardo D.G., Barreto J.B., Andreu P. et al. CD4+ T Cells Regulate Pulmonary Metastasis of Mammary Carcinomas by Enhancing Protumor Properties of Macrophages. Cancer Cell 2009; 16: 91–102.
  50. Bingle L., Brown N.J., Lewis C.E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 2002; 196: 254–65.
  51. Young A.R., Narita M., Ferreira M. et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 2009; 23: 798–803.
  52. Petiot A., Ogier-Denis E., Blommaart E.F., Meijer AJ., Codogno P. Distinct classes of phosphatidylinositol 3¢-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 2000; 275: 992–8.
  53. Luiken J.J., Aerts J.M., Meijer A.J. The role of the intralysosomal pH in the control of autophagic proteolytic flux in rat hepatocytes. Eur. J. Biochem. 1996; 235: 564–73.
  54. Yamamoto A., Tagawa Y., Yoshimori T. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 1998; 23: 33–42.
  55. Ito H., Daido S., Kanzawa T., Kondo S., Kondo Y. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int. J. Oncol. 2005; 26: 1401–10.
  56. Lomonaco S.L., Finniss S., Xiang C. et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int. J. Cancer 2009; 125: 717–22.
  57. Shingu T., Fujiwara K., Bogler O. et al. Stage-specific effect of inhibition of autophagy on chemotherapy-induced cytotoxicity. Autophagy 2009; 5: 537–9.
  58. Vazquez-Martin A., Oliveras-Ferraros C., Menendez J.A. Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab. PLoS One 2009; 4: e6251.
  59. Abedin M.J., Wang D., McDonnell M.A., Lehmann U., Kelekar A. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ. 2007; 14: 500–10.
  60. Kim R.H., Coates J.M., Bowles T.L. et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 2009; 69: 700–8.
  61. Bellodi C., Lidonnici M.R., Hamilton A. et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosomepositive cells, including primary CML stem cells. J. Clin. Invest. 2009; 119: 1109–23.
  62. Carew J.S., Nawrocki S.T., Kahue C.N. et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 2007; 10: 313–22.
  63. Ertmer A., Huber V., Gilch S. et al. The anticancer drug imatinib induces cellular autophagy. Leukemia 2007; 21: 936–42.
  64. Kamitsuji Y., Kuroda J., Kimura S. et al. The Bcr-Abl kinase inhibitor INNO-406 induces autophagy and different modes of cell death execution in Bcr-Abl-positive leukemias. Cell Death Differ. 2008; 15: 1712–22.
  65. Goussetis D.J., Altman J.K., Glaser H. et al. Autophagy is a critical mechanism for the induction of the antileukemic effects of arsenic trioxide. J. Biol. Chem. 2010; 285: 29989–97.
  66. Qian W., Liu J., Jin J. et al. Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk. Res. 2007; 31: 329–39.
  67. Charoensuk V., Gati WP., Weinfeld M. et al. Differential cytotoxic effects of arsenic compounds in human acute promyelocytic leukemia cells. Toxicol. Appl. Pharmacol. 2009; 239: 64–70.
  68. Chiarini F., Grimaldi C., Ricci F. et al. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVPBEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res. 2010; 70: 8097–107.
  69. Crazzolara R., Bradstock K.F., Bendall L.J. RAD001 (everolimus) induces autophagy in acute lymphoblastic leukemia. Autophagy 2009; 5: 727–8.
  70. Crazzolara R., Cisterne A., Thien M. et al. Potentiating effects of RAD001 (everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood 2009; 113: 3297–306.
  71. Puissant A., Auberger P. AMPK- and p62/SQSTM1-dependent autophagy mediate resveratrol-induced cell death in chronic myelogenous leukemia. Autophagy 2010; 6(5): 655–7.
  72. Puissant A., Robert G., Fenouille N. et al. Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK mediated p62/SQSTM1 expression and AMPK activation. Cancer Res. 2010; 70: 1042–52.
  73. Kroemer G., Levine B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 2008; 9: 1004–10.
  74. Turcotte S., Chan D.A., Sutphin P.D. et al. A molecule targeting VHLdeficient renal cell carcinoma that induces autophagy. Cancer Cell. 2008; 14: 90–102.
  75. Kanzawa T., Germano I.M., Komata T. et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004; 11: 448–57.