Биология миелопролиферативных новообразований

А.Л. Меликян, И.Н. Суборцева

ФГБУ «Гематологический научный центр» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Ирина Николаевна Суборцева, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(495)612-44-71; e-mail: soubortseva@yandex.ru

Для цитирования: Меликян А.Л., Суборцева И.Н. Биология миелопролиферативных новообразований. Клиническая онкогематология. 2016;9(3):314-25.

DOI: 10.21320/2500-2139-2016-9-3-314-325


РЕФЕРАТ

Хронические миелопролиферативные заболевания (ВОЗ, 2001), или миелопролиферативные новообразования/опухоли (МПН) (ВОЗ, 2008), являются клональными заболеваниями, характеризуются пролиферацией одной или более клеточной линии миелопоэза в костном мозге с признаками сохраняющейся терминальной дифференцировки и, как правило, сопровождаются изменениями показателей крови. В группу классических Ph-негативных МПН отнесены истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз и МПН неклассифицируемое. Приобретенные соматические мутации, лежащие в основе патогенеза Ph-негативных МПН, представлены мутациями генов JAK2 (V617F, экзон 12), MPL, CALR. Мутации перечисленных генов наблюдаются примерно у 90 % больных. Однако данные молекулярные события не являются уникальными в патогенезе заболеваний. Мутации других генов (ТЕТ2, ASXL1, CBL, IDH1/IDH2, IKZF1, DNMT3A, SOCS, EZH2, TP53, RUNX1 и HMGA2) принимают участие в формировании фенотипа заболевания. В настоящем обзоре описываются современные представления о молекулярной биологии МПН.


Ключевые слова: хронические миелопролиферативные заболевания, миелопролиферативные новообразования, истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз, ген JAK2, ген CALR, ген MPL.

Получено: 11 апреля 2016 г.

Принято в печать: 11 апреля 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol. 2011;29(6):761–70. doi: 10.1200/jco.2010.31.8436.
  2. Tefferi A, Thiele J, Vardiman JW. The 2008 World Health Organization classification system for myeloproliferative neoplasms: order out of chaos. Cancer. 2009;115(17):3842–7. doi: 10.1002/cncr.24440.
  3. Barosi G. Essential thrombocythemia vs. early/prefibrotic myelofibrosis: why does it matter. Best Pract Res Clin Haematol. 2014;27(2):129–40. doi: 10.1016/j.beha.2014.07.004.
  4. Vannucchi AM. Management of myelofibrosis. Am Soc Hematol Educ Program. 2011;2011(1):222–30. doi:10.1182/asheducation-2011.1.222.
  5. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  6. Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/jco.2010.32.2446.
  7. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  8. Tefferi A. How I treat myelofibrosis. Blood. 2011;117(13):3494–504. doi: 10.1182/blood-2010-11-315614.
  9. Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28(7):1494–500. doi: 10.1038/leu.2014.57.
  10. Agarwal MB, Malhotra H, Chakrabarti P, et al. Myeloproliferative neoplasms working group consensus recommendations for diagnosis and management of primary myelofibrosis, polycythemia vera, and essential thrombocythemia. Indian J Med Paediatr Oncol. 2015;36(1):3–16. doi: 10.4103/0971-5851.151770.
  11. Campregher PV, Santos FP, Perini GF, Hamerschlak N. Molecular biology of Philadelphia-negative myeloproliferative neoplasms. Rev Bras Hematol Hemoter. 2012;34(2):150–5. doi: 10.5581/1516-8484.20120035.
  12. Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–87. doi: 10.1111/j.1600-065X.2008.00754.x.
  13. Liu KD, Gaffen SL, Goldsmith MA. JAK/STAT signaling by cytokine receptors. Curr Opin Immunol. 1998;10(3):271–8. doi: 10.1016/s0952-7915(98)80165-9.
  14. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24(6):1128–38. doi: 10.1038/leu.2010.69.
  15. Riedy MC, Dutra AS, Blake TB, et al. Genomic sequence, organization, and chromosomal localization of human JAK3. Genomics. 1996;37(1):57–61. doi: 10.1006/geno.1996.0520.
  16. Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002;277(49):47954–63. doi: 10.1074/jbc.M205156200.
  17. Benekli M, Baer MR, Baumann H, Wetzler M. Signal transducer and activator of transcription proteins in leukemias. Blood. 2003;101(8):2940–54. doi: 10.1182/blood-2002-04-1204.
  18. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011;118(7):1723–35. doi: 10.1182/blood-2011-02-292102.
  19. Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108(5):1652–660. doi: 10.1182/blood-2006-02-002030.
  20. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi: 10.1038/nature03546.
  21. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90. doi: 10.1056/NEJMoa051113.
  22. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97. doi: 10.1016/j.ccr.2005.03.023.
  23. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. The Lancet. 2005;365(9464):1054–61. doi: 10.1016/S0140-6736(05)71142-9.
  24. Butcher CM, Hahn U, To LB, et al. Two novel JAK2 exon 12 mutations in JAK2V617F-negative polycythaemia vera patients. Leukemia. 2008;22(4):870–3. doi: 10.1038/sj.leu.2404971.
  25. Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocyticleukemia. Blood. 2005;106(10):3370–3. doi: 10.1182/blood-2005-05-1800.
  26. Pich A, Riera L, Sismondi F, et al. JAK2V617F activating mutation is associated with the myeloproliferative type of chronic myelomonocytic leukaemia. J Clin Pathol. 2009;62(9):798–801. doi: 10.1136/jcp.2009.065904.
  27. Johan MF, Goodeve AC, Bowen DT, et al. JAK2 V617F Mutation is uncommon in chronic myelomonocytic leukaemia. Br J Haematol. 2005;130(6):968. doi: 10.1111/j.1365-2141.2005.05719.x.
  28. Renneville A, Quesnel B, Charpentier A, et al. High occurrence of JAK2 V617 mutation in refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Leukemia. 2006;20(11):2067–70. doi: 10.1038/sj.leu.2404405.
  29. Verstovsek S, Silver RT, Cross NC, Tefferi A. JAK2V617F mutational frequency in polycythemia vera: 100%, > 90%, less? Leukemia. 2006;20(11):2067. doi:10.1038/sj.leu.2404379.
  30. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007;110(3):840–6. doi: 10.1182/blood-2006-12-064287.
  31. Barosi G, Bergamaschi G, Marchetti M, et al. JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis. Blood. 2007;110(12):4030–6. doi: 10.1182/blood-2007-07-099184.
  32. Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861–9. doi: 10.1038/leu.2013.119.
  33. Lussana F, Caberlon S, Pagani C, et al. Association of V617F Jak2 mutation with the risk of thrombosis among patients with essential thrombocythaemia or idiopathic myelofibrosis: a systematic review. Thromb Res. 2009;124(4):409–17. doi: 10.1016/j.thromres.2009.02.004.
  34. Wang M, He N, Tian T, et al. Mutation analysis of JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in Chinese patients with myeloproliferative neoplasms. BioMed Res Int. 2014;2014:485645. doi: 10.1155/2014/485645.
  35. Passamonti F, Thiele J, Girodon F, et al. A prognostic model to predict survival in 867 World Health Organization-defined essential thrombocythemia at diagnosis: a study by the International Working Group on Myelofibrosis Research and Treatment. Blood. 2012;120(6):1197–201. doi: 10.1182/blood-2012-01-403279.
  36. Barbui T, Carobbio A, Rambaldi A, Finazzi G. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: is leukocytosis a causative factor? Blood. 2009;114(4):759–63. doi: 10.1182/blood-2009-02-206797.
  37. Barbui T, Finazzi G, Carobbio A, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood. 2012;120(26):5128–33. doi: 10.1182/blood-2012-07-444067.
  38. Tefferi A, Pardanani A. Myeloproliferative neoplasms – a contemporary review. JAMA Oncol. 2015;1(1):97–105. doi: 10.1001/jamaoncol.2015.89.
  39. Nussenzveig RH, Swierczek SI, Jelinek J, et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol. 2007;35(1):32–8. doi: 10.1016/j.exphem.2006.11.012.
  40. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68. doi: 10.1056/NEJMoa065202.
  41. Williams DM, Kim AH, Rogers O, et al. Phenotypic variations and new mutations in JAK2 V617F-negative polycythemia vera, erythrocytosis, and idiopathic myelofibrosis. Exp Hematol. 2007;35(11):1641–6. doi: 10.1016/j.exphem.2007.08.010.
  42. Passamonti F, Elena C, Schnittger S, et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood. 2011;117(10):2813–6. doi: 10.1182/blood-2010-11-316810.
  43. Campbell PJ, Griesshammer M, Dohner K, et al. V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood. 2006;107(5):2098–100. doi: 10.1182/blood-2005-08-3395.
  44. Martinez-Aviles L, Besses C, Alvarez-Larran A, et al. JAK2 exon 12 mutations in polycythemia vera or idiopathic erythrocytosis. Haematologica. 2007;92(12):1717–8. doi: 10.3324/haematol.12011.
  45. Sangkhae V, Etheridge SL, Kaushansky K, Hitchcock IS. The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm. Blood. 2014;124(26):3956–63. doi: 10.1182/blood-2014-07-587238.
  46. Chou FS, Mulloy JC. The thrombopoietin/MPL pathway in hematopoiesis and leukemogenesis. J Cell Biochem. 2011;112(6):1491-8. doi: 10.1002/jcb.23089.
  47. Abe M, Suzuki K, Inagaki O, et al. A novel MPL point mutation resulting in thrombopoietin-independent activation. Leukemia. 2002;16(8):1500–6. doi: 10.1038/sj.leu.2402554.
  48. Ding J, Komatsu H, Wakita A, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood. 2004;103(11):4198–200. doi: 10.1182/blood-2003-10-3471.
  49. Moliterno AR, Williams DM, Gutierrez-Alamillo LI, et al. Mpl Baltimore: A thrombopoietin receptor polymorphism associated with thrombocytosis. Proc Natl Acad Sci USA. 2004;101(31):11444–7. doi: 10.1073/pnas.0404241101.
  50. Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270. doi: 10.1371/journal.pmed.0030270.
  51. Staerk J, Lacout C, Sato T, et al. An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood. 2006;107(5):1864–71. doi: 10.1182/blood-2005-06-2600.
  52. Boyd EM, Bench AJ, Goday-Fernandez A, et al. Clinical utility of routine MPL exon 10 analysis in the diagnosis of essential thrombocythaemia and primary myelofibrosis. Br J Haematol. 2010;149(2):250–7. doi: 10.1111/j.1365-2141.2010.08083.x.
  53. Lambert MP, Jiang J, Batra V, et al. A novel mutation in MPL (Y252H) results in increased thrombopoietin sensitivity in essential thrombocythemia. Am J Hematol. 2012;87(5):532–4. doi: 10.1002/ajh.23138.
  54. Hussein K, Bock O, Theophile K, et al. MPLW515L mutation in acute megakaryoblastic leukaemia. Leukemia. 2009;23(5):852–5. doi: 10.1038/leu.2008.371.
  55. Beer PA, Campbell PJ, Scott LM, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood. 2008;112(1):141–9. doi: 10.1182/blood-2008-01-131664.
  56. Akpinar TS, Hancer VS, Nalcaci M, Diz-Kucukkaya R. MPL W515L/K Mutations in chronic myeloproliferative neoplasms. Turk J Haematol. 2013;30(1):8–12. doi: 10.4274/tjh.65807.
  57. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood. 2008;112(3):844–7. doi: 10.1182/blood-2008-01-135897.
  58. Teofili L, Giona F, Torti L, et al. Hereditary thrombocytosis caused by MPLSer505Asn is associated with a high thrombotic risk, splenomegaly and progression to bone marrow fibrosis. Haematologica. 2010;95(1):65–70. doi: 10.3324/haematol.2009.007542.
  59. Sun C, Zhang S, Li J. Calreticulin gene mutations in myeloproliferative neoplasms without Janus kinase 2 mutations. Leuk Lymphoma. 2015;56(6):1593–8. doi: 10.3109/10428194.2014.953153.
  60. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.
  61. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi: 10.1056/NEJMoa1312542.
  62. Shirane S, Araki M, Morishita S, et al. JAK2, CALR, and MPL mutation spectrum in Japanese myeloproliferative neoplasms patients. Haematologica. 2015;100(2):46–8. doi: 10.3324/haematol.2014.115113.
  63. Lundberg P, Karow A, Nienhold R, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8. doi: 10.1182/blood-2013-11-537167.
  64. Lavi N. Calreticulin mutations in myeloproliferative neoplasms. Rambam Maimonides Med J. 2014;5(4):e0035. doi: 10.5041/RMMJ.10169.
  65. Rumi E, Harutyunyan AS, Pietra D, et al. CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis. Blood. 2014;123(15):2416–9. doi: 10.1182/blood-2014-01-550434.
  66. Haslam K, Langabeer SE. Incidence of CALR mutations in patients with splanchnic vein thrombosis. Br J Haematol. 2015;168(3):459–60. doi: 10.1111/bjh.13121.
  67. Turon F, Cervantes F, Colomer D, et al. Role of calreticulin mutations in the aetiological diagnosis of splanchnic vein thrombosis. J Hepatol. 2015;62(1):72–4. doi: 10.1016/j.jhep.2014.08.032.
  68. Tefferi A, Wassie EA, Lasho TL, et al. Calreticulin mutations and long-term survival in essential thrombocythemia. Leukemia. 2014;28(12):2300–3. doi: 10.1038/leu.2014.148.
  69. Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472–7. doi: 10.1038/leu.2014.3.
  70. Tefferi A, Lasho TL, Finke C, et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia. 2014;28(7):1568–70. doi: 10.1038/leu.2014.83.
  71. Shide K, Kameda T, Shimoda H, et al. TET2 is essential for survival and hematopoietic stem cell homeostasis. Leukemia. 2012;26(10):2216–23. doi: 10.1038/leu.2012.94.
  72. Ito S, D’Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129–33. doi: 10.1038/nature09303.
  73. Paulsson K, Haferlach C, Fonatsch C, et al. The idic(X)(q13) in myeloid malignancies: breakpoint clustering in segmental duplications and association with TET2 mutations. Hum Mol Genet. 2010;19(8):1507–14. doi: 10.1093/hmg/ddq024.
  74. Tefferi A, Pardanani A, Lim KH, et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia. 2009;23(5):905–11. doi: 10.1038/leu.2009.47.
  75. Martinez-Aviles L, Besses C, Alvarez-Larran A, et al. TET2, ASXL1, IDH1, IDH2, and c-CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms. Ann Hematol. 2012;91(4):533–41. doi: 10.1007/s00277-011-1330-0.
  76. Patriarca A, Colaizzo D, Tiscia G, et al. TET2 mutations in Ph-negative myeloproliferative neoplasms: identification of three novel mutations and relationship with clinical and laboratory findings. BioMed Res Int. 2013;2013:929840. doi: 10.1155/2013/929840.
  77. Schaub FX, Looser R, Li S, et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood. 2010;115(10):2003–7. doi: 10.1182/blood-2009-09-245381.
  78. Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301. doi: 10.1056/NEJMoa0810069.
  79. Beer PA, Delhommeau F, LeCouedic JP, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115(14):2891–900. doi: 10.1182/blood-2009-08-236596.
  80. Ortmann CA, Kent DG, Nangalia J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372(7):601–12. doi: 10.1056/NEJMoa1412098.
  81. Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
  82. Carbuccia N, Murati A, Trouplin V, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23(11):2183–6. doi: 10.1038/leu.2009.141.
  83. Carbuccia N, Trouplin V, Gelsi-Boyer V, et al. Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemia. 2010;24(2):469–73. doi: 10.1038/leu.2009.218.
  84. Abdel-Wahab O, Adli M, LaFave LM, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22(2):180–93. doi: 10.1016/j.ccr.2012.06.032.
  85. Brecqueville M, Rey J, Bertucci F, et al. Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromos Cancer. 2012;51(8):743–55. doi: 10.1002/gcc.21960.
  86. Katoh M. Functional and cancer genomics of ASXL family members. Br J Cancer. 2013;109(2):299–306. doi: 10.1038/bjc.2013.281.
  87. Cervantes F. How I treat myelofibrosis. Blood. 2014;124(17):2635–42. doi: 10.1182/blood-2014-07-575373.
  88. Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42(8):722–6. doi: 10.1038/ng.621.
  89. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 2008;647(1–2):21–9. doi: 10.1016/j.mrfmmm.2008.07.010.
  90. Im AP, Sehgal AR, Carroll MP, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia. 2014;28(9):1774–83. doi: 10.1038/leu.2014.124.
  91. Walter MJ, Ding L, Shen D, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25(7):1153–8. doi: 10.1038/leu.2011.44.
  92. Yamashita Y, Yuan J, Suetake I, et al. Array-based genomic resequencing of human leukemia. Oncogene. 2010;29(25):3723–31. doi: 10.1038/onc.2010.117.
  93. Abdel-Wahab O, Pardanani A, Rampal R, et al. DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia. 2011;25(7):1219–20. doi: 10.1038/leu.2011.82.
  94. Brecqueville M, Cervera N, Gelsi-Boyer V, et al. Rare mutations in DNMT3A in myeloproliferative neoplasms and myelodysplastic syndromes. Blood Cancer J. 2011;1(5):e18. doi: 10.1038/bcj.2011.15.
  95. Rudd CE. Lnk adaptor: novel negative regulator of B cell lymphopoiesis. Sci STKE. 2001;2001(85):pe1. doi: 10.1126/stke.2001.85.pe1.
  96. Gery S, Cao Q, Gueller S, et al. Lnk inhibits myeloproliferative disorder-associated JAK2 mutant, JAK2V617F. J Leuk Biol. 2009;85(6):957–65. doi: 10.1189/jlb.0908575.
  97. Soriano G, Heaney M. Polycythemia vera and essential thrombocythemia: new developments in biology with therapeutic implications. Curr Opin Hematol. 2013;20(2):169–75. doi: 10.1097/MOH.0b013e32835d82fe.
  98. Oh ST, Simonds EF, Jones C, et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood. 2010;116(6):988–92. doi: 10.1182/blood-2010-02-270108.
  99. Lasho TL, Pardanani A, Tefferi A. LNK mutations in JAK2 mutation-negative erythrocytosis. N Engl J Med. 2010;363(12):1189–90. doi: 10.1056/NEJMc1006966.
  100. Rathinam C, Thien CB, Flavell RA, Langdon WY. Myeloid leukemia development in c-Cbl RING finger mutant mice is dependent on FLT3 signaling. Cancer Cell. 2010;18(4):341–52. doi: 10.1016/j.ccr.2010.09.008.
  101. Loh ML, Sakai DS, Flotho C, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood. 2009;114(9):1859–63. doi: 10.1182/blood-2009-01-198416.
  102. Sanada M, Suzuki T, Shih LY, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460(7257):904–8. doi: 10.1038/nature08240.
  103. Zhang MY, Fung TK, Chen FY, Chim CS. Methylation profiling of SOCS1, SOCS2, SOCS3, CISH and SHP1 in Philadelphia-negative myeloproliferative neoplasm. J Cell Mol Med. 2013;17(10):1282–90. doi: 10.1111/jcmm.12103.
  104. Fourouclas N, Li J, Gilby DC, et al. Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders. Haematologica. 2008;93(11):1635–44. doi: 10.3324/haematol.13043.
  105. Kastner P, Chan S. Role of Ikaros in T-cell acute lymphoblastic leukemia. World J Biol Chem. 2011;2(6):108–14. doi: 10.4331/wjbc.v2.i6.108.
  106. Jager R, Kralovics R. Molecular pathogenesis of Philadelphia chromosome negative chronic myeloproliferative neoplasms. Curr Cancer Drug Targets. 2011;11(1):20–30. doi: 10.2174/156800911793743628.
  107. Ikeda K, Ogawa K, Takeishi Y. The role of HMGA2 in the proliferation and expansion of a hematopoietic cell in myeloproliferative neoplasms. Fukushima J Med Sci. 2012;58(2):91–100. doi: 10.5387/fms.58.91.
  108. Harada-Shirado K, Ikeda K, Ogawa K, et al. Dysregulation of the MIRLET7/HMGA2 axis with methylation of the CDKN2A promoter in myeloproliferative neoplasms. Br J Haematol. 2015;168(3):338–49. doi: 10.1111/bjh.13129.
  109. Raza S, Viswanatha D, Frederick L, et al. TP53 mutations and polymorphisms in primary myelofibrosis. Am J Hematol. 2012;87(2):204–6. doi: 10.1002/ajh.22216.
  110. Lu M, Hoffman R. p5 as a target in myeloproliferative neoplasms. Oncotarget. 2012;3(10):1052–3. doi: 10.18632/oncotarget.719.
  111. Gurney AL, Wong SC, Henzel WJ, de Sauvage FJ. Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and Shc phosphorylation. Proc Natl Acad Sci USA. 1995;92(12):5292–6. doi: 10.1073/pnas.92.12.5292
  112. Tefferi A, Thiele J, Vannucchi AM, Barbui T. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia. 2014;28(7):1407–13. doi: 10.1038/leu.2014.35.
  113. Broseus J, Park JH, Carillo S, et al. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood. 2014;124(26):3964–6. doi: 10.1182/blood-2014-06-583161.
  114. Hasan S, Lacout C, Marty C, et al. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNa. Blood. 2013;122(8):1464–77. doi: 10.1182/blood-2013-04-498956.
  115. Pardanani A, Lasho T, Finke C, et al. LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia. 2010;24(10):1713–8. doi: 10.1038/leu.2010.163.

Истинная полицитемия: новая концепция диагностики и клинические формы

А.М. Ковригина1, В.В. Байков2

1 ФГБУ «Гематологический научный центр» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

2 НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ГБОУ ВПО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Рентгена, д. 12, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Алла Михайловна Ковригина, д-р биол. наук, профессор, Новый Зыковский пр-д., д. 4а, Москва, Российская Федерация, 125167; тел.: +7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

Для цитирования: Ковригина А.М., Байков В.В. Истинная полицитемия: новая концепция диагностики и клинические формы. Клиническая онкогематология. 2016;9(2):115–22.

DOI: 10.21320/2500-2139-2016-9-2-115-122


РЕФЕРАТ

Истинная полицитемия (ИП) — клональное Ph-негативное миелопролиферативное заболевание с избыточной пролиферацией 3 ростков кроветворения и исходом в стадию неэффективного миелопоэза. В классификации ВОЗ (2008) показатели гемоглобина и гематокрита включены в главные критерии диагностики заболевания. Однако у многих пациентов с ИП уровень этих показателей может оказаться ниже диагностического, что приводит к гиподиагностике данного заболевания. В настоящее время выделены три клинических формы болезни: 1) маскированная (латентная/продромальная), 2) классическая (развернутая), 3) ИП с прогрессированием/трансформацией в миелофиброз. Маскированная ИП наиболее сложна для диагностики. Она гетерогенна по клинико-лабораторным данным, анамнезу, течению заболевания; включает в себя ранние стадии, в т. ч. с высоким тромбоцитозом, имитирующие эссенциальную тромбоцитемию, случаи с абдоминальными тромбозами, а также длительно латентно протекающую ИП. Наиболее информативным способом диагностики маскированной формы ИП является исследование трепанобиоптата костного мозга. Обычно выявляется классическая картина ИП: гиперклеточный костный мозг с трехростковой пролиферацией миелопоэза, пролиферация мегакариоцитов со слабой или умеренно выраженной атипией и полиморфизмом клеток. Определение степени ретикулинового фиброза имеет важное прогностическое значение и отражает риск прогрессии/трансформации в миелофиброз. В новой редакции классификации ВОЗ (2016) морфологическое исследование трепанобиоптата костного мозга будет введено в большие критерии диагностики ИП в качестве обязательного при пограничных значениях уровня гемоглобина и гематокрита.


Ключевые слова: истинная полицитемия, миелопролиферативное заболевание, диагностика истинной полицитемии, формы истинной полицитемии.

Получено: 19 января 2016 г.

Принято в печать: 1 февраля 2016 г.

Читать статью в  PDF pdficon


ЛИТЕРАТУРА

  1. Cerquozzi S, Tefferi A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J. 2015;5(11):e366. doi: 10.1038/bcj.2015.95.
  2. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90. doi 10.1056/nejmoa051113.
  3. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97. doi: 10.1016/j.ccr.2005.03.023.
  4. Chloe J, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi: 10.1038/nature03546.
  5. Baxter EJ, Scott LM, Campbell PJ, et al. Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. The Lancet. 2005;365(9464):1054–61. doi: 10.1016/s0140-6736(05)71142-9.
  6. Wang YL, Vandris K, Jones A, et al. JAK2 Mutations are present in all cases of polycythemia vera. Leukemia. 2008;22(6):1289. doi: 10.1038/sj.leu.2405047.
  7. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.
  8. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi:  10.1056/NEJMoa1312542.
  9. Broseus J, Park JH, Carillo S, et al. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood. 2014;124(26):3964–6. doi: 10.1182/blood-2014-06-583161.
  10. Fairbanks VF, Klee GG, Wiseman GA, et al. Measurement of Blood volume and Red Cell Mass: re-examination of 51Cr and 125I methods. Blood Cells Mol Dis. 1996;22(15):169–86. doi: 10.1006/bcmd.1996.0024.
  11. Lorberboym M, Rahimi-Levene N, Lipszyc H, et al. Analysis of Red Cell Mass and Plasma Volume in Patients With Polycythemia. Arch Pathol Lab Med. 2005;129:89–91.
  12. Murphy S. Diagnostic criteria and prognosis in polycythemia vera and essential thrombocythemia. Semin Hematol. 1999;36(1 Suppl 2):9–13.
  13. Alvarez-Larran A, Ancochea A, Angona A, et al. Red cell mass measurement in patients with clinically suspected diagnosis of polycythemia vera or essential thrombocythemia. Haematologica. 2012;97(11):1704–7. doi: 10.3324/haematol.2012.067348.
  14. Tefferi A. Polycythemia vera and essential thrombocythemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol. 2012;87(3):285–93. doi: 10.1002/ajh.23135.
  15. Johansson PL, Safai-Kutti S, Kutti J. An elevated venous haemoglobin concentration cannot be used as a surrogate marker for absolute erythrocytosis: a study of patients with polycythaemia vera and apparent polycythaemia. Br J Haematol. 2005;129(5):701–5. doi: — 10.1111/j.1365-2141.2005.05517.x.
  16. Thiele J, Kvasnicka HM, Orazi A, et al. Polycythaemia vera. In: Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008. pp. 40–43.
  17. Silver RT, Chow W, Orazi A, et al. Evaluation of WHO criteria for diagnosis of polycythemia vera: a prospective analysis. Blood. 2013;122(11):1881–6. doi: 10.1182/blood-2013-06-508416.
  18. Berk PD, Wasserman LR, Fruchtman SM, et al. Treatment of polycythemia vera: a summary of clinical trials conducted by the polycythemia vera study group. In: Wasserman LR, Berk PD, Berlin NI, eds. Polycythemia Vera and the Myeloproliferative Disorders. Philadelphia: WB Saunders; 1995. pp. 166–94.
  19. McMullin MF, Bareford D, Campbell P, et al. Guidelines for the diagnosis, investigation and management of polycythaemia/erythrocytosis. Br J Haematol. 2005;130(2):174–95. doi: 10.1111/j.1365-2141.2005.05535.x.
  20. McMullin MF, Reilly JT, Campbell P, et al. Amendment to the guideline for diagnosis and investigation of polycythaemia/erythrocytosis. Br J Haematol. 2007;138(6):821–2. doi: 10.1111/j.1365-2141.2007.06741.x.
  21. McMullin MF. The classification and diagnosis of erythrocytosis. Int J Lab Hematol. 2008;30(6):447–59. doi: 10.1111/j.1751-553X.2008.01102.x.
  22. Shih LY, Lee CT. Identification of masked polycythemia vera from patients with idiopathic marked thrombocytosis by endogenous erythroid colony assay. Blood. 1994;83(3):744–8.
  23. Thiele J, Kvasnicka HM, Diehl V. Initial (latent) polycythaemia vera with thrombocytosis mimicking essential thrombocythaemia. Acta Haematol. 2005;113(4):213–9. doi: 10.1159/000084673.
  24. Thiele J, Kvasnicka HM. Diagnostic impact of bone marrow histopathology in polycythemia vera (PV). Histol Histopathol. 2005;20:317–28.
  25. Kvasnicka HM, Thiele J. Prodromal myeloproliferative neoplasms: The 2008 WHO classification. Am J Hematol. 2010;85(1):62–9. doi: 10.1002/ajh.21543.
  26. Barbui T, Thiele J, Gisslinger H, et al. Masked polycythemia vera (mPV): results of an international study. Am J Hematol. 2014;89(1):52–4. doi: 10.1002/ajh.23585.
  27. Barbui T, Thiele J, Carobbio A, et al. Discriminating between essential thrombocythemia and masked polycythemia vera in JAK2 mutated patients. Am J Hematol. 2014;89(6):588–90. doi: 10.1002/ajh.23694.
  28. Barbui T, Thiele J, Vannucchi AM, et al. Rethinking the diagnostic criteria of polycythemia vera. Leukemia. 2014;28(6):1191–5. doi: 10.1038/leu.2013.380.
  29. Barbui T, Thiele J, Carobbio A, et al. Masked polycythemia vera diagnosed according to WHO and BCSH classification. Am J Hematol. 2014;89(2):199–202. doi: 10.1002/ajh.23617.
  30. Chu D, Cho Y-U, Jang S, et al. Straightforward Identification of Masked Polycythemia Vera Based on Proposed Revision of World Health Organization Diagnostic Criteria for BCR-ABL1-Negative Myeloproliferative Neoplasms. Ann Lab Med. 2015;35(6):651–3. doi: 10.3343/alm.2015.35.6.651.
  31. Barbui T, Thiele J, Vannucchi AM, Tefferi A. Rationale for revision and proposed changes of the WHO diagnostic criteria for polycythemia vera, essential thrombocythemia and primary myelofibrosis. Blood Cancer J. 2015;5(8):e337. doi: 10.1038/bcj.2015.64.
  32. Harrison CN, Campbell PJ, Buck G, et al. United Kingdom Medical Research Council Primary Thrombocythemia 1 Study. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005;353(1):33–45.
  33. Gisslinger H, Gotic M, Holowiecki J, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013;121(10):1720–8. doi: 10.1182/blood-2012-07-443770.
  34. Thiele J, Kvasnicka HM. Chronic myeloproliferative disorders with thrombocythemia: a comparative study of two classification systems (PVSG, WHO) on 839 patients. Ann Hematol. 2003;82(3):148–52.
  35. Ковригина А.М., Байков В.В. Патоморфологическая дифференциальная диагностика первичного миелофиброза. Учебное пособие для врачей-патологоанатомов. М., 2014. 64 с.
    [Kovrigina AM, Baikov VV. Patomorfologicheskaya differentsial’naya diagnostika pervichnogo mielofibroza. Uchebnoe posobie dlya vrachei-patologoanatomov. (Pathomorphological differential diagnosis of primary myelofibrosis. Manual for pathologists.) Moscow; 2014. 64 p. (In Russ)]
  36. Thiele J, Kvasnicka HM, Zankovich R, Diehl V. The value of bone marrow histology in differentiating between early stage polycythemia vera and secondary (reactive) polycythemias. Haematologica. 2001;86(4):368–74.
  37. Gianelli U, Iurlo A, Vener C. et al. The Significance of Bone Marrow Biopsy and JAK2V617F Mutation in the Differential Diagnosis Between the “Early” Prepolycythemic Phase of Polycythemia Vera and Essential Thrombocythemia. Am J Clin Pathol. 2008;130(3):336–42. doi: 10.1309/6BQ5K8LHVYAKUAF4.

Истинная полицитемия: обзор литературы и собственные данные

И.Н. Суборцева, Т.И. Колошейнова, Е.И. Пустовая, Е.К. Егорова, А.М. Ковригина, Ю.В. Плискунова, Т.В. Макарик, А.О. Абдуллаев, А.Л. Меликян

ФГБУ «Гематологический научный центр» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Ирина Николаевна Суборцева, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(495)612-44-72; e-mail: soubortseva@yandex.ru

Для цитирования: Суборцева И.Н., Колошейнова Т.И., Пустовая Е.И. и др. Истинная полицитемия: обзор литературы и собственные данные. Клиническая онкогематология. 2015;8(4):397–412.

DOI: 10.21320/2500-2139-2015-8-4-397-412


РЕФЕРАТ

Актуальность и цели. Истинная полицитемия (ИП) относится к группе классических Ph-негативных миелопролиферативных заболеваний и характеризуется панмиелозом, панцитозом, высоким риском тромбогеморрагических осложнений, низким качеством жизни из-за присутствия симптомов опухолевой пролиферации. Малые дозы ацетилсалициловой кислоты и проведение кровопусканий/эритроцитафереза рекомендованы для пациентов с низким риском тромбогеморрагических осложнений. Циторедуктивная терапия (гидроксимочевина или интерферон-a) показана пациентам с высоким риском тромбогеморрагических осложнений. В настоящее время проблемам диагностики и лечения больных ИП уделяется все большее внимание.

Методы. В статье представлены краткое описание данного заболевания, обзор современных методов лечения, результаты наблюдения за 100 больными ИП, которые получали терапию в поликлиническом отделении Гематологического научного центра. Длительность наблюдения за пациентами составила 6–262 мес. (медиана 14 мес.).

Результаты. Больные были в возрасте 23–80 лет (медиана 56 лет), доля женщин составила 67 %, мужчин — 33 %. У всех пациентов диагноз ИП установлен в соответствии с классификацией ВОЗ 2008 г. Мутация V617F гена JAKвыявлена в 100 % наблюдений. Спленомегалия констатирована у 70 % пациентов. Плеторический синдром (гиперемия лица, ладоней, инъецированность склер) наблюдался у 65 % больных. Все пациенты предъявляли жалобы на головную боль, головокружение, а 25 % из них — на кожный зуд. Все пациенты получали симптоматическую терапию, антиагреганты, препараты, улучшающие микроциркуляцию, или антигипоксанты. Лечение проводилось в соответствии с клиническими рекомендациями: 49 % пациентов получали гидроксимочевину, 14 % — интерферон (ИФН a-2b), 14 % — комбинированную терапию (гидроксимочевину и кровопускания или ИФН a-2b и кровопускания), 23 % — только кровопускания. Ответ на лечение оценивался согласно критериям Европейской организации по изучению и лечению лейкозов 2009 г. Во всей группе больных без учета проводимой терапии частота полных ремиссий составила 48 %, частичных — 41 %, эффекта не получено у 11 % пациентов. Смена терапии осуществлялась при неэффективности, непереносимости лечения или развитии осложнений. При переключении лечения с одного метода на другой полная ремиссия не была достигнута ни у одного больного.

Заключение. Лечение ИП в основном симптоматическое. Эффективность терапии первой линии (полная ремиссия) равна 14,5–71 %. Необходимо проведение клинических исследований, направленных на оценку эффективности и безопасности новых таргетных препаратов.


Ключевые слова: миелопролиферативные заболевания, истинная полицитемия, JAK2V617F, таргетная терапия.

Получено: 30 июня 2015 г.

Принято в печать: 5 ноября 2015 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Stuart BJ, Viera AJ. Polycythemia vera. Am Fam Physician. 2004;69:2139–44.
  2. Hensley B, Geyer H, Mesa R. Polycythemia vera: current pharmacotherapy and future directions. Expert Opin. Pharmacother. 2013;14:609–17. doi: 10.1517/14656566.2013.779671.
  3. Vannucchi AM. Insights into the pathogenesis and management of thrombosis in polycythemia vera and essential thrombocythemia. Intern Emerg Med. 2010;5:177–84. doi: 10.1007/s11739-009-0319-3.
  4. Mehta J, Wang H, Iqbal SU, et al. Epidemiology of myeloproliferative neoplasms in the United States. Leuk Lymphoma. 2014;55:595–600. doi: 10.3109/10428194.2013.813500.
  5. Moulard O, Mehta J, Fryzek J, et al. Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in the European Union. Eur J Haematol. 2014;92:289–97. doi: 10.1111/ejh.12256.
  6. Passamonti F, Rumi E, Pungolino E, et al. Life expectancy and prognostic factors for survival in patients with polycythemia vera and essential thrombocythemia. Am J Med. 2004;117:755–61. doi: 10.1016/j.amjmed.2004.06.032.
  7. Tibes R, Mesa RA. Emerging drugs for polycythemia vera. Expert Opin Emerg Drugs. 2013;18:393–404. doi: 10.1517/14728214.2013.832754.
  8. Tefferi A, Rumi E, Finazzi G, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27:1874–81. doi: 10.1038/leu.2013.163.
  9. Bandaranayake RM, Ungureanu D, Shan Y, et al. Crystal structures of the JAK2 pseudo kinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol. 2012;19(8):754–9. doi: 10.1038/nsmb.2348.
  10. Brooks AJ, Dai W, O’Mara ML, et al. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science. 2014;344(6185). doi:10.1126/science.1249783.
  11. Pradhan A, Lambert QT, Griner LN, et al. Activation of American Society of Hematology JAK2-V617F by components of heterodimeric cytokine receptors. J Biol Chem. 2010;285(22):16651–63. doi: 10.1074/jbc.m109.071191.
  12. Chen E, Mullally A. How does JAK2V617F contribute to the pathogenesis of myeloproliferative neoplasms? Hematol Am Soc Hematol Educ Program. 2015;2014:268–76. doi: 10.1182/asheducation-2014.1.268.
  13. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi: 10.1038/nature03546.
  14. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68. doi: 10.1056/nejmoa065202.
  15. Ma W, Kantarjian H, Zhang X, et al. Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias. J. Mol. Diagn. 2009;11(1):49–53. doi: 10.2353/jmoldx.2009.080114.
  16. Milosevic JD, Kralovics R. Genetic and epigenetic alterations of myeloproliferative disorders. Int J Hematol. 2013;97(2):183–97. doi:10.1007/s12185-012-1235-2.
  17. Tong W, Zhang J, Lodish HF. LNK inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood. 2005;105(12):4604–12. doi: 10.1182/blood-2004-10-4093.
  18. Gery S, Cao Q, Gueller S, et al. LNK inhibits myeloproliferative disorder-associated JAK2 mutant, JAK2V617F. J. Leukoc. Biol. 2009;85(6):957–65. doi: 10.1189/jlb.0908575.
  19. Gery S, Gueller S, Chumakova K, et al. Adaptor protein LNK negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders. Blood. 2007;110(9):3360–4. doi: 10.1182/blood-2007-05-089326.
  20. Pardanani A, Lasho T, Finke C, et al. LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia. 2010;24(10):1713–8. doi: 10.1038/leu.2010.163.
  21. Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301. doi: 10.1056/nejmoa0810069.
  22. Moran-Crusio K, Reavie L, Shih A, et al. TET2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20(1):11–24. doi: 10.1016/j.ccr.2011.06.001.
  23. Swierczek SI, Yoon D, Bellanne-Chantelot C, et al. Extent of hematopoietic involvement by TET2 mutations in JAK2V617F polycythemia vera. Haematologica. 2011;96(5):775–8. doi: 10.3324/haematol.2010.029678.
  24. Li Z, Cai X, Cai CL, et al. Deletion of TET2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118(17):4509–18. doi: 10.1182/blood-2010-12-325241.
  25. Busque L, Patel JP, Figueroa ME, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 2012;44(11):1179–81. doi: 10.1038/ng.2413.
  26. Pardanani A, Lasho TL, Finke CM, et al. IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia. 2010;24(6):1146–51. doi: 10.1038/leu.2010.77.
  27. Tefferi A, Lasho TL, Abdel-Wahab O, et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia. 2010;24(7):1302–9. doi: 10.1038/leu.2010.113.
  28. Tefferi A, Jimma T, Sulai NH, et al. IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F. Leukemia. 2012;26(3):475–80. doi: 10.1038/leu.2011.253.
  29. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. doi: 10.1056/nejmoa1005143.
  30. Stegelmann F, Bullinger L, Schlenk RF, et al. DNMT3A mutations in myeloproliferative neoplasms. Leukemia. 2011;25(7):1217–9. doi: 10.1038/leu.2011.77.
  31. Abdel-Wahab O, Pardanani A, Rampal R, et al. DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia. 2011;25(7):1219–20. doi: 10.1038/leu.2011.82.
  32. Abdel-Wahab O, Adli M, Lafave LM, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22(2):180–93. doi: 10.1016/j.ccr.2012.06.032.
  33. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90. doi: 10.1056/nejmoa1311347.
  34. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405. doi: 10.1056/nejmoa1312542.
  35. Girodon F, Broseus J, Park-Alexandre JH, et al. Presence of Calreticulin Mutations in JAK2-Negative Polycythemia Vera. Blood. 2014;124: Abstract 1819.
  36. Spivak JL, Considine M, Williams DM, et al. Two Clinical Phenotypes in Polycythemia Vera. N Engl J Med. 2014;371:808–17. doi: 10.1056/NEJMoa1403141.
  37. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51. doi: 10.1182/blood-2009-03-209262.
  38. McMullin MF, Reilly JT, Campbell P, et al. Amendment to the guideline for diagnosis and investigation of polycythaemia/erythrocytosis. Br J Haematol. 2007;138:821–2. doi: 10.1111/j.1365-2141.2007.06741.x.
  39. Berk PD, Goldberg JD, Donovan PB, et al. Therapeutic recommendations in polycythemia vera based on polycythemia vera study group protocols. Semin. Hematol. 1986;23:132–43.
  40. Murphy S. Diagnostic criteria and prognosis in polycythemia vera and essential thrombocythemia. Semin Hematol. 1999;36:9–13.
  41. Barbui T, Thiele J, Vannucchi AM, et al. Rethinking the diagnostic criteria of polycythemia vera. Leukemia. 2014;28:1191–5. doi: 10.1038/leu.2013.380.
  42. Barbui T, Thiele J, Carobbio A, et al. Masked polycythemia vera diagnosed according to WHO and BCSH classification. Am J Hematol. 2014;89:199–202. doi: 10.1002/ajh.23617.
  43. Scherber R, Dueck AC, Johansson P, et al. The myeloproliferative neoplasm symptom assessment form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood. 2011;118:401–8. doi: 10.1182/blood-2011-01-328955.
  44. Emanuel RM, Dueck AC, Geyer HL, et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol. 2012;30:4098–103. doi: 10.1200/jco.2012.42.3863.
  45. Abelsson J, Andreasson B, Samuelsson J, et al. Patients with polycythemia vera have worst impairment of quality of life among patients with newly diagnosed myeloproliferative neoplasms. Leuk Lymphoma. 2013;54:2226–30. doi: 10.3109/10428194.2013.766732.
  46. Geyer HL, Emanuel RM, Dueck AC, et al. Distinct clustering of symptomatic burden amongst myeloproliferative neoplasm patients: retrospective assessment in 1470 patients. Blood. 2014;123(24):3803–10. doi: 10.1182/blood-2013-09-527903.
  47. Johansson P, Mesa R, Scherber R, et al. Association between quality of life and clinical parameters in patients with myeloproliferative neoplasms. Leuk Lymphoma. 2012;53:441–4. doi: 10.3109/10428194.2011.619608.
  48. Scherber R, Dueck AC, Kiladjian JJ, et al. (HU/IFNa/Aspirin) Conventional therapeutic options have limited impact on MPN symptoms: insights from a prospective analysis of the MPN-SAF. In: European Hematology Association, Amsterdam, Netherlands, June 14–17 2012. Abstract 366.
  49. Samuelsson J, Hasselbalch H, Bruserud O, et al. A phase II trial of pegylated interferon alpha-2b therapy for polycythemia vera and essential thrombocythemia: feasibility, clinical and biologic effects, and impact on quality of life. Cancer. 2006;106:2397–405. doi: 10.1002/cncr.21900.
  50. Tefferi A, Elliott M. Thrombosis in myeloproliferative disorders: prevalence, prognostic factors, and the role of leukocytes and JAK2V617F. Semin Thromb Hemost. 2007;33:313–20. doi: 10.1055/s-2007-976165.
  51. Chou YS, Gau JP, Yu YB, et al. Leukocytosis in polycythemia vera and splenomegaly in essential thrombocythemia are independent risk factors for hemorrhage. Eur J Haematol. 2013;90:228–36. doi: 10.1111/ejh.12064.
  52. Меликян А.Л., Суборцева И.Н., Суханова Г.А. Тромбогеморрагические осложнения у больных Ph-негативными миелопролиферативными заболеваниями. Кровь. 2014;2(18):21–5.
    [Melikyan AL, Subortseva IN, Sukhanova GA. Thrombohemorrhagic complications in patients with Ph-negative myeloproliferative diseases. Krov’. 2014;2(18):21–5. (In Russ)]
  53. Finazzi G, Caruso V, Marchioli R, et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood. 2005;105:2664–70. doi: 10.1182/blood-2004-09-3426.
  54. Passamonti F, Brusamolino E, Lazzarino M, et al. Efficacy of pipobroman in the treatment of polycythemia vera: long-term results in 163 patients. Haematologica 2000;85:1011–8.
  55. Kanitakis J, Arbona-Vidal E, Faure M. Porokeratosis in patients with polycythemia rubra vera: a new side effect of hydroxyurea? J Eur Acad Dermatol Venereol. 2012;26:1040–1. doi: 10.1111/j.1468-3083.2011.04202.x.
  56. Marchioli R, Finazzi G, Landolfi R, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23:2224–32. doi: 10.1200/jco.2005.07.062.
  57. Kiladjian JJ, Chevret S, Dosquet C, et al. Treatment of polycythemia vera with hydroxyurea and pipobroman: final results of a randomized trial initiated in 1980. J Clin Oncol. 2011;29:3907–13. doi: 10.1200/jco.2011.36.0792.
  58. Tefferi A, Rumi E, Finazzi G, et al. Chronic myeloproliferative neoplasias survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27:1874–81. doi: 10.1038/leu.2013.163.
  59. Barbui T, Finazzi MC, Finazzi G. Front-line therapy in polycythemia vera and essential thrombocythemia. Blood. 2012;26:205–11. doi: 10.1016/j.blre.2012.06.002.
  60. Tefferi A. Polycythemia vera and essential thrombocythemia: 2013 update on diagnosis, risk-stratification, and management. Am J Hematol. 2013;88:507–16. doi: 10.1002/ajh.23417.
  61. Finazzi G, Barbui T. Evidence and expertise in the management of polycythemia vera and essential thrombocythemia. Leukemia. 2008;22:1494–502. doi: 10.1038/leu.2008.177.
  62. Landolfi R, Di Gennaro L, Barbui T, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood. 2007;109:2446–52. doi: 10.1182/blood-2006-08-042515.
  63. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia. 2007;21:1952–9. doi: 10.1038/sj.leu.2404854.
  64. Tefferi A, Strand JJ, Lasho TL, et al. Bone marrow JAK2V617F allele burden and clinical correlates in polycythemia vera. Leukemia. 2007;21:2074–5. doi: 10.1038/sj.leu.2404724.
  65. Landolfi R, Marchioli R, Kutti J, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350:114–24. doi: 10.1056/nejmoa035572.
  66. Mughal TI, Vaddi K, Sarlis NJ, et al. Myelofibrosis-associated complications: pathogenesis, clinical manifestations, and effects on outcomes. Int J Gen Med. 2014;7:89–101. doi: 10.2147/ijgm.s51800.
  67. Marchioli R, Finazzi G, Specchia G, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368:22–33. doi: 10.1056/nejmoa1208500.
  68. Braekkan SK, Mathiesen EB, Njolstad I, et al. Hematocrit and risk of venous thromboembolism in a general population. The Tromso study. Haematologica. 2010;95:270–5. doi: 10.3324/haematol.2009.008417.
  69. Gori T. Viscosity, platelet activation, and hematocrit: progress in understanding their relationship with clinical and subclinical vascular disease. Clin Hemorheol Microcirc. 2011;49:37–42. doi: 10.3233/CH-2011-1455.
  70. Marchioli R, Finazzi G, Specchia G, et al. The CYTO-PV: a large-scale trial testing the intensity of CYTO-reductive therapy to prevent cardiovascular events in patients with Polycythemia Vera. Thrombosis. 2011;2011:794240. doi: 10.1155/2011/794240.
  71. Sever M, Newberry KJ, Verstovsek S. Therapeutic options for patients with polycythemia vera and essential thrombocythemia refractory/resistant to hydroxyurea. Leuk Lymphoma. 2014;55:2685–90. doi: 10.3109/10428194.2014.893310.
  72. Alvarez-Larran A, Pereira A, Cervantes F, et al. Assessment and prognostic value of the European LeukemiaNet criteria for clinicohematologic response, resistance, and intolerance to hydroxyurea in polycythemia vera. Blood. 2012;119:1363–9. doi: 10.1182/blood-2011-10-387787.
  73. Kiladjian JJ, Cassinat B, Chevret S, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112:3065–72. doi: 10.1182/blood-2008-03-143537.
  74. Kiladjian JJ. Chomienne C, Fenaux P. Interferon-alpha therapy in bcr-abl-negative myeloproliferative neoplasms. Leukemia. 2008;22:1990–8. doi: 10.1038/leu.2008.280.
  75. Bjorkholm M, Derolf AR, Hultcrantz M, et al. Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J Clin Oncol. 2011;29:2410–5. doi: 10.1200/jco.2011.34.7542.
  76. Barosi G, Vannucchi AM, De Stefano V, et al. Identifying and addressing unmet clinical needs in Ph-neg classical myeloproliferative neoplasms: a consensus-based SIE, SIES, GITMO position paper. Leuk Res. 2014;38:155–60. doi: 10.1016/j.leukres.2013.09.008.
  77. Bleeker JS, Hogan WJ. Thrombocytosis: diagnostic evaluation, thrombotic risk stratification, and risk-based management strategies. Thrombosis. 2011;2011:536062. doi: 10.1155/2011/536062.
  78. Barosi G, Birgegard G, Finazzi G, et al. A unified definition of clinical resistance and intolerance to hydroxycarbamide in polycythaemia vera and primary myelofibrosis: results of a European LeukemiaNet (ELN) consensus process. Br J Haematol. 2010;148:961–3. doi: 10.1111/j.1365-2141.2009.08019.x.
  79. Barosi G, Mesa R, Finazzi G, et al. Revised response criteria for polycythemia vera and essential thrombocythemia: a ELN and IWG-MRT consensus project. Blood. 2013;121:4778–81. doi: 10.1182/blood-2013-01-478891.
  80. Hexner EO, Serdikoff C, Jan M, et al. Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood. 2008;111:5663–71. doi: 10.1182/blood-2007-04-083402.
  81. Hexner E, Roboz G, Hoffman R, et al. Open-label study of oral CEP-701 (lestaurtinib) in patients with polycythaemia vera or essential thrombocythaemia with JAK2-V617F mutation. Br J Haematol. 2014;164:83–93. doi: 10.1111/bjh.12607.
  82. Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807. doi: 10.1056/nejmoa1110557.
  83. Cervantes F, Vannucchi AM, Kiladjian JJ, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013;122:4047–53. doi: 10.1182/blood-2013-02-485888.
  84. Quintas-Cardama A, Kantarjian H, Cortes J, et al. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Nat Rev Drug Discov. 2011;10:127–40. doi: 10.1038/nrd3264.
  85. Verstovsek S, Passamonti F, Rambaldi A, et al. A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. Cancer. 2014;120:513–20. doi: 10.1002/cncr.28441.
  86. Vannucchi AM, Kiladjian JJ, Griesshammer M, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372:426–35. doi: 10.1056/nejmoa1409002.
  87. Passamonti F, Saydam G, Lim L, et al. RESPONSE 2: a phase 3b study evaluating the efficacy and safety of ruxolitinib in patients with hydroxyurea-resistant/intolerant polycythemia vera vs best available therapy. J Clin Oncol. 2014;32: Abstract TPS7128.
  88. Mesa R, Vannucchi AM, Yacoub A, et al. The Efficacy and Safety of Continued Hydroxyurea Therapy Versus Switching to Ruxolitinib in Patients with Polycythemia Vera: A Randomized, Double-Blind, Double-Dummy, Symptom Study (RELIEF). ASH Education Book. 2014;124(21):3168.
  89. Pardanani A, Gotlib J, Gupta V, et al. Phase I/II study of CYT387, a JAK1/JAK2 inhibitor for the treatment of myelofibrosis. Blood. 2012;120: Abstract 178.
  90. Verstovsek S, Mesa RA, Salama ME, et al. Phase I study of LY2784544, a JAK2 selective inhibitor, in patients with myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET). Blood. 2013;122: Abstract 665.
  91. Vigushin DM, Coombes RC. Targeted histone deacetylase inhibition for cancer therapy. Curr Cancer Drug Targets. 2004;4:205–18. doi: 10.2174/1568009043481560.
  92. Rambaldi A, Dellacasa CM, Finazzi G, et al. A pilot study of the histone-deacetylase inhibitor givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br J Haematol. 2010;150:446–55. doi: 10.1111/j.1365-2141.2010.08266.x.
  93. Andersen C, Mortensen N, Vestergaard H, et al. A phase II study of vorinostat (MK-0683) in patients with primary myelofibrosis (PMF) and post-polycythemia vera myelofibrosis (PPV-MF). Haematologica. 2013;98: Abstract P279.
  94. Quintas-Cardama A, Kantarjian H, Manshouri T, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27:5418–24. doi: 10.1200/jco.2009.23.6075.
  95. Mascarenhas J, Mesa R, Prchal J, Hoffman R. Optimal therapy for polycythemia vera and essential thrombocythemia can only be determined by the completion of randomized clinical trials. Haematologica. 2014;99(6):945–9. doi: 10.3324/haematol.2014.106013.
  96. Harrison CN, Garcia NC. Management of MPN beyond JAK2. ASH Education Book. 2014;2014(1):348–54. doi:10.1182/asheducation-2014.1.348.