Возможности терапии ингибиторами тирозинкиназ в сниженных дозах у пациентов с хроническим миелолейкозом

М.А. Гурьянова, Е.Ю. Челышева, А.Г. Туркина

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Маргарита Анатольевна Гурьянова, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: +7(985)201-70-40; e-mail: margarita.samtcova@yandex.ru

Для цитирования: Гурьянова М.А., Челышева Е.Ю., Туркина А.Г. Возможности терапии ингибиторами тирозинкиназ в сниженных дозах у пациентов с хроническим миелолейкозом. Клиническая онкогематология. 2021;14(1):118–28.

DOI: 10.21320/2500-2139-2021-14-1-118-128


РЕФЕРАТ

Терапия ингибиторами тирозинкиназ (ИТК) у 60–70 % больных хроническим миелоидным лейкозом (ХМЛ) позволяет получить глубокий молекулярный ответ (МО). Однако, несмотря на высокую эффективность ИТК, у многих пациентов лечение сопровождается проявлениями лекарственной токсичности. По результатам клинических исследований вероятность сохранения ремиссии без лечения у больных ХМЛ с глубоким МО составляет примерно 40–60 %. В последнее время большое внимание уделяется персонализированному подходу к терапии при ХМЛ в хронической фазе. Он заключается в модификации дозы ИТК с целью уменьшить или предотвратить развитие нежелательных явлений. В рамках крупных ретроспективных исследований было доказано, что терапия сниженными дозами ИТК у больных с оптимальным ответом является безопасной с точки зрения сохранения достигнутого большого МО и глубокого МО при стандартных дозах ИТК. Наблюдение за пациентом при применении сниженных доз ИТК также рассматривается в рамках проспективных клинических исследований как этап перед отменой терапии. Тем не менее к настоящему времени опубликованы результаты всего 4 подобных исследований. Для подробного изучения вопросов, касающихся длительного наблюдения за больными ХМЛ при использовании сниженных доз ИТК, необходимо проведение проспективных клинических исследований. В настоящем обзоре представлены результаты основных исследований по ведению больных ХМЛ, получающих ИТК в сниженных дозах.

Ключевые слова: хронический миелоидный лейкоз, ингибиторы тирозинкиназ, большой молекулярный ответ, глубокий молекулярный ответ, нежелательные явления, фармакокинетика ингибиторов тирозинкиназ.

Получено: 3 августа 2020 г.

Принято в печать: 20 ноября 2020 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Туркина А.Г., Новицкая Н.В., Голенков А.К. идр. Регистр больных хроническим миелолейкозом в Российской Федерации: от наблюдательного исследования к оценке эффективности терапии в клинической практике. Клиническая онкогематология. 2017;10(3):390–401. doi: 10.21320/2500-2139-2017-10-3-390-401.
    [Turkina AG, Novitskaya NV, Golenkov AK, et al. Chronic Myeloid Leukemia Patient Registry in the Russian Federation: From Observational Studies to the Efficacy Evaluation in Clinical Practice. Clinical oncohematology. 2017;10(3):390–401. doi: 10.21320/2500-2139-2017-10-3-390-401. (In Russ)]
  2. Sasaki K, Strom SS, O’Brien S, et al. Relative survival in patients with chronic-phase chronic myeloid leukaemia in the tyrosine-kinase inhibitor era: analysis of patient data from six prospective clinical trials. Lancet Haematol. 2015;2(5):e186–е193. doi: 10.1016/S2352-3026(15)00048-4.
  3. Hehlmann R, Lauseker M, Saussele S, et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia. 2017;31(11):2398–406. doi: 10.1038/leu.2017.253.
  4. Saussele S, Richter J, Guilhot J, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018;19(6):747–57. doi: 10.1016/S1470-2045(18)30192-X.
  5. Etienne G, Guilhot J, Rea D, et al. Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. J Clin Oncol. 2017;35(3):298–305. doi: 10.1200/jco.2016.68.2914.
  6. Rea D, Nicolini FE, Tulliez M, et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood. 2017;129(7):846–54. doi: 10.1182/blood-2016-09-742205.
  7. Chelysheva EYu, Petrova AN, Shukhov OA, et al. First interim analysis of the Russian multicenter prospective study RU-SKI: discontinuation of tyrosine kinase inhibitors in patients with chronic myeloid leukemia and deep molecular response. Hemasphere. 2018;2(S1):141.
  8. Туркина А.Г., Челышева Е.Ю., Шуваев В.А. и др. Результаты наблюдения больных хроническим миелолейкозом с глубоким молекулярным ответом без терапии ингибиторами тирозинкиназ. Терапевтический архив. 2017;89(12):86–96. doi: 10.17116/terarkh2017891286-96.
    [Turkina AG, Chelysheva EYu, Shuvaev VA, et al. Results of following up patients with chronic myeloid leukemia and a deep molecular response without tyrosine kinase inhibitor therapy. Terapevticheskii arkhiv. 2017;89(12):86–96. doi: 10.17116/terarkh2017891286-96. (In Russ)]
  9. Зейфман А.А., Челышева Е.Ю., Туркина А.Г. и др. Роль селективности ингибиторов тирозинкиназ в развитии побочных эффектов при терапии хронического миелолейкоза. Клиническая онкогематология. 2014;7(1):16–27.
    [Zeifman AA, Chelysheva EYu, Turkina AG, et al. Role of tyrosine­kinase inhibitor selectivity in development of adverse effects during treatment of chronic myeloid leukemia. Klinicheskaya onkogematologiya. 2014;7(1):16–27. (In Russ)]
  10. Hochhaus A, Saglio G, Hughes TP, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30(5):1044–54. doi: 10.1038/leu.2016.5.
  11. Cortes JE, Saglio G, Kantarjian H, et al. Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naive Chronic Myeloid Leukemia Patients Trial. J Clin Oncol. 2016;34(20):2333–40. doi: 10.1200/jco.2015.64.8899.
  12. Ломаиа Е.Г., Романова Е.Г., Сбитякова Е.И. и др. Эффективность и безопасность ингибиторов тирозинкиназ 2-го поколения (дазатиниб, нилотиниб) в терапии хронической фазы хронического миелолейкоза. Онкогематология. 2013;2:22–33.
    [Lomaia EG, Romanova EG, Sbityakova EI, et al. Efficacy and safety of 2nd generation tyrosine kinase inhibitors (dasatinib, nilotinib) in the treatment of chronic phase of chronic myeloid leukemia. Onkogematologiya. 2013;2:22–33. (In Russ)]
  13. Лазорко Н.С., Ломаиа Е.Г., Романова Е.Г. и др. Ингибиторы тирозинкиназ второго поколения и их токсичность у больных в хронической фазе хронического миелолейкоза. Клиническая онкогематология. 2015;8(3):302–8. doi: 10.21320/2500-2139-2015-8-3-302-308.
    [Lazorko NS, Lomaia EG, Romanova EG, et al. Second Generation Tyrosine Kinase Inhibitors and Their Toxicity in Treatment of Patients in Chronic Phase of Chronic Myeloid Leukemia. Clinical oncohematology. 2015;8(3):302–8. doi: 10.21320/2500-2139-2015-8-3-302-308. (In Russ)]
  14. Kantarjian H, Pasquini R, Levy V, et al. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia resistant to imatinib at a dose of 400 to 600 milligrams daily: two-year follow-up of a randomized phase 2 study (START-R). Cancer. 2009;115(18):4136–47. doi: 10.1002/cncr.24504.
  15. Quintas-Cardama A, Kantarjian H, O’Brien S, et al. Pleural Effusion in Patients With Chronic Myelogenous Leukemia Treated With Dasatinib After Imatinib Failure. J Clin Oncol. 2007;25(25):3908–14. doi: 10.1200/JCO.2007.12.0329.
  16. de Lavallade H, Punnialingam S, Milojkovic D, et al. Pleural effusions in patients with chronic myeloid leukaemia treated with dasatinib may have an immune-mediated pathogenesis. Br J Haematol. 2008;141(5):745–7. doi: 10.1111/j.1365-2141.2008.07108.
  17. Cortes JE, Gambacorti-Passerini C, Deininger MW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J Clin Oncol. 2017;36(3):231–7. doi: 10.1200/jco.2017.74.7162.
  18. Brummendorf HT, Cortes JE, de Souza CA, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol. 2015;168(1):69–81. doi: 10.1111/bjh.13108.
  19. Kerkela R, Grazette I, Yacolti R, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006;12(8):908–16. doi: 10.1038/nm1446.
  20. Hochhaus A, Larson RA, Guilhot F, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376(10):917–27. doi: 10.1056/nejmoa1609324.
  21. Hadzijusufovic E, Albrecht-Schgoer K, Huber K, et al. Nilotinib-induced vasculopathy: identifi cation of vascular endothelial cells as a primary target site. Leukemia. 2017;31(11):2388–97. doi: 10.1038/leu.2017.245.
  22. Троицкая Е.А., Вельмакин С.В., Кобалава Ж.Д. Концепция сосудистого возраста: новый инструмент оценки сердечно-сосудистого риска. Артериальная гипертензия. 2017;23(2):160–71. doi: 10.18705/1607-419X-2017-23-2-160-171.
    [Troitskaya EA, Velmakin SV, Kobalava ZD. Concept of vascular age: new tool in cardiovascular risk assessment. Arterial’naya gipertenziya. 2017;23(2):160–71. doi: 10.18705/1607-419X-2017-23-2-160-171. (In Russ)]
  23. Туркина А.Г., Лазарева О.В., Челышева Е.Ю. и др. Результаты терапии больных хроническим миелолейкозом по данным российской части международного многоцентрового популяционного исследования Eutos Population-Based Study (EUTOS-PBS). Гематология и трансфузиология. 2019;64(2):106–21. doi: 10.35754/0234-5730-2019-64-2-106-121.
    [Turkina AG, Lazareva OV, Chelysheva EYu, et al. Treatment outcomes in patients with chronic myeloid leukemia according to the Russian part of the EUTOS Population-Based Study. Russian journal of hematology and transfusiology. 2019;64(2):106–21. doi: 10.35754/0234-5730-2019-64-2-106-121. (In Russ)]
  24. Hehlmann R, Lauseker M, Saussele S, et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia. 2017;31(11):2398–406. doi: 10.1038/leu.2017.253.
  25. Rousselot P, Johnson-Ansah H, Huguet F, et al. Personalized daily doses of imatinib by therapeutic drug monitoring increase the rates of molecular responses in patients with chronic myeloid leukemia. Final results of the randomized OPTIM imatinib study. Blood. 2015;126(23):133. doi: 10.1182/blood.v126.23.133.133.
  26. Shah NP, Rousselot P, Schiffer C, et al. Dasatinib in imatinib-resistant or -intolerant chronic-phase, chronic myeloid leukemia patients: 7-year follow-up of study CA180-034. Am J Hematol. 2016;91(9):869–74. doi: 10.1002/ajh.24423.
  27. Marin D, Bazeos A, Mahon FX, et al. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J Clin Oncol. 2010;28(14):2381–8. doi: 10.1200/JCO.2009.26.3087.
  28. Ibrahim AR, Milojkovic D, Bua M, et al. Poor adherence is the main reason for loss of CCyR and imatinib failure for CML patients on long term imatinib therapy. Blood. 2010;116(21):3414. doi: 10.1182/blood.v116.21.3414.3414.
  29. Куцев С.И., Шатохин Ю.В. Влияние перерывов терапии иматинибом на достижение цитогенетического и молекулярного ответов у больных хроническим миелолейкозом. Казанский медицинский журнал. 2009;90(6):827–31.
    [Kutsev SI, Shatokhin YuV. Effect of interruptions in imatinib therapy on achievement of cytogenetic and molecular responses in patients with chronic myeloid leukemia. Kazanskii meditsinskii zhurnal. 2009;90(6):827–31. (In Russ)]
  30. Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–41. doi: 10.1056/NEJMoa055229.
  31. Santana-Hernandez P, Pedraza RCP, Duque SG, et al. Low-Dose Dasatinib as First-Line Treatment for Chronic Myeloid Leukemia: Preliminary Report. Blood. 2017;130(Suppl 1):5254.
  32. Naqvi K, Jabbour E, Skinner J, et al. Long-term follow-up of lower dose dasatinib (50 mg daily) as frontline therapy in newly diagnosed chronic-phase chronic myeloid leukemia. Cancer. 2020;126(1):67–75. doi: 10.1002/cncr.32504.
  33. Carella AM, Lerma E. Durable responses in chronic myeloid leukemia patients maintained with lower doses of imatinib mesylate after achieving molecular remission. Ann Hematol. 2007;86(10):749–52. doi: 10.1007/s00277-007-0326-2.
  34. Cervantes F, Correa JG, Perez I, et al. Imatinib dose reduction in patients with chronic myeloid leukemia in sustained deep molecular response. Ann Hematol. 2017;96(1):81–5. doi: 10.1007/s00277-016-2839-z.
  35. Iriyama N, Ohashi K, Hashino S, et al. The efficacy of reduced-dose dasatinib as a subsequent therapy in patients with chronic myeloid leukemia in the chronic phase: the LD-CML study of the Kanto CML Study Group. Intern Med. 2018;57(1):17–23. doi: 10.2169/internalmedicine.9035-17.
  36. Hjorth-Hansen H, Stenke L, Soderlund S, et al. Dasatinib induces fast and deep responses in newly diagnosed chronic myeloid leukaemia patients in chronic phase: clinical results from a randomised phase-2 study (NordCML006). Eur J Haematol. 2015;94(3):243–50. doi: 10.1111/ejh.12423.
  37. Santos FP, Kantarjian H, Fava C, et al. Clinical impact of dose reductions and interruptions of second-generation tyrosine kinase inhibitors in patients with chronic myeloid leukaemia. Br J Haematol. 2010;150(3):303–12. doi: 10.1111/j.1365-2141.2010.08245.x
  38. Russo D, Martinelli G, Malagola M, et al. Effects and outcome of a policy of intermittent imatinib treatment in elderly patients with chronic myeloid leukemia. Blood. 2013;121(26):5138–44. doi: 10.1182/blood-2013-01-480194.
  39. La Rosee P, Martiat P, Leitner A, et al. Improved tolerability by a modified intermittent treatment schedule of dasatinib for patients with chronic myeloid leukemia resistant or intolerant to imatinib. Ann Hematol. 2013;92(10):1345–50. doi: 10.1007/s00277-013-1769-2.
  40. Faber E, Divoka M, Skoumalova I, et al. A lower dosage of imatinib is sufficient to maintain undetectable disease in patients with chronic myeloid leukemia with long-term low-grade toxicity of the treatment. Leuk Lymphoma. 2016;57(2):370–5. doi: 10.3109/10428194.2015.1056184.
  41. Шухов О.А., Гурьянова М.А., Челышева Е.Ю. и др. Оценка стабильности молекулярного ответа у больных хроническим миелоидным лейкозом на сниженных дозах ингибиторов тирозинкиназ второго поколения. Гематология и трансфузиология. 2020;65(1, приложение 1):111–2.
    [Shukhov OA, Gur’yanova MA, Chelysheva EYu, et al. Assessment of molecular response stability in chronic myeloid leukemia patients treated with second generation tyrosine kinase inhibitors. Gematologiya i transfuziologiya. 2020;65(1, Suppl 1):111–2. (In Russ)]
  42. Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor dose in patients with chronic myeloid leukaemia with stable major molecular response (DESTINY): an interim analysis of a non-randomised, phase 2 trial. Lancet Haematol. 2017;4(7):e310–е316. doi: 10.1016/s2352-3026(17)30066-2.
  43. Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematol. 2019;6(7):e375–е383. doi: 10.1016/S2352-3026(19)30094-8.
  44. Rea D, Cayuela J, Dulucq S, et al. Molecular responses after switching from a standard-dose twice-daily nilotinib regimen to a reduced-dose once-daily schedule in patients with chronic myeloid leukemia: a real life observational study (NILO-RED). Blood 2017;130(1): Abstract 590.
  45. Claudiani S, Apperley J, Khan A, et al. Dose reduction of first and second generation TKI is effective in the maintenance of major molecular response and may predict successful TFR in CML patients. Blood. 2018;132(1): Abstract 3007.
  46. Cayssials E, Torregrosa-Diaz J, Gallego-Hernanz P, et al. Low-dose tyrosine kinase inhibitors before treatment discontinuation do not impair treatment-free remission in chronic myeloid leukemia patients: results of a retrospective study. Cancer. 2020;126(15):3438–47. doi: 10.1002/cncr.32940.
  47. Singh N, Kumar L, Meena R, et al. Drug monitoring of imatinib levels in patients undergoing therapy for chronic myeloid leukaemia: comparing plasma levels of responders and non-responders. Eur J Clin Pharmacol. 2009;65(6):545–9. doi: 10.1007/s00228-009-0621-z.
  48. Larson RA, Druker BJ, Guilhot F, et al. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008;111(8):4022–8. doi: 10.1182/blood-2007-10-116475.
  49. Picard S, Titier K, Etienne G, et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard dose imatinib in chronic myeloid leukemia. Blood. 2007;109(8):3496–9. doi: 10.1182/blood-2006-07-036012.
  50. Takahashi N, Wakita H, Miura M, et al. Correlation between imatinib pharmacokinetics and clinical response in Japanese patients with chronic-phase chronic myeloid leukemia. Clin Pharmacol Ther. 2010;88(6):809–13. doi: 10.1038/clpt.2010.186.
  51. Marin D, Bazeos A, Mahon FX, et al. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J Clin Oncol. 2010;28(14):2381–8. doi: 10.1200/JCO.2009.26.3087.
  52. Куцев С.И., Оксенюк О.С. Мониторинг в терапии хронического миелолейкоза иматинибом. Клиническая онкогематология. 2009;2(3):225–31.
    [Kutsev SI, Oksenyuk OS. Monitoring in imatinib treatment of chronic myeloid leukemia. Klinicheskaya onkogematologiya. 2009;2(3):225–31. (In Russ)]
  53. Larson RA, Yin OQ, Hochhaus A, et al. Population pharmacokinetic and exposure-response analysis of nilotinib in patients with newly diagnosed Ph+ chronic myeloid leukemia in chronic phase. Eur J Clin Pharmacol. 2012;68(5):723–33. doi: 10.1007/s00228-011-1200-7.
  54. Takahashi N, Miura M, Kuroki J, et al. Multicenter phase II clinical trial of nilotinib for patients with imatinib-resistant or -intolerant chronic myeloid leukemia from the East Japan CML study group evaluation of molecular response and he efficacy and safety of nilotinib. Biomark Res. 2014;2(1):6. doi: 10.1186/2050-7771-2-6.
  55. Tanaka C, Yin OQP, Sethuraman V, et al. Clinical pharmacokinetics of the BCR–ABL tyrosine kinase inhibitor nilotinib. Clin Pharmacol Ther. 2010;87(2):197–203. doi: 10.1038/clpt.2009.208.
  56. Miura M. Therapeutic drug monitoring of imatinib, nilotinib, and dasatinib for patients with chronic myeloid leukemia. Biol Pharm Bull. 2015;38(5):645–54. doi: 10.1248/bpb.b15-00103.
  57. Wang X, Roy A, Hochhaus A, et al. Differential effects of dosing regimen on the safety and efficacy of dasatinib: retrospective exposure–response analysis of a phase III study. Clin Pharmacol. 2013;10(5):85–97. doi: 10.2147/CPAA.S42796.
  58. Mita A, Abumiya M, Miura M, et al. Correlation of plasma concentration and adverse effects of bosutinib: standard dose or dose-escalation regimens of bosutinib treatment for patients with chronic myeloid leukemia. Exp Hematol Oncol. 2018;7(1):9. doi: 10.1186/s40164-018-0101-1.

EVI1 -позитивные лейкозы и миелодиспластические синдромы: теоретические и клинические аспекты (обзор литературы)

Н.Н. Мамаев, А.И. Шакирова, Е.В. Морозова, Т.Л. Гиндина

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Николай Николаевич Мамаев, д-р мед. наук, профессор, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; e-mail: nikmamaev524@gmail.com

Для цитирования: Мамаев Н.Н., Шакирова А.И., Морозова Е.В., Гиндина Т.Л. EVI1-позитивные лейкозы и миелодиспластические синдромы: теоретические и клинические аспекты (обзор литературы). Клиническая онкогематология. 2021;14(1):103–17.

DOI: 10.21320/2500-2139-2021-14-1-103-117


РЕФЕРАТ

Настоящий обзор посвящен анализу теоретической базы и проводимой в клинике НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой терапии наиболее неблагоприятных в прогностическом отношении EVI1-позитивных вариантов миелоидных лейкозов и миелодиспластических синдромов. Основной акцент в работе сделан на доказательстве ведущей роли гена EVI1 в нарушении эпигенетической регуляции гемопоэза и, следовательно, целесообразности использования трансплантации аллогенных гемопоэтических стволовых клеток с гипометилирующими агентами и/или транс-ретиноевой кислотой для лечения этих заболеваний.

Ключевые слова: EVI1, острые миелоидные лейкозы, хронический миелоидный лейкоз, миелодиспластический синдром, аллоТГСК, гипометилирующие агенты, транс-ретиноевая кислота.

Получено: 12 сентября 2020 г.

Принято в печать: 6 декабря 2020 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Barjesteh van Waalwijk van Doorn-Khosrovani S. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2002;101(3):837–45. doi: 10.1182/blood-2002-05-1459.
  2. Lugthart S, van Drunen E, van Norden Y, et al. High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood. 2008;111(8):4329–37. doi: 10.1182/blood-2007-10-119230.
  3. Groschel S, Lugthart S, Schlenk RF, et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol. 2010;28(12):2101–7. doi: 10.1200/JCO.2009.26.0646.
  4. Paquette RL, Nicoll J, Chalukya M, et al. Frequent EVI1 translocations in myeloid blast crisis CML that evolves through tyrosine kinase inhibitors. Cancer Genet. 2011;204(7):392–7. doi: 10.1016/j.cancergen.2011.06.002.
  5. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Лейкозы и миелодиспластические синдромы с высокой экспрессией гена EVI1: теоретические и клинические аспекты. Клиническая онкогематология. 2012;5(4):361–4.
    [Mamaev NN, Gorbunova AV, Gindina TL, et al. Leukemias and myelodysplastic syndromes with high expression of EVI1 gene: theoretical and clinical aspects. Klinicheskaya onkogematologiya. 2012;5(4):361–4. (In Russ)]
  6. Rogers HJ, Vardiman JW, Anastasi J, et al. Complex or monosomal karyotype and not blast percentage is associated with poor survival in acute myeloid leukemia and myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2): a Bone Marrow Pathology Group study. Haematologica. 2014;99(5):821–9. doi: 10.3324/haematol.2013.096420.
  7. Reiter E, Greinix H, Rabitsch W, et al. Low curative potential of bone marrow transplantation for highly aggressive acute myelogenous leukemia with inversion inv(3)(q21q26) or homologous translocation t(3;3)(q21;q26). Ann Hematol. 2000;79(7):374–7. doi: 10.1007/s002770000158.
  8. He X, Wang Q, Cen J, et al. Predictive value of high EVI1 expression in AML patients undergoing myeloablative allogeneic hematopoietic stem cell transplantation in first CR. Bone Marrow Transplant. 2016;51(7):921–7. doi: 10.1038/bmt.2016.71.
  9. Gindina TL, Mamaev NN, Afanasyev BV. Chromosome abnormalities and hematopoietic stem cell transplantation in acute leukemias. In: ML Larramendy, S Soloneski (eds). Chromosomal abnormalities – A hallmark manifestation of genomic instability. IntechOpen; 2017. рр. 71– doi: 10.5772/67802.
  10. Halaburda K, Labopin M, Houhou M, et al. AlloHSCT for inv(3)(q21;q26)/t(3;3)(q21;q26) AML: a report from the acute leukemia working party of the European society for blood and marrow transplantation. Bone Marrow Transplant. 2018;53(6):683–91. doi: 10.1038/s41409-018-0165-x.
  11. Martinelli G, Ottaviani E, Buonamici S, et al. Association of 3q21q26 syndrome with different RPN1/EVI1 fusion transcripts. Haematologica. 2003;88(11):1221–8.
  12. Poppe B, Dastugue N, Vandesompele J, et al. EVI1 is consistently expressed as principal transcript in common and rare recurrent 3q26 rearrangements. Genes Chromos Cancer. 2006;45(4):349–56. doi: 10.1002/gcc.20295.
  13. De Braekeleer M, Le Bris MJ, De Braekeleer E, et al. 3q26/EVI1 rearrangements in myeloid hemopathies: a cytogenetic review. Fut Oncol. 2015;11(11):1675–86. doi: 10.2217/fon.15.64.
  14. Mamaev NN, Gindina TL, Morozova EV, et al. Primary myelodysplastic syndrome with two rare recurrent chromosome abnormalities [t(3q26/2;q22 and trisomy 13] associated with resistance to chemotherapy and hematopoietic stem cell transplantation. Cell Ther Transplant. 2018;7(2):64–9. doi: 10/18620/ctt-1866-8836-2018-7-2-64-69.
  15. Hodge JC, Bosler D, Rubinstein L, et al. Molecular and pathologic characterization of AML with double inv(3)(q21q26.2). Cancer Genet. 2019;230:28–36. doi: 10.1016/j.cancergen.2018.08.007.
  16. Testoni N, Borsaru G, Martinelli G, et al. 3q21 and 3q26 cytogenetic abnormalities in acute myeloblastic leukemia: biological and clinical features. Haematologica. 1999;84(8):690–4.
  17. Russell M, List A, Greenberg P, et al. Expression of EVI1 in myelodysplastic syndromes and other hematologic malignancies without 3q26 translocations. Blood. 1994;84(4):1243–8. doi: 10.1182/blood.V84.4.1243.1243.
  18. Groschel S, Schlenk RF, Engelmann J, et al. Deregulated expression of EVI1 defines a poor prognostic subset of MLL-rearranged acute myeloid leukemias: a study of the German-Austrian Acute Myeloid Leukemia Study Group and the Dutch-Belgian-Swiss HOVON/SAKK Cooperative Group. J Clin Oncol. 2013;31(1):95–103. doi: 10.1200/JCO.2011.41.5505.
  19. Ho PA, Alonzo TA, Gerbing RB, et al. High EVI1 expression is associated with MLL rearrangements and predicts decreased survival in paediatric acute myeloid leukaemia: a report from the children’s oncology group. Br J Haematol. 2013;162(5):670–7. doi: 10.1111/bjh.12444.
  20. Zhang Y, Owens K, Hatem L, et al. Essential role of PR-domain protein MDS1-EVI1 in MLL-AF9 leukemia. Blood. 2013;122(16):2888–92. doi: 10.1182/blood-2012-08-453662.
  21. Mucenski ML, Taylor BA, Ihle JN, et al. Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol. 1988;8(1):301–8. doi: 10.1128/mcb.8.1.301.
  22. Goyama S, Kurokawa M. Pathogenetic significance of ecotropic viral integration site-1 in hematological malignancies. Cancer Sci. 2009;100(6):990–5. doi: 10.1111/j.1349-7006.2009.01152.x.
  23. Hinai AA, Valk PJ. Review: Aberrant EVI1 expression in acute myeloid leukaemia. Br J Haematol. 2016;172(6):870–8. doi: 10.1111/bjh.13898.
  24. Yuan X, Wang X, Bi K, Jiang G. The role of EVI-1 in normal hematopoiesis and myeloid malignancies (Review). Int J Oncol. 2015;47(6):2028–36. doi: 10.3892/ijo.2015.3207.
  25. Delwel R, Funabiki T, Kreider BL, et al. Four of the seven zinc fingers of the Evi-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T)AAGA(T/C)AAGATAA. Mol Cell Biol. 1993;13(7):4291–300. doi: 10.1128/mcb.13.7.4291.
  26. Funabiki T, Kreider BL, Ihle JN. The carboxyl domain of zinc fingers of the Evi-1 myeloid transforming gene binds a consensus sequence of GAAGATGAG. Oncogene. 1994;9(6):1575–81.
  27. Morishita K, Suzukawa K, Taki T, et al. EVI-1 zinc finger protein works as a transcriptional activator via binding to a consensus sequence of GACAAGATAAGATAAN1-28 CTCATCTTC. Oncogene. 1995;10(10):1961–7.
  28. Perkins AS, Kim JH. Zinc fingers 1–7 of EVI1 fail to bind to the GATA motif by itself but require the core site GACAAGATA for binding. J Biol Chem. 1996;271(2):1104–10. doi: 10.1074/jbc.271.2.1104.
  29. Bartholomew C, Kilbey A, Clark AM, Walker M. The Evi-1 proto-oncogene encodes a transcriptional repressor activity associated with transformation. Oncogene. 1997;14(5):569–77. doi: 10.1038/sj.onc.1200864.
  30. Kilbey A, Bartholomew C. Evi-1 ZF1 DNA binding activity and a second distinct transcriptional repressor region are both required for optimal transformation of Rat1 fibroblasts. Oncogene. 1998;16(17):2287–91. doi: 10.1038/sj.onc.1201732.
  31. Bordereaux D, Fichelson S, Tambourin P, Gisselbrecht S. Alternative splicing of the Evi-1 zinc finger gene generates mRNAs which differ by the number of zinc finger motifs. Oncogene. 1990;5(6):925–7.
  32. Alzuherri H, McGilvray R, Kilbey A, Bartholomew C. Conservation and expression of a novel alternatively spliced Evi1 exon. Gene. 2006;384:154–62. doi: 10.1016/j.gene.2006.07.027.
  33. Fears S, Mathieu C, Zeleznik-Le N, et al. Intergenic splicing of MDS1 and EVI1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. Proc Natl Acad Sci USA. 1996;93(4):1642–7. doi: 10.1073/pnas.93.4.1642.
  34. Huang S, Shao G, Liu L. The PR domain of the Rb-binding zinc finger protein RIZ1 is a protein binding interface and is related to the SET domain functioning in chromatin-mediated gene expression. J Biol Chem. 1998;273(26):15933–9. doi: 10.1074/jbc.273.26.15933.
  35. Goyama S, Yamamoto G, Shimabe M, et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell. 2008;3(2):207–20. doi: 10.1016/j.stem.2008.06.002.
  36. Laricchia-Robbio L, Nucifora G. Significant increase of self-renewal in hematopoietic cells after forced expression of EVI1. Blood Cells Mol Dis. 2008;40(2):141–7. doi: 10.1016/j.bcmd.2007.07.012.
  37. Yoshimi A, Kurokawa M. Evi1 forms a bridge between the epigenetic machinery and signaling pathways. Oncotarget. 2011;2(7):575–86. doi: 10.18632/oncotarget.304.
  38. Buonamici S, Li D, Chi Y, et al. EVI1 induces myelodysplastic syndrome in mice. J Clin Invest. 2005;115(8):2296. doi: 1172/jci21716c1.
  39. Cuenco GM, Ren R. Both AML1 and EVI1 oncogenic components are required for the cooperation of AML1/MDS1/EVI1 with BCR/ABL in the induction of acute myelogenous leukemia in mice. Oncogene. 2004;23(2):569–79. doi: 10.1038/sj.onc.1207143.
  40. Glass C, Wilson M, Gonzalez R, et al. The role of EVI1 in myeloid malignancies. Blood Cells Mol Dis. 2014;53(1–2):67–76. doi: 10.1016/j.bcmd.2014.01.002.
  41. Jin G, Yamazaki Y, Takuwa M, et al. Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood. 2007;109(9):3998–4005. doi: 10.1182/blood-2006-08-041202.
  42. Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442(7104):818–22. doi: 10.1038/nature04980.
  43. Bindels EM, Havermans M, Lugthart S, et al. EVI1 is critical for the pathogenesis of a subset of MLL-AF9-rearranged AMLs. Blood. 2012;119(24):5838–49. doi: 10.1182/blood-2011-11-393827.
  44. Glass C, Wuertzer C, Cui X, et al. Global Identification of EVI1 Target Genes in Acute Myeloid Leukemia. PLoS One. 2013;8(6):e67134. doi: 10.1371/journal.pone.0067134.
  45. Hoyt PR, Bartholomew C, Davis AJ, et al. The Evi1 proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mech Dev. 1997;65(1–2):55–70. doi: 10.1016/s0925-4773(97)00057-9.
  46. Nucifora G. The EVI1 gene in myeloid leukemia. Leukemia. 1997;11(12):2022–31. doi: 10.1038/sj.leu.2400880.
  47. Kataoka K, Sato T, Yoshimi A, et al. Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. J Exp Med. 2011;208(12):2403–16. doi: 10.1084/jem.20110447.
  48. Zhang Y, Stehling-Sun S, Lezon-Geyda K, et al. PR-domain-containing Mds1-Evi1 is critical for long-term hematopoietic stem cell function. Blood. 2011;118(14):3853–61. doi: 10.1182/blood-2011-02-334680.
  49. Steinleitner K, Rampetsreiter P, Koffel R, et al. EVI1 and MDS1/EVI1 expression during primary human hematopoietic progenitor cell differentiation into various myeloid lineages. Anticancer Res. 2012;32(11):4883–9.
  50. Wieser R. The oncogene and developmental regulator EVI1: expression, biochemical properties, and biological functions. Gene. 2007;396(2):346–57. doi: 10.1016/j.gene.2007.04.012.
  51. Xi ZF, Russell M, Woodward S, et al. Expression of the Zn finger gene, EVI-1, in acute promyelocytic leukemia. Leukemia. 1997;11(2):212–20. doi: 10.1038/sj.leu.2400547.
  52. Aytekin M, Vinatzer U, Musteanu M, et al. Regulation of the expression of the oncogene EVI1 through the use of alternative mRNA 5’-ends. Gene. 2005;356:160–8. doi: 10.1016/j.gene.2005.04.032.
  53. Niederreither K, Subbarayan Y, Dolle P, et al. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet. 1999;21(4):444–8. doi: 1038/7788.
  54. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350(16):1617–28. doi: 10.1056/NEJMoa040465.
  55. Morishita K, Parganas E, William CL, et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc Natl Acad Sci USA. 1992;89(9):3937–41. doi: 10.1073/pnas.89.9.3937.
  56. Ogawa S, Mitani K, Kurokawa M, et al. Abnormal expression of Evi-1 gene in human leukemias. Hum Cell. 1996;9(4):323–32.
  57. Lugthart S, Groschel S, Beverloo HB, et al. Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J Clin Oncol. 2010;28(24):3890–8. doi: 10.1200/JCO.2010.29.2771.
  58. Groschel S, Sanders MA, Hoogenboezem R, et al. Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways. Blood. 2015;125(1):133–9. doi: 10.1182/blood-2014-07-591461.
  59. Langabeer SE, Rogers JR, Harrison G, et al. EVI1 expression in acute myeloid leukaemia. Br J Haematol. 2001;112(1):208–11. doi: 10.1046/j.1365-2141.2001.02569.x.
  60. Balgobind BV, Lugthart S, Hollink IH, et al. EVI1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia. 2010;24(5):942–9. doi: 10.1038/leu.2010.47.
  61. Matsuo H, Kajihara M, Tomizawa D, et al. EVI1 overexpression is a poor prognostic factor in pediatric patients with mixed lineage leukemia-AF9 rearranged acute myeloid leukemia. Haematologica. 2014;99(11):e225–е227. doi: 10.3324/haematol.2014.107128.
  62. Testa U, Lo-Coco F. Targeting of leukemia-initiating cells in acute promyelocytic leukemia. Stem Cell Invest. 2015;2:8. doi: 10.3978/j.issn.2306-9759.2015.04.03.
  63. Jo A, Mitani S, Shiba N, et al. High expression of EVI1 and MEL1 is a compelling poor prognostic marker of pediatric AML. Leukemia. 2015;29(5):1076–83. doi: 10.1038/leu.2015.5.
  64. Sadeghian MH, Rezaei Dezaki Z. Prognostic Value of EVI1 Expression in Pediatric Acute Myeloid Leukemia: A Systematic Review. Iran J Pathol. 2018;13(3):294–300.
  65. Arai S, Yoshimi A, Shimabe M, et al. Evi-1 is a transcriptional target of mixed-lineage leukemia oncoproteins in hematopoietic stem cells. Blood. 2011;117(23):6304–14. doi: 10.1182/blood-2009-07-234310.
  66. De Weer A, Van der Meulen J, Rondou P, et al. EVI1-mediated down regulation of MIR449A is essential for the survival of EVI1 positive leukaemic cells. Br J Haematol. 2011;154(3):337–48. doi: 10.1111/j.1365-2141.2011.08737.x.
  67. Yamazaki H, Suzuki M, Otsuki A, et al. A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell. 2014;25(4):415–27. doi: 10.1016/j.ccr.2014.02.008.
  68. Groschel S, Sanders MA, Hoogenboezem R, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014;157(2):369–81. doi: 10.1016/j.cell.2014.02.019.
  69. Lugthart S, Figueroa ME, Bindels E, et al. Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVI1. Blood. 2011;117(1):234–41. doi: 10.1182/blood-2010-04-281337.
  70. Bartholomew C, Morishita K, Askew D, et al. Retroviral insertions in the CB-1/Fim-3 common site of integration activate expression of the Evi-1 gene. Oncogene. 1989;4(5):529–34.
  71. Kreider BL, Orkin SH, Ihle JN. Loss of erythropoietin responsiveness in erythroid progenitors due to expression of the Evi-1 myeloid-transforming gene. Proc Natl Acad Sci USA. 1993;90(14):6454–8. doi: 10.1073/pnas.90.14.6454.
  72. Kataoka K, Kurokawa M. Ecotropic viral integration site 1, stem cell self-renewal and leukemogenesis. Cancer Sci. 2012;103(8):1371–7. doi: 10.1111/j.1349-7006.2012.02303.x.
  73. Soderholm J, Kobayashi H, Mathieu C, et al. The leukemia-associated gene MDS1/EVI1 is a new type of GATA-binding transactivator. Leukemia. 1997;11(3):352–8. doi: 10.1038/sj.leu.2400584.
  74. Laricchia-Robbio L, Fazzina R, Li D, et al. Point mutations in two EVI1 Zn fingers abolish EVI1-GATA1 interaction and allow erythroid differentiation of murine bone marrow cells. Mol Cell Biol. 2006;26(20):7658–66. doi: 10.1128/MCB.00363-06.
  75. Senyuk V, Sinha KK, Li D, et al. Repression of RUNX1 activity by EVI1: a new role of EVI1 in leukemogenesis. Cancer Res. 2007;67(12):5658–66. doi: 10.1158/0008-5472.CAN-06-3962.
  76. Laricchia-Robbio L, Premanand K, Rinaldi CR, Nucifora G. EVI1 Impairs myelopoiesis by deregulation of PU.1 function. Cancer Res. 2009;69(4):1633–42. doi: 10.1158/0008-5472.CAN-08-2562.
  77. Steinmetz B, Hackl H, Slabakova E, et al. The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid. Cell Cycle. 2014;13(18):2931–43. doi: 10.4161/15384101.2014.946869.
  78. Yuasa H, Oike Y, Iwama A, et al. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J. 2005;24(11):1976–87. doi: 10.1038/sj.emboj.7600679.
  79. Shimabe M, Goyama S, Watanabe-Okochi N, et al. Pbx1 is a downstream target of Evi-1 in hematopoietic stem/progenitors and leukemic cells. Oncogene. 2009;28(49):4364–74. doi: 10.1038/onc.2009.288.
  80. Kurokawa M, Mitani K, Irie K, et al. The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature. 1998;394(6688):92–6. doi: 10.1038/27945.
  81. Izutsu K, Kurokawa M, Imai Y, et al. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood. 2001;97(9):2815–22. doi: 10.1182/blood.v97.9.2815.
  82. Kurokawa M, Mitani K, Yamagata T, et al. The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J. 2000;19(12):2958–68. doi: 10.1093/emboj/19.12.2958.
  83. Buonamici S, Li D, Mikhail FM, et al. EVI1 abrogates interferon-alpha response by selectively blocking PML induction. J Biol Chem. 2004;280(1):428–36. doi: 10.1074/jbc.M410836200.
  84. Pradhan AK, Mohapatra AD, Nayak KB, Chakraborty S. Acetylation of the proto-oncogene EVI1 abrogates Bcl-xL promoter binding and induces apoptosis. PLoS One. 2011;6(9):e25370. doi: 10.1371/journal.pone.0025370.
  85. Yatsula B, Lin S, Read AJ, et al. Identification of binding sites of EVI1 in mammalian cells. J Biol Chem. 2005;280(35):30712–22. doi: 10.1074/jbc.M504293200.
  86. Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42(8):722–6. doi: 10.1038/ng.621.
  87. Figueroa ME, Lugthart S, Li Y, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010;17(1):13–27. doi: 10.1016/j.ccr.2009.11.020.
  88. Wagner JM, Hackanson B, Lubbert M, Jung M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenet. 2010;1(3–4):117–36. doi: 10.1007/s13148-010-0012-4.
  89. Senyuk V, Zhang Y, Liu Y, et al. Critical role of miR-9 in myelopoiesis and EVI1-induced leukemogenesis. Proc Natl Acad Sci USA. 2013;110(14):5594–9. doi: 10.1073/pnas.1302645110.
  90. Nikoloski G, Langemeijer SM, Kuiper RP, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42(8):665–7. doi: 10.1038/ng.620.
  91. Makishima H, Jankowska AM, Tiu RV, et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia. 2010;24(10):1799–804. doi: 10.1038/leu.2010.167.
  92. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. doi: 10.1056/NEJMoa1005143.
  93. Walter MJ, Ding L, Shen D, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25(7):1153–8. doi: 10.1038/leu.2011.44.
  94. Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301. doi: 10.1056/NEJMoa0810069.
  95. Langemeijer SM, Kuiper RP, Berends M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41(7):838–42. doi: 10.1038/ng.391.
  96. Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
  97. van Haaften G, Dalgliesh GL, Davies H, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41(5):521–3. doi: 10.1038/ng.349.
  98. Liu Y, Chen L, Ko TC, et al. Evi1 is a survival factor which conveys resistance to both TGFbeta- and taxol-mediated cell death via PI3K/AKT. Oncogene. 2006;25(25):3565–75. doi: 10.1038/sj.onc.1209403.
  99. Yoshimi A, Goyama S, Watanabe-Okochi N, et al. Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood. 2011;117(13):3617–28. doi: 10.1182/blood-2009-12-261602.
  100. Bingemann SC, Konrad TA, Wieser R. Zinc finger transcription factor ecotropic viral integration site 1 is induced by all-trans retinoic acid (ATRA) and acts as a dual modulator of the ATRA response. FEBS J. 2009;276(22):6810–22. doi: 10.1111/j.1742-4658.2009.07398.x.
  101. Pauebelle E, Plesa A, Hayette S, et al. Efficacy of All-Trans-Retinoic Acid in high-risk acute myeloid leukemia with overexpression of EVI1. Oncol Ther. 2019;7(2):121–30. doi: 10.1007/s40487-019-0095-9.
  102. Vazquez I, Maicas M, Cervera J, et al. Down-regulation of EVI1 is associated with epigenetic alterations and good prognosis in patients with acute myeloid leukemia. Haematologica. 2011;96(10):1448–56. doi: 10.3324/haematol.2011. 040535.
  103. Daghistani M, Marin D, Khorashad JS, et al. EVI-1 oncogene expression predicts survival in chronic-phase CML patients resistant to imatinib treated with second-generation tyrosine kinase inhibitors. Blood. 2010;116(26):6014–7. doi: 10.1182/blood-2010-01-264234.
  104. Мамаев Н.Н., Шакирова А.И., Бархатов И.М. идр. Ведущая роль BAALC-экспрессирующих клеток-предшественниц в возникновении и развитии посттрансплантационных рецидивов у больных острыми миелоидными лейкозами. Клиническая онкогематология. 2020;13(1):75–88. doi: 10.21320/2500-2139-2020-13-1-75-88.
    [Mamaev NN, Shakirova AI, Barkhatov IM, et al. Crucial Role of BAALCExpressing Progenitor Cells in Emergence and Development of Post-Transplantation Relapses in Patients with Acute Myeloid Leukemia. Clinical oncohematology. 2020;13(1):75–88. doi: 10.21320/2500-2139-2020-13-1-75-88. (In Russ)]
  105. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8. doi: 10.1038/367645a0.
  106. Matsushita H, Yahata T, Sheng Y, et al. Establishment of a humanized APL model via the transplantation of PML-RARA-transduced human common myeloid progenitors into immunodeficient mice. PLoS One. 2014;9(11):e111082. doi: 10.1371/journal.pone.0111082.
  107. Cole CB, Verdoni AM, Ketkar S, et al. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2016;126(1):85–98. doi: 10.1172/JCI82897.
  108. Гудожникова Я.В., Мамаев Н.Н., Бархатов И.М. и др. Результаты молекулярного мониторинга в посттрансплантационный период с помощью серийного исследования уровня экспрессии гена WT1 у больных острыми миелоидными лейкозами. Клиническая онкогематология. 2018;11(3):241–51. doi: 10.21320/2500-2139-2018-11-3-241-251.
    [Gudozhnikova YaV, Mamaev NN, Barkhatov IM, et al. Results of Molecular Monitoring in Posttransplant Period by Means of Series Investigation of WT1 Gene Expression in Patients with Acute Myeloid Leukemia. Clinical oncohematology. 2018;11(3):241–51. doi: 10.21320/2500-2139-2018-11-3-241-251. (In Russ)]
  109. Dreyfus F, Bouscary D, Melle J, et al. Expression of the Evi-1 gene in myelodysplastic syndromes. Leukemia. 1995;9(1):203–5. doi: 10.1016/0145-2126(94)90237-2.
  110. Thol F, Yun H, Sonntag AK, et al. Prognostic significance of combined MN1, ERG, BAALC, and EVI1 (MEBE) expression in patients with myelodysplastic syndromes. Ann Hematol. 2012;91(8):1221–33. doi: 10.1007/s00277-012-1457-7.
  111. Russell M, Thompson F, Spier C, Taetle R. Expression of the EVI1 gene in chronic myelogenous leukemia in blast crisis. Leukemia. 1993;7(10):1654–7.
  112. Ogawa S, Kurokawa M, Tanaka T, et al. Increased Evi-1 expression is frequently observed in blastic crisis of chronic myelocytic leukemia. Leukemia. 1996;10(5):788–94.
  113. Kuila N, Sahoo DP, Kumari M, et al. EVI1, BAALC and AME: prevalence of the secondary mutations in chronic and accelerated phases of chronic myeloid leukemia patients from eastern India. Leuk Res. 2009;33(4):594–6. doi: 10.1016/j.leukres.2008.07.018.
  114. Горбунова А.В., Гиндина Т.Л., Морозова Е.В. и др. Влияние молекулярно-генетических и цитогенетических факторов на эффективность аллогенной трансплантации костного мозга у больных хроническим миелолейкозом. Клиническая онкогематология. 2013;6(4):445–50.
    [Gorbunova AV, Gindina TL, Morozova EV, et al. Impact of molecular genetic and cytogenetic characteristics on outcomes of allogeneic hematopoietic stem cell transplantation in chronic myeloid leukemia. Klinicheskaya oncogematologiya. 2013;6(4):445–50. (In Russ)]
  115. Sato T, Goyama S, Kataoka K, et al. Evi1 defines leukemia-initiating capacity and tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Oncogene. 2014;33(42):5028–38. doi: 10.1038/onc.2014.108.
  116. Konantz M, Andre MC, Ebinger M, et al. EVI-1 modulates leukemogenic potential and apoptosis sensitivity in human acute lymphoblastic leukemia. Leukemia. 2013;27(1):56–65. doi: 10.1038/leu.2012.211.
  117. Mittal N, Li L, Sheng Y, et al. A critical role of epigenetic inactivation of miR-9 in EVI1high pediatric AML. Mol Cancer. 2019;18(1):30. doi: 10.1186/s12943-019-0952-z.
  118. Verhagen HJ, Smit MA, Rutten A, et al. Primary acute myeloid leukemia cells with overexpression of EVI-1 are sensitive to all-trans retinoic acid. Blood. 2016;127(4):458–63. doi: 10.1182/blood-2015-07-653840.
  119. Мамаев Н.Н, Горбунова А.В, Гиндина Т.Л. и др. Стойкое восстановление донорского гемопоэза у больной с посттрансплантационным рецидивом острого миеломонобластного лейкоза с inv(3)(q21q26), моносомией 7 и экспрессией онкогена EVI1 после трансфузий донорских лимфоцитов и использования гипометилирующих агентов. Клиническая онкогематология. 2014;7(1):71–5.
    [Mamayev NN, Gorbunova AV, Gindina TL, et al. Stable donor hematopoiesis reconstitution after post­transplantation relapse of acute myeloid leukemia in patient with inv(3)(q21q26), –7 and EVI1 oncogene overexpression treated by donor lymphocyte infusions and hypomethylating agents. Klinicheskaya oncogematologiya. 2014;7(1):71–5. (In Russ)]
  120. He X, Wang Q, Cen J, et al. Predictive value of high EVI1 expression in AML patients undergoing myeloablative allogeneic hematopoietic stem cell transplantation in first CR. Bone Marrow Transplant. 2016;51(7):921–7. doi: 10.1038/bmt.2016.71.
  121. Мамаев Н.Н., Морозова Е.В., Горбунова А.В. Теоретические и клинические аспекты эпигенетических изменений при миелодиспластических синдромах и острых нелимфобластных лейкозах (обзор литературы). Вестник гематологии. 2011;7(3):12–21.
    [Mamaev NN, Morozova EV, Gorbunova AV. Theoretical and practical aspects of epigenetic changes in myelodysplastic syndromes and acute non-lymphoblastic leukemias (literature review). Vestnik gematologii. 2011;7(3):12–21. (In Russ)]
  122. Mamaev N, Morozova E, Gindina T, et al. Dacogen and allogeneic bone marrow transplantation in the treatment of high-risk myelodysplastic syndromes with non-random chromosome abnormalities. Leuk Res. 2011;35(Suppl 1):72–3. doi: 10.1016/S0145-2126(11)70186-2.
  123. Mamaev N, Gorbunova A, Barkhatov I, et al. Biology and treatment of leukemia and myelodysplastic syndromes with high EVI-1 gene expression. ELN Frontiers Meeting 2012 “Myeloid neoplasms: approaching cure”. Istanbul, Turkey. Abstract No. 37.
  124. Yang X, Wong MPM, Ng RK. Aberrant DNA Methylation in Acute Myeloid Leukemia and Its Clinical Implications. Int J Mol Sci. 2019;20(18):4576. doi: 10.3390/ijms20184576.
  125. Nowek K, Sun SM, Dijkstra MK, et al. Expression of a passenger miR-9* predicts favorable outcome in adults with acute myeloid leukemia less than 60 years of age. Leukemia. 2016;30(2):303–9. doi: 10.1038/leu.2015.282.
  126. Li F, He W, Geng R, Xie X. Myeloid leukemia with high EVI1 expression is sensitive to 5-aza-2’-deoxycytidine by targeting miR-9. Clin Transl Oncol. 2020;22(1):137–43. doi: 10.1007/s12094-019-02121-y.
  127. Cattaneo F, Nucifora G. EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression. J Cell Biochem. 2008;105(2):344–52. doi: 10.1002/jcb.21869.
  128. Craddock C, Quek L, Goardon N, et al. Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia. 2013;27(5):1028–36. doi: 10.1038/leu.2012.312.
  129. Trino S, Zoppoli P, Carella AM, et al. DNA methylation dynamic of bone marrow hematopoietic stem cells after allogeneic transplantation. Stem Cell Res Ther. 2019;10(1):138. doi: 10.1186/s13287-019-1245-6.
  130. Ahn JS, Kim YK, Min YH, et al. Azacitidine Pre-Treatment Followed by Reduced-Intensity Stem Cell Transplantation in Patients with Higher-Risk Myelodysplastic Syndrome. Acta Haematol. 2015;134(1):40–8. doi: 10.1159/000368711.
  131. Voso MT, Leone G, Piciocchi A, et al. Feasibility of allogeneic stem-cell transplantation after azacitidine bridge in higher-risk myelodysplastic syndromes and low blast count acute myeloid leukemia: results of the BMT-AZA prospective study. Ann Oncol. 2017;28(7):1547–53. doi: 10.1093/annonc/mdx154.
  132. Овечкина В.Н., Бондаренко С.Н., Морозова Е.В. и др. Роль терапии гипометилирующими препаратами перед аллогенной трансплантацией гемопоэтических стволовых клеток при острых миелоидных лейкозах и миелодиспластическом синдроме. Клиническая онкогематология. 2017;10(3):351–7. doi: 10.21320/2500-2139-2017-10-3-351-357.
    [Ovechkina VN, Bondarenko SN, Morozova EV, et al. The Role of Hypomethylating Agents Prior to Allogeneic Hematopoietic Stem Cells Transplantation in Acute Myeloid Leukemia and Myelodysplastic Syndrome. Clinical oncohematology. 2017;10(3):351–7. doi: 10.21320/2500-2139-2017-10-3-351-357. (In Russ)]
  133. Nishihori T, Perkins J, Mishra A, et al. Pretransplantation 5-azacitidine in high-risk myelodysplastic syndrome. Biol Blood Marrow Transplant. 2014;20(6):776–80. doi: 10.1016/j.bbmt.2014.02.008.
  134. de Lima M, Giralt S, Thall PF, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 2010;116(23):5420–31. doi: 10.1002/cncr.25500.
  135. Craddock C, Jilani N, Siddique S, et al. Tolerability and Clinical Activity of Post-Transplantation Azacitidine in Patients Allografted for Acute Myeloid Leukemia Treated on the RICAZA Trial. Biol Blood Marrow Transplant. 2016;22(2):385–90. doi: 10.1016/j.bbmt.2015.09.004.
  136. Marini C, Brissot E, Bazarbachi A, et al. Tolerability and Efficacy of Treatment With Azacytidine as Prophylactic or Preemptive Therapy for Myeloid Neoplasms After Allogeneic Stem Cell Transplantation. Clin Lymphoma Myel Leuk. 2020;20(6):377–82. doi: 10.1016/j.clml.2019.10.011.
  137. Бадаев Р.Ш., Заммоева Д.Б., Гиршова Л.Л. и др. Профилактическое применение азацитидина у пациентов с острыми миелоидными лейкозами после гаплоидентичной аллоТКМ. Клиническая онкогематология. 2019;12(1):37–42. doi: 10.21320/2500-2139-2019-12-1-37-42.
    [Badaev RSh, Zammoeva DB, Girshova LL, et al. Preventive Use of Azacitidine in Patients with Acute Myeloid Leukemia after Haploidentical Allo-BMT. Clinical oncohematology. 2019;12(1):37–42. doi: 10.21320/2500-2139-2019-12-1-37-42. (In Russ)]
  138. Cattaneo F, Nucifora G. EVI1 recruits the histone methyltransferase SUV39H1 for transcription repression. J Cell Biochem. 2008;105(2):344–52. doi: 10.1002/jcb.21869.
  139. Estey EH, Thall PF, Pierce S, et al. Randomized phase II study of fludarabine + cytosine arabinoside + idarubicin ± all-trans retinoic acid ± granulocyte colony-stimulating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Blood. 1999;93(8):2478–84. doi: 10.1182/blood.v93.8.2478.
  140. Schlenk RF, Frohling S, Hartmann F, et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia. 2004;18(11):1798–803. doi: 10.1038/sj.leu.2403528.
  141. Raza A, Buonamici S, Lisak L, et al. Arsenic trioxide and thalidomide combination produces multi-lineage hematological responses in myelodysplastic syndromes patients, particularly in those with high pre-therapy EVI1 expression. Leuk Res. 2004;28(8):791–803. doi: 10.1016/j.leukres.2003.11.018.
  142. Burnett AK, Hills RK, Green C, et al. The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood. 2010;115(5):948–56. doi: 10.1182/blood-2009-08-236588.
  143. van Gils N, Verhagen HJMP, Smit L. Reprogramming acute myeloid leukemia into sensitivity for retinoic-acid-driven differentiation. Exp Hematol. 2017;52:12–23. doi: 10.1016/j.exphem.2017.04.007.
  144. Plesa A, Dumontet C, Mattei E, et al. High frequency of CD34+CD38-/low immature leukemia cells is correlated with unfavorable prognosis in acute myeloid leukemia. World J Stem Cells. 2017;9(12):227–34. doi: 10.4252/wjsc.v9.i12.227.
  145. Nguyen CH, Bauer K, Hackl H, et al. All-trans retinoic acid enhances, and a pan-RAR antagonist counteracts, the stem cell promoting activity of EVI1 in acute myeloid leukemia. Cell Death Dis. 2019;10(12):944. doi: 10.1038/s41419-019-2172-2.
  146. Field T, Perkins J, Huang Y, et al. 5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2010;45(2):255–60. doi: 10.1038/bmt.2009.134.
  147. Kim DY, Lee JH, Park YH, et al. Feasibility of hypomethylating agents followed by allogeneic hematopoietic cell transplantation in patients with myelodysplastic syndrome. Bone Marrow Transplant. 2012;47(3):374–9. doi: 10.1038/bmt.2011.86.
  148. Jiang YZ, Su GP, Dai Y, et al. Effect of Decitabine Combined with Unrelated Cord Blood Transplantation in an Adult Patient with -7/EVI1+ Acute Myeloid Leukemia: a Case Report and Literature Review. Ann Clin Lab Sci. 2015;45(5):598–601.
  149. Schlenk RF, Lubbert M, Benner A, et al. All-trans retinoic acid as adjunct to intensive treatment in younger adult patients with acute myeloid leukemia: results of the randomized AMLSG 07-04 study. Ann Hematol. 2016;95(12):1931–42. doi: 10.1007/s00277-016-2810-z.
  150. Taussig DC, Vargaftig J, Miraki-Moud F, et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood. 2010;115(10):1976–84. doi: 10.1182/blood-2009-02-206565.
  151. Patel S, Zhang Y, Cassinat B, et al. Successful xenografts of AML3 samples in immunodeficient NOD/shi-SCID IL2Rγ–/– Leukemia. 2012;26(11):2432–5. doi: 10.1038/leu.2012.154.

Материалы II конференции «Актуальные вопросы диагностики и лечения Ph-негативных и Ph-позитивных миелопролиферативных заболеваний» (15–16 марта 2019 г., ФГБУ «НМИЦ гематологии» Минздрава России, Москва)

А.Л. Меликян1, А.Г. Туркина1, И.Н. Суборцева1, Е.Ю. Челышева1, А.М. Ковригина1, В.А. Шуваев2, В.В. Байков3, О.Ю. Виноградова4,5,6, С.М. Куликов1, А.Н. Петрова1, А.В. Быкова1, А.-П.А. Пошивай2, Ю.Ю. Власова3, М.М. Чукавина7, О.Д. Сердюк8, К.В. Наумова9, Н.Т. Сиордия10, Н.С. Лазорко10, Р.В. Грозов10, Э.И. Мулло11, А.С. Максимова12, О.М. Сендерова13, О.В. Каня13, М.С. Фоминых2,25, Д.И. Шихбабаева4, Е.А. Белякова14, И.С. Мартынкевич2, Л.Б. Полушкина2, М.Н. Зенина2, Е.В. Ефремова2, В.И. Ругаль2, Л.П. Папаян2, Н.Е. Корсакова2, О.Ю. Матвиенко2, Е.Б. Сырцева15, С.В. Гаппоев16, М.В. Барабанщикова3, М.О. Иванова3, К.Д. Капланов17, Е.С.  Рогова9, К.Б. Тризна18, А.С. Жевняк19, О.Е. Очирова20, А.А. Шахаева20, А.С. Лямкина21, И.П. Михно22, Ю.Б. Черных23, Т.В. Чуданова23, И.Н. Контиевский23, Н.Н. Глонина24, М.В. Бурундукова22

1 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

2 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

3 НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

4 ГБУЗ «Городская клиническая больница им. С.П. Боткина» ДЗМ, 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284

5 ФГБУ «НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997

6 ФГАОУ ВО «РНИМУ им. Н.И. Пирогова» Минздрава России, ул. Островитянова, д. 1, Москва, Российская Федерация, 117997

7 ГБУЗ МО «Коломенская ЦРБ», ул. Октябрьской революции, д. 318, Коломна, Московская область, Российская Федерация, 140401

8 ГБУЗ «Клинический онкологический диспансер № 1» Минздрава Краснодарского края, ул. Димитрова, д. 146, Краснодар, Российская Федерация, 350040

9 ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, пр-т Карла Маркса, д. 165б, Самара, Российская Федерация, 443086

10 ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

11 ГБУЗ МО «Чеховская районная больница № 2», ул. Гагарина, д. 37, Чехов, Московская область, Российская Федерация, 142300

12 ГАУЗ «Городская клиническая больница № 16», ул. Гагарина, д. 121, Казань, Российская Федерация, 420039

13 ГБУЗ «Иркутская ордена “Знак Почета” областная клиническая больница», микрорайон Юбилейный, д. 100, Иркутск, Российская Федерация, 664049

14 ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, ул. Кирочная, д. 41, Санкт-Петербург, Российская Федерация, 191015

15 КГБУЗ «Красноярская межрайонная городская больница № 7», ул. Академика Павлова, д. 4, Красноярск, Российская Федерация, 660003

16 КГБУЗ «Красноярское краевое патолого-анатомическое бюро», ул. Партизана Железняка, д. 3д, Красноярск, Российская Федерация, 660022

17 ГБУЗ «Волгоградский областной клинический онкологический диспансер», ул. Землячки, д. 78, Волгоград, Российская Федерация, 400138

18 ОГАУЗ «Томская областная клиническая больница», ул. Ивана Черных, д. 96, Томск, Российская Федерация, 634063

19 ОГБУЗ «Патологоанатомическое бюро», ул. Ивана Черных, д. 96, стр. 9, Томск, Российская Федерация, 634063

20 ГБУЗ «Республиканская клиническая больница им. Н.А. Семашко» Минздрава Республики Бурятия, ул. Павлова, д. 12, Улан-Удэ, Российская Федерация, 670031

21 ФГБУ ВО «Новосибирский государственный медицинский университет» Минздрава России, Красный пр-т, д. 52, Новосибирск, Российская Федерация, 630091

22 ГБУЗ Новосибирской области «Городская клиническая больница № 2», ул. Ползунова, д. 21, Новосибирск, Российская Федерация, 630051

23 ГБУЗ МО «МОНИКИ им. М.Ф. Владимирского», ул. Щепкина, д. 61/2, Москва, Российская Федерация, 129110

24 КГБУЗ «Краевая клиническая больница № 1 им. проф. С.И. Сергеева», ул. Краснодарская, д. 9, Хабаровск, Российская Федерация, 680009

25 ФГБОУ ВО «Санкт-Петербургский государственный университет», Университетская наб., д. 7-9, Санкт-Петербург, Российская Федерация, 199034

Для переписки: Ирина Николаевна Суборцева, канд. мед. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; e-mail: soubortseva@yandex.ru

Для цитирования: Меликян А.Л., Туркина А.Г., Суборцева И.Н. и др. Материалы II конференции «Актуальные вопросы диагностики и лечения Ph-негативных и Ph-позитивных миелопролиферативных заболеваний» (15–16 марта 2019 г., ФГБУ «НМИЦ гематологии» Минздрава России, Москва). Клиническая онкогематология. 2020;13(2):199–231.


РЕФЕРАТ

Публикация содержит материалы докладов, представленных на II конференции «Актуальные вопросы диагностики и лечения Ph-негативных и Ph-позитивных миелопролиферативных заболеваний», которая состоялась 15–16 марта 2019 г. в ФГБУ «НМИЦ гематологии» Минздрава России (Москва). Цель конференции — профессиональное общение врачей-клиницистов, специализирующихся на лечении миелопролиферативных заболеваний (МПЗ), и научных экспертов в данной сфере, обмен мнениями по внедрению современных методов диагностики и лечения Ph-позитивных и Ph-негативных МПЗ. Тематика сообщений охватывала широкий спектр редких и нестандартных клинических ситуаций. Особенно важной была возможность их детального обсуждения при панельной дискуссии, а также в формате интерактивных сессий. Такой формат конференции позволил привести в настоящей публикации мнения экспертов. Подчеркивается важная роль комплексной диагностики МПЗ с использованием морфологического исследования трепанобиоптатов костного мозга и проведения молекулярно-генетических исследований. Исходя из этого, второй день конференции был посвящен тщательному разбору морфологических характеристик представленных случаев по материалам трепанобиоптатов костного мозга.

Ключевые слова: миелопролиферативные заболевания, хронический миелоидный лейкоз, эссенциальная тромбоцитемия, истинная полицитемия, первичный миелофиброз, тромбоз, JAK2V617F, CALR, MPL, секвенирование нового поколения, руксолитиниб.

Получено: 30 сентября 2019 г.

Принято в печать: 5 марта 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Rychter A, Jerzmanowski P, Holub A, et al. Treatment adherence in chronic myeloid leukaemia patients receiving tyrosine kinase inhibitors. Med Oncol. 2017;34(6):104. doi: 10.1007/s12032-017-0958-6.

  2. Челышева Е.Ю., Галактионова А.В., Туркина А.Г. Проблема приверженности терапии хронического миелолейкоза: понять пациента и найти решения. Клиническая онкогематология. 2013;6(2):157–65.

    [Chelysheva EYu, Galaktionova AV, Turkina AG. The problem of adherence to therapy in chronic myeloid leukemia: understanding the patient and making a decision. Klinicheskaya onkogematologiya. 2013;6(2):157–65. (In Russ)]

  3. Туркина А.Г., Зарицкий А.Ю., Шуваев В.А. и др. Клинические рекомендации по диагностике и лечению хронического миелолейкоза. Клиническая онкогематология. 2017;10(3):294–316. doi: 10.21320/2500-2139-2017-10-3-294-316.

    [Turkina AG, Zaritskii AYu, Shuvaev VA, et al. Clinical Recommendations for the Diagnosis and Treatment of Chronic Myeloid Leukemia. Clinical oncohematology. 2017;10(3):294–316. doi: 10.21320/2500-2139-2017-10-3-294-316. (In Russ)]

  4. Deininger MW, Cortes J, Paquette R, et al. The prognosis for patients with chronic myeloid leukemia who have clonal cytogenetic abnormalities in Philadelphia chromosome-negative cells. Cancer. 2007;110(7):1509–19. doi: 10.1002/cncr.22936.

  5. Richter J, Soderlund S, Lubking A, et al. Musculoskeletal Pain in Patients With Chronic Myeloid Leukemia After Discontinuation of Imatinib: A Tyrosine Kinase Inhibitor Withdrawal Syndrome? J Clin Oncol. 2014;32(25):2821–3. doi: 10.1200/jco.2014.55.6910.

  6. Туркина А.Г., Немченко И.С., Челышева Е.Ю. и др. Национальные клинические рекомендации: диагностика и лечение миелопролиферативных заболеваний с эозинофилией и идиопатического гиперэозинофильного синдрома. Гематология и трансфузиология. 2016;61(3):1–24.

    [Turkina AG, Nemchenko IS, Chelysheva EYu, et al. National clinical guidelines: Diagnosis and treatment of myeloproliferative neoplasms with eosinophilia and idiopathic hypereosinophilic syndrome. Gematologiya i transfuziologiya. 2016;61(3):1–24. (In Russ)]

  7. Samuelson BT, Vesely SK, Chai-Adisaksopha C, et al. The impact of ruxolitinib on thrombosis in patients with polycythemia vera and myelofibrosis: a meta-analysis. Blood Coagul Fibrinol. 2016;27(6):648–52. doi: 10.1097/MBC.0000000000000446.

  8. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-06-721662.

  9. Меликян А.Л., Туркина А.Г., Ковригина А.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2016 г.). Гематология и трансфузиология. 2017;1:25–60.

    [Melikyan AL, Turkina AG, Kovrigina AM, et al. Clinical guidelines on diagnosis and treatment of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, and primary myelofibrosis) (2016 edition). Gematologiya i transfuziologiya. 2017;1:25–60. (In Russ)]

  10. Marchioli R, Finazzi G, Landolfi R, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23(10):2224–32. doi: 10.1200/jco.2005.07.062.

  11. Barbui T, Vannucchi AM, Buxhofer-Ausch V, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015;5(11):e369. doi: 10.1038/bcj.2015.94.

  12. Rumi E, Pietra D, Pascutto C, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014;124(7):1062–9. doi: 10.1182/blood-2014-05-578435.

  13. Tefferi A, Lasho TL, Tischer A, et al. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood. 2014;124(15):2465–6. doi: 10.1182/blood-2014-07-588426.

  14. Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28(7):1494–500. doi: 10.1038/leu.2014.57.

  15. Полушкина Л.Б., Мартынкевич И.С., Шуваев В.А. и др. Молекулярно-генетические и цитогенетические особенности первичного миелофиброза. Гены и клетки. 2016;11(3):113–22.

    [Polushkina LB, Martynkevich IS, Shuvaev VA, et al. Molecular genetic and cytogenetic characteristics of primary Geny i kletki. 2016;11(3):113–22. (In Russ)]

  16. Tefferi A, Lasho TL, Finke CM, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1(2):105–11. doi: 10.1182/bloodadvances.2016000208.

  17. Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10(1):156. doi: 10.1186/s13045-017-0527-7.

  18. Vannucchi AM, Guglielmelli P, Rotunno G, et al. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for Primary Myelofibrosis: An AGIMM & IWG-MRT Project. 2014;124(21):405. doi: 10.1182/blood.v124.21.405.405.

  19. Wei JJ, Kallenbach LR, Kreider M, et al. Resolution of cutaneous sarcoidosis after Janus kinase inhibitor therapy for concomitant polycythemia vera. JAAD Case Rep. 2019;5(4):360–1. doi: 10.1016/j.jdcr.2019.02.006.

  20. Garcia-Pagan JC, Buscarini E, Janssen HLA, et al. EASL Clinical Practice Guidelines: Vascular diseases of the liver. J Hepatol. 2016;64(1):179–202. doi: 10.1016/j.jhep.2015.07.040.

  21. Шмаков Р.Г., Полушкина Е.С. Особенности репродуктивной функции у женщин с онкогематологическими заболеваниями. Современная онкология. 2008;10(3):68–9.

    [Shmakov RG, Polushkina ES. Reproductive function characteristics in women with oncohematological diseases. Sovremennaya onkologiya. 2008;10(3):68–9. (In Russ)]

  22. Griesshammer M, Sadjadian P, Wille K. Contemporary management of patients with BCR-ABL1-negative myeloproliferative neoplasms during pregnancy. Expert Rev Hematol. 2018;11(9):697–706. doi: 10.1080/17474086.2018.1506325.

  23. Schwartz LC, Mascarenhas J. Current and evolving understanding of atypical chronic myeloid leukemia. Blood Rev. 2019;33:74–81. doi: 10.1016/j.blre.2018.07.004.

 

 

Хронический миелоидный лейкоз: роль трансплантации аллогенных гемопоэтических стволовых клеток в эру ингибиторов тирозинкиназ

Е.В. Морозова, Ю.Ю. Власова, М.В. Барабанщикова, Н.Н. Мамаев, И.М. Бархатов, А.Л. Алянский, Е.И. Дарская, М.В. Владовская, С.Н. Бондаренко, И.С. Моисеев, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Елена Владиславовна Морозова, канд. мед. наук, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; e-mail: dr_morozova@mail.ru

Для цитирования: Морозова Е.В., Власова Ю.Ю., Барабанщикова М.В. и др. Хронический миелоидный лейкоз: роль трансплантации аллогенных гемопоэтических стволовых клеток в эру ингибиторов тирозинкиназ. Клиническая онкогематология. 2020;13(2):193–8.

DOI: 10.21320/2500-2139-2020-13-2-193-198


РЕФЕРАТ

Трансплантация аллогенных гемопоэтических стволовых клеток (аллоТГСК) — радикальный метод лечения пациентов с хроническим миелоидным лейкозом (ХМЛ). В 1990-е годы ХМЛ стал самым частым показанием для аллоТГСК во всем мире. Лечение пациентов с ХМЛ радикально изменилось после введения в клиническую практику ингибиторов тирозинкиназ (ИТК). Однако, несмотря на значительные успехи в терапии, показатели выживаемости пациентов, у которых заболевание выявлено в поздней стадии или характеризуется резистентным течением, непереносимостью ИТК либо утратой ответа, остаются низкими. Для этой категории пациентов аллоТГСК остается единственным оптимальным лечебным решением. В настоящей статье обсуждаются вопросы, отражающие современные взгляды на место аллоТГСК в лечении пациентов с ХМЛ в эру широкого применения ИТК.

Ключевые слова: аллоТГСК, хронический миелоидный лейкоз, ИТК.

Получено: 20 ноября 2019 г.

Принято в печать: 28 февраля 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Афанасьев Б.В. Результаты различных видов аллогенных трансплантаций гемопоэтических стволовых клеток у детей и взрослых. Клеточная трансплантология и тканевая инженерия. 2011;6(1):11.

    [Afanasyev BV. Results of different types of allogeneic hematopoietic stem cell transplantation in children and adults. 2011;6(1):11. Kletochnaya transplantologiya i tkanevaya inzheneriya. (In Russ)]

  2. Buckner CD, Clift RA, Fefer A, et al. Treatment of blastic transformation of chronic granulocytic leukemia by high dose cyclophosphamide, total body irradiation and infusion of cryopreserved autologous marrow. Exp Hematol. 1974;2(3):138–46.

  3. Goldman JM, Catovsky D, Hows J, et al. Cryopreserved peripheral blood cells functioning as autografts in patients with chronic granulocytic leukaemia in transformation. Br Med J. 1979;1(19):1310–3. doi: 10.1136/bmj.1.6174.1310.

  4. Fefer A, Buckner CD, Thomas ED, et al. Cure of hematologic neoplasia with transplantation of marrow from identical twins. N Engl J Med. 1977;297(3):146–8. doi: 10.1056/nejm197707212970307.

  5. Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75(3):555–62. doi: 10.1182/blood.v75.3.555.bloodjournal753555.

  6. Kolb HJ, Mittermuller J, Clemm C, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990;76(12):2462–5. doi: 1182/blood.v76.12.2462.bloodjournal76122462.

  7. Mukherjee S, Kalaycio M. Accelerated Phase CML: Outcomes in Newly Diagnosed vs. Progression From Chronic Phase. Curr Hematol Malig Rep. 2016;11(2):86–93. doi: 10.1007/s11899-016-0304-7.

  8. Hehlmann R, Saussele S, Voskanyan A, et al. Management of CML-blast crisis. Best Pract Res Clin Haematol. 2016;29(3):295–307. doi: 10.1016/j.beha.2016.10.005.

  9. Туркина А.Г., Зарицкий А.Ю., Шуваев В.А. и др. Клинические рекомендации по диагностике и лечению хронического миелолейкоза. Клиническая онкогематология. 2017;10(3):294–316. doi: 10.21320/2500-2139-2017-10-3-294-316.

    [Turkina AG, Zaritskii AYu, Shuvaev VA, et al. Clinical Recommendations for the Diagnosis and Treatment of Chronic Myeloid Leukemia. Clinical oncohematology. 2017;10(3):294–316. doi: 10.21320/2500-2139-2017-10-3-294-316. (In Russ)]

  10. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. doi: 10.1182/blood-2013-05-501569.

  11. Bacher U, Klyuchnikov E, Zabelina T, et al. The changing scene of allogeneic stem cell transplantation for chronic myeloid leukemia—a report from the German Registry covering the period from 1998 to 2004. Ann Hematol. 2009;88(12):1237–47. doi: 10.1007/s00277-009-0737-3.

  12. Любимова Л.С., Кузьмина Л.А., Урнова Е.С. и др. HLA-идентичная трансплантация костного мозга в первой хронической фазе хронического миелолейкоза в ранние сроки заболевания или длительная терапия ингибиторами тирозинкиназ? Гематология и трансфузиология. 2012;57(3):6–10.

    [Lyubimova LS, Kuz’mina LA, Urnova ES, et al. Early HLA-identical bone marrow transplantation during the chronic phase of chronic myeloid leukemia or long-term tyrosine kinase inhibitor therapy? Gematologiya i transfuziologiya. 2012;57(3):6–10. (In Russ)]

  13. Vlasova YY, Morozova EV, Shukhov OA, et al. Clinical features and outcomes in chronic myeloid leukemia with T315I mutation. Cell Ther Transplant. 2017;6(2):26–35. doi: 18620/ctt-1866-8836-2017-6-2-26-35.

  14. Nicolini FE, Basak GW, Kim D-W, et al. Overall survival with ponatinib versus allogeneic stem cell transplantation in Philadelphia chromosome-positive leukemias with the T315I mutation. Cancer. 2017;123(15):2875–80. doi: 10.1002/cncr.30558.

  15. Ozen M, Ustun C, Ozturk B, et al. Allogeneic transplantation in chronic myeloid leukemia and the effect of tyrosine kinase inhibitors on survival, a quasi-experimental study. Turkish J Hematol. 2017;34(1):16–26. doi: 10.4274/tjh.2015.0346.

  16. Saussele S, Lauseker M, Gratwohl A, et al. Allogeneic hematopoietic stem cell transplantation (allo SCT) for chronic myeloid leukemia in the imatinib era: Evaluation of its impact within a subgroup of the randomized German CML study IV. Blood. 2010;115(10):1880–5. doi: 10.1182/blood-2009-08-237115.

  17. Gratwohl A, Pfirrmann M, Zander A, et al. Long-term outcome of patients with newly diagnosed chronic myeloid leukemia: A randomized comparison of stem cell transplantation with drug treatment. Leukemia. 2016;30(3):562–9. doi: 10.1038/leu.2015.281.

  18. Chhabra S, Ahn KW, Hu ZH, et al. Myeloablative vs reduced-intensity conditioning allogeneic hematopoietic cell transplantation for chronic myeloid leukemia. Blood Adv. 2018;2(21):2922–36. doi: 10.1182/bloodadvances.2018024844.

  19. Kato K, Miyamoto T, Yonemoto K, et al. Second Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) for Relapse of Hematological Malignancies after First Allo-HSCT. Blood. 2014;124(21):3947. doi: 10.1182/blood.v124.21.3947.3947.

  20. Christopeit M, Tischer J, Bornhauser M, et al. Haploidentical Second Allogeneic Hematopoietic Stem Cell Transplantation for the Treatment of Acute Leukemia Relapse after First Allo-HSCT: A Retrospective Registry Analysis of 60 Patients on Behalf of the German Cooperative Transplant Group. 2014;124(21):2590. doi: 10.1182/blood.v124.21.2590.2590.

PF-114, новый ингибитор тирозинкиназы Bcr-Abl, снижает фосфорилирование CrkL и вызывает гибель клеток хронического миелоидного лейкоза

Е.С. Колотова1, В.В. Татарский1, А.А. Зейфман2,3, О.В. Строганов2,3, В.С. Стройлов2,3, И.Ю. Титов2,3, Ф.Н. Новиков2,3, А.А. Калинина1, Г.Г. Чилов2,3, А.А. Штиль1

1 ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

2 ФГБУН «Институт органической химии им. Н.Д. Зелинского» РАН, Ленинский пр-т, д. 47, Москва, Российская Федерация, 119991

3 ООО «Фьюжн Фарма», ул. Генерала Дорохова, д. 18, стр. 2, Москва, Российская Федерация, 119530

Для переписки: Александр Альбертович Штиль, д-р мед. наук, профессор, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: + 7(499)612-78-34; e-mail: shtilaa@yahoo.com

Для цитирования: Колотова Е.С., Татарский В.В., Зейфман А.А. и др. PF-114, новый ингибитор тирозинкиназы Bcr-Abl, снижает фосфорилирование CrkL и вызывает гибель клеток хронического миелоидного лейкоза. Клиническая онкогематология. 2016;9(1):1–5.

DOI: 10.21320/2500-2139-2016-9-1-1-5


РЕФЕРАТ

Актуальность и цели. Химерная тирозинкиназа Bcr-Abl вызывает злокачественную трансформацию миелоидных клеток посредством фосфорилирования ряда субстратов, важнейшим из которых является адаптерный белок CrkL. Фармакологическое ингибирование Bcr-Abl-зависимого сигналинга (передача сигнала) — основной современный подход в лечении больных хроническим миелоидным лейкозом. В результате молекулярного моделирования создан новый селективный ингибитор Bcr-Abl (PF-114). В работе определена цитотоксичность PF-114 для клеток хронического миелоидного лейкоза и изучено его влияние на фосфорилирование CrkL.

Методы. Цитотоксичность определяли с помощью МТТ-теста. Суммарный внутриклеточный пул CrkL (фосфорилированная и нефосфорилированная формы) определяли в проточной цитофлюориметрии.

Результаты. Инкубация Bcr-Abl-положительных клеток (линия K562) с PF-114 приводила к отмене фосфорилирования CrkL и гибели клеток. Фосфорилирование CrkL в Bcr-Abl-негативных линиях лейкозных клеток (HL60, U937 и Jurkat) не выявлено.

Заключение. Отсутствие фосфорилирования CrkL в Bcr-Abl-негативных линиях (HL60, U937 и Jurkat) и гибель клеток HL60 при действии концентраций PF-114, значительно превышающих требуемые для гибели линии K562, подтверждают перспективность создания лекарственного препарата на основе PF-114.


Ключевые слова: хронический миелоидный лейкоз, тирозинкиназа Bcr-Abl, фосфорилирование белков, проточная цитофлюориметрия, цитотоксичность.

Получено: 15 сентября 2015 г.

Принято в печать: 8 октября 2015 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Mace ML, Dahl J, Jabbour EJ. Which tyrosine-kinase inhibitor to use first in chronic phase chronic myelogenous leukemia? Expert Opin Pharmacother. 2015;16(7):999–1007. doi: 10.1517/14656566.2015.1031107.
  2. Grover P, Shi H, Baumgartner M, Camacho CJ, Smithgall TE. Fluorescence polarization screening assays for small molecule allosteric modulators of ABL kinase function. PLoS One. 2015;10(7):e0133590. doi: 10.1371/journal.pone.0133590.
  3. Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE. Structure and dynamic regulation of Abl kinases. J Biol Chem. 2013;288(8):5443–50. doi: 10.1074/jbc.r112.438382.
  4. Клиническая онкогематология: Руководство для врачей. Под ред. М.А. Волковой. 2-е изд., перераб. и доп. М.: Медицина, 2007. С. 555.
    [Volkova MA, ed. Klinicheskaya onkogematologiya: Rukovodstvo dlya vrachei. (Clinical oncohematology: guidelines for doctors.) 2nd revised edition. Moscow: Meditsina Publ.; 2007. p. 555 (In Russ)]
  5. Panigrahi S, Stetefeld J, Jangamreddy JR, et al. Modeling of molecular interaction between apoptin, BCR-Abl and CrkL – an alternative approach to conventional rational drug design. PLoS One. 2012;7(1):e28395. doi: 10.1371/journal.pone.0028395.
  6. Nichols GL, Raines MA, Vera JC, et al. Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood. 1994;84(9):2912–8.
  7. Jangamreddy JR, Panigrahi S, Lotfi K, et al. Mapping of apoptin-interaction with BCR-ABL1, and development of apoptin-based targeted therapy. Oncotarget. 2014;5(16):7198–211. doi: 10.18632/oncotarget.2278.
  8. Lucas CM, Harris RJ, Giannoudis A, et al. BCR-ABL1 tyrosine kinase activity at diagnosis, as determined via the pCrkL/CrkL ratio, is predictive of clinical outcome in chronic myeloid leukaemia. Br J Haematol. 2010;149(3):458–60. doi: 10.1111/j.1365-2141.2009.08066.x.
  9. O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004. doi: 10.1056/nejmoa022457.
  10. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. doi: 10.1182/blood-2013-05-501569.
  11. Cortes JE, Kantarjian H, Shah NP, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367(22):2075–88. doi: 10.1056/nejmoa1205127.
  12. Mian AA, Rafiei A, Haberbosch I, et al. PF-114, a potent and selective inhibitor of native and mutated BCR/ABL is active against Philadelphia chromosome-positive (Ph+) leukemias harboring the T315I mutation. Leukemia. 2015;29(5):1104–14. doi: 10.1038/leu.2014.326.
  13. Hamilton A, Elrick L, Myssina S, et al. BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using flow cytometry. Leukemia. 2006;20(6):1035–9. doi: 10.1038/sj.leu.2404189.
  14. Knebel A. Kinasource protein kinase substrate screen KESTREL. Available from: (accessed 21.03.2016).
  15. Lin YH, Park ZY, Lin D, et al. Regulation of cell migration and survival by focal adhesion targeting of Lasp-1. J Cell Biol. 2004;165(3):421–32. doi: 10.1083/jcb.200311045.
  16. Frietsch JJ, Kastner C, Grunewald TG, et al. LASP1 is a novel BCR-ABL substrate and a phosphorylation-dependent binding partner of CRKL in chronic myeloid leukemia. Oncotarget. 2014;5(14):5257–71. doi: 10.18632/oncotarget.2072.
  17. Liang X, Hajivandi M, Veach D, et al. Quantification of change in phosphorylation of BCR-ABL kinase and its substrates in response to Imatinib treatment in human chronic myelogenous leukemia cells. Proteomics. 2006;6(16):4554–64. doi: 10.1002/pmic.200600109.

Новые маркеры прогрессирования хронического миелолейкоза

В.А. Мисюрин1,2, А.В. Мисюрин1,2, Л.А. Кесаева1,2, Ю.П. Финашутина1,2, Е.Н. Мисюрина2, И.Н. Солдатова1,2, А.А. Крутов2, Н.А. Лыжко1,2, Т.В. Ахлынина2, А.Е. Лукина3, Т.И. Колошейнова3, Н.В. Новицкая1, Е.Г. Аршанская4, Е.Г. Овсянникова5, Р.А. Голубенко6, В.А. Лапин7, Т.И. Поспелова8, В.А. Тумаков9, А.Ю. Барышников1

1 ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва, Российская Федерация

2 Медицинский центр ООО «ГеноТехнология», Москва, Российская Федерация

3 ФГБУ «Гематологический научный центр» МЗ РФ, Москва, Российская Федерация

4 Московский гематологический городской центр при ГКБ им. С.П. Боткина, Москва, Российская Федерация

5 Астраханская государственная медицинская академия, Астрахань, Российская Федерация

6 Орловская областная клиническая больница, Орел, Российская Федерация

7 Гематологический центр ЯОКБ № 1, Ярославль, Российская Федерация

8 Новосибирский государственный медицинский университет, Новосибирск, Российская Федерация

9 Ивановская ОКБ № 1, Иваново, Российская Федерация


РЕФЕРАТ

Хронический миелоидный лейкоз (ХМЛ) отличается от Ph-негативных хронических миелопролиферативных заболеваний (хМПЗ) относительно более ранней трансформацией в поздние стадии, известные как фаза акселерации (ФА) и бластный криз (БК). В классификации ВОЗ 2008 г. хМПЗ обозначены как миелопролиферативные опухоли. Молекулярные механизмы прогрессии ХМЛ в настоящее время только начинают проясняться. Недавно было показано, что прогрессия некоторых злокачественных опухолей сопровождается активацией так называемых раково-тестикулярных генов (РТГ). Данная работа посвящена исследованию профиля экспрессии РТГ: GAGE1, NY-ESO-1, MAGEA1, SCP1, SEMG1, SPANXA1, SSX1 и PRAME — в крови первичных больных хМПЗ, а также в крови и костном мозге пациентов с ХМЛ в хронической фазе, ФА и БК. В результате проведенного исследования была обнаружена достоверная связь перехода ХМЛ в ФА и БК с активацией экспрессии данных генов.


Ключевые слова: раково-тескикулярные гены, PRAME, экспрессия генов, хронический миелоидный лейкоз, хронические миелопролиферативные заболевания.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood 1951; 6(4): 372–5.
  2. Tefferi A., Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J. Clin. Oncol. 2011; 29(5): 573–82.
  3. Rowley J.D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature 1973; 243(5405): 290–3.
  4. Scott L.M., Tong W., Levine R.L. et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med. 2007; 356(5): 459–68.
  5. Gabler K., Behrmann I., Haan C. JAK2 mutants (e.g., JAK2V617F) and their importance as drug targets in myeloproliferative neoplasms. JAKSTAT 2013; 2(3): 250–5.
  6. Deininger M.W., Goldman J.M., Melo J.V. The molecular biology of chronic myeloid leukemia. Blood 2000; 96(10): 3343–56.
  7. Мисюрин А.В. Молекулярный патогенез миелопролиферативных за- болеваний. Клин. онкогематол. 2009; 2(3): 201–9. [Misyurin A.V. Molecular pathogenesis of myeloproliferative disorders. Klin. onkogematol. 2009; 2(3): 201–9. (In Russ.)].
  8. Tutaeva V., Misurin A.V., RoZenberg J.M. et al. Application of prv-1 mrna expression level and Jak2v617f mutation for the differentiating between polycytemia vera and secondary erythrocytosis and assessment of treatment by interferon or hydroxyurea. Hematology 2007; 12(6): 473–9.
  9. Heaney M.L., Soriano G. Acute myeloid leukemia following a myeloproliferative neoplasm: clinical characteristics, genetic features and effects of therapy. Curr. Hematol. Malig. Rep. 2013; 8(2): 116–22.
  10. Turkina A.G., Zabotina T.N., Kusnetzov S.V. et al. Studies of some mechanisms of drug resistence in chronic myeloid leukemia (CML). Adv. Exper. Med. Biol. 1999; 457: 477–88.
  11. Kremenetskaya O.S., Logacheva N.P., Baryshnikov A.Y. et al. Distinct effects of various p53 mutants on differentiation and viability of human K562 leukemia cells. Oncol. Res. 1997; 9: 155–66.
  12. Turkina A.G., Baryshnikov A.Y., Sedyakhina N.P. et al. Studies of Pglycoprotein in chronic myelogenous leukaemia patients: Expression, activity and correlations with CD34 antigen. Br. J. Haematol. 1996; 92: 88–96.
  13. Stavrovskaya A.A., Sedyakhina N.P., Stromskaya T. et al. Prognastic value of P-glicoprotein and correlation with CD34 antigen. Br. J. Heamatol. 1998; 28(5–6): 469–82.
  14. Барышников А.Ю. Взаимодействие опухоли и иммунной системы организма. Практ. онкол. 2003; 4(3): 127–30. [Baryshnikov A.Yu. Interaction between tumor and immune system. Prakt. onkol. 2003; 4(3): 127–30. (In Russ.)].
  15. Барышников А.Ю. Принципы и практика вакцинотерапии рака. Бюл. СО РАМН 2004; 2: 59–63. [Baryshnikov A.Yu. Principles and practice of cancer vaccine-prophylaxis. Byul. SO RAMN 2004; 2: 59–63. (In Russ.)].
  16. Барышников А.Ю., Демидов Л.В., Михайлова И.Н., Петенко Н.Н. Современные проблемы биотерапии опухолей. Вестн. Моск. онкол. общ. 2008; 1: 6–10. [Baryshnikov A.Yu., Demidov L.V., Mikhaylova I.N., Petenko N.N. Current issues of biotherapy for tumors. Vestn. Mosk. onkol. obshch. 2008; 1: 6–10. (In Russ.)]. 17. Michailova I.N., Morozova L.Ph., Golubeva V.A. et al. Cancer/testis genes expression in human melanoma cell lines. Melanoma Res. 2008; 18(5): 303–13.
  17. Turkina A.G., Logacheva N.P., Stromskaya T.P. et al. Studies of some mechanisms of drug resistance in chronic myeloid leukemia (CML). 3rd International Symposium on Drug Resistance in Leukemia and Lymphoma. Amsterdam, 1998. Drug resistance in leukemia and lymphoma III Book Series: advances in experimental medicine and biology. Ed. by G.J.L. Kaspers, R. Pieters, A.J.P. Veerman. 1999: 457, 477–88.
  18. Lim S.H., Zhang Y., Zhang J. Cancer-testis antigens: the current status on antigen regulation and potential clinical use. Am. J. Blood Res. 2012; 2(1): 29–35.
  19. Гапонова Т.В., Менделеева Л.П., Мисюрин А.В., Варламова Е.В., Савченко В.Г. Экспрессия опухолеассоциированных генов PRAME, WT1 и XIAP у больных множественной миеломой. Онкогематол. 2009; 2: 52–7. [Gaponova T.V., Mendeleyeva L.P., Misyurin A.V., Varlamova Ye.V., Savchenko V.G. Expression of PRAME, WT1 and XIAP tumor-associated genes in patients with multiple myeloma. Onkogematol. 2009; 2: 52–7. (In Russ.)].
  20. Абраменко И.В., Белоус Н.И., Крячок И.А. и др. Экспрессия гена PRAME при множественной миеломе. Тер. арх. 2004; 7: 77–81. [Abramenko I.V., Belous N.I., Kryachok I.A., et al. Expression of PRAME gene in multiple myeloma. Ter. arkh. 2004; 7: 77–81. (In Russ.)].
  21. Radich J.P., Dai H., Mao M. et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc. Natl. Acad. Sci. U S A 2006; 103(8): 2794–9.
  22. Демидова И.А., Савченко В.Г., Ольшанская Ю.В. и др. Аллогенная трансплантация костного мозга после режимов кондиционирования по- ниженной интенсивности в терапии больных гемобластозами. Тер. арх. 2003; 75(7): 15–21. [Demidova I.A., Savchenko V.G., Olshanskaya Yu.V., et al. Allogeneic bone martrow transplantation after reduced-intensity conditioning regimens in management of patients with hematological malignancies. Ter. arkh. 2003; 75(7): 15–21. (In Russ.)].
  23. Anguille S., Van Tendeloo V.F., Berneman Z.N. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 2012; 26(10): 2186–96.
  24. Lichtenegger F.S., Schnorfeil F.M., Hiddemann W., Subklewe M. Current strategies in immunotherapy for acute myeloid leukemia. Immunotherapy 2013; 5(1): 63–78.

Кардиоваскулярные осложнения ингибиторов тирозинкиназы при хроническом миелолейкозе

Г.Е. Гендлин, Л.М. Макеева, Е.И. Емелина, К.В. Шуйкова, Г.И. Сторожаков

ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздрава РФ, Москва, Российская Федерация


РЕФЕРАТ

Достигнутые в настоящее время успехи в лечении пациентов с онкогематологическими заболеваниями, в первую очередь, связаны с развитием таргетной терапии, в том числе созданием специфических ингибиторов тирозинкиназы для лечения хронического миелоидного лейкоза (иматиниба, нилотиниба и дазатиниба). Однако, наряду с высокой эффективностью, эти препараты обладают определенной токсичностью. В настоящем обзоре рассмотрены кардиоваскулярные осложнения ингибиторов тирозинкиназы при хроническом миелолейкозе. Учитывая тот факт, что терапия этими препаратами может вызывать редкие, но серьезные побочные эффекты, необходимо учитывать также вероятность развития кардиотоксичности, окклюзии артериальных сосудов различного диаметра, а также легочной гипертензии. С целью минимизации побочных эффектов перед  началом терапии показано обследование пациентов на предмет выявления исходной кардиальной и сосудистой патологии, а также тщательный контроль за состоянием сердечно-сосудистой системы во время проведения лечения ингибиторами тирозинкиназы.


Ключевые слова: хронический миелоидный лейкоз, ингибиторы тирозинкиназы, кардиологическая токсичность, таргетная терапия

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Емелина Е.И., Шуйкова К.В., Сторожаков Г.И. и др. Поражения сердца при лечении современными противоопухолевыми препаратами и лучевые повреждения сердца у больных с лимфомами. Клин. онкогематол. 2009; 2(2): 152–60. [Emelina E.I., Shuikova K.V., Storozhakov G.I. i dr. Porazheniya serdtsa pri lechenii sovremennymi protivoopukholevymi preparatami i luchevye povrezhdeniya serdtsa u bol’nykh s limfomami (Heart diseases in the modern anti-tumor agent treatment and radiation-induced heart lesions in lymphoma patients). Klin. onkogematol. 2009; 2(2): 152–60.]
  2. Гендлин Г.Е., Сторожаков Г.И., Шуйкова К.В. и др. Острые сердечнососудистые события во время применения противоопухолевых химиопрепаратов: клинические наблюдения. Клин. онкогематол. 2011; 4(2): 155–64. [Gendlin G.E., Storozhakov G.I., Shuikova K.V. i dr. Ostrye serdechnososudistye sobytiya vo vremya primeneniya protivoopukholevykh khimiopreparatov: klinicheskie nablyudeniya (Acute cardiovascular events during treatment with anti-tumor chemotherapeutic agents: clinical observations). onkogematol. 2011; 4(2): 155–64.]
  3. Емелина Е.И., Сторожаков Г.И., Гендлин Г.Е. и др. Случай антрациклин-индуцированной кардиомиопатии после лечения диффузной крупноклеточной В-клеточной лимфомы по схеме АСОР и лучевой терапии. Сердечная недостаточность 2006; 4(38): 202–4. [Emelina E.I., Storozhakov G.I., Gendlin G.E. i dr. Sluchai antratsiklin-indutsirovannoi kardiomiopatii posle lecheniya diffuznoi krupnokletochnoi V-kletochnoi limfomy po skheme ASOR i luchevoi terapii (A case of an anthracycline-induced cardiomyopathy after the ACOP treatment of diffuse large B-cell lymphoma). Serdechnaya nedostatochnost’ 2006; 4(38): 202–4.]
  4. Hare J.M. The Dilated, Restrictive, and Infiltrative Cardiomyopathies. In: Braunwald’s heart disease: A Textbook of Cardiovascular Medicine, 8th Edition, 2008.
  5. ACC/AHA 2005 Guidelines Update for the Diagnosis and Management of Chronic Heart Failure in the Adult.
  6. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. J. Am. Soc. Echocardiogr. 2011; 24: 229–67.
  7. Nuclear Cardiology and Cardiac CT. Berlin, May 5–8, 2013.
  8. Домнинский Д.А. Основы таргетной терапии. Онкогематология 2012; 1: 46–54. [Domninskii D.A. Osnovy targetnoi terapii (Fundamentals of targeted therapy). Onkogematologiya 2012; 1: 46–54.]
  9. Hughes T.P., Kaeda J., Branford S. et al. Frequency of Major Molecular Responses to Imatinib or Interferon Alfa plus Cytarabine in Newly Diagnosed Chronic Myeloid Leukemia. New Engl. J. Med. 2003; 349: 1423–32.
  10. National comprehensive cancer network NCCN clinical practice guidelines in oncology: Chronic myelogenous leukemia: Version 2. Fort Washington, PA,
  11. Chen M.H., Kerkela R., Forse T. et al. Mechanisms of cardiac dysfunction associated with tirosine kinase inhibitor cancer therapeutics. Circulation 2008; 118: 84–95.
  12. Kerkela R., Grazette I., Yacolti R. et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat. Med. 2006; 12(8).
  13. Ederhy S., Izzedine H., Massard C. et al. Cardiac side effects of molecular targeted therapies: Towards a better dialogue between oncologists and cardiologists. Crit. Rev. Oncol. Hematol. 2011: 369–79.
  14. Pinilla-Ibarz J., Cortes J., Mauro M.J. et al. Intolerance to tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer 2011; 117: 688–97.
  15. Kantarjian H.M., Shah N.P., Cortes J.E. et al. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood 2012; 119: 1123–9.
  16. Porkka K., Khoury H.J., Paquette R. et al. Dasatinib 100 mg once daily minimizes the occurrence of pleural effusion in patients with chronic myeloid leukemia in chronic phase and efficacy is unaffected in patients who develop pleural effusion. Cancer 2010; 116: 377–86.
  17. Kantarjian H., Shah N.P., Hochhaus A. et al. Dasatinib versus Imatinib in Newly Diagnosed Chronic-Phase Chronic Myeloid Leukemia. New Engl. J. Med. 2010.
  18. Saglio G., Hochhaus A., Cortes J.E. et al. Safety and Efficacy of Dasatinib Versus Imatinib by Baseline Cardiovascular Comorbidity In Patients with Chronic Myeloid Leukemia In Chronic Phase (CMLCP): Analysis of the DASISION Trial. ASH 2010. Poster 2286.
  19. Rasheed W., Flaim B., Symour J.F. et al. Reversible severe pulmonary hypertension secondary to dasatinib in a patient with chronic myeloid leukemia. Leuk. Res. 2009; 33: 860–9.
  20. EMEA: Sprycel-Scientific discussion. European Public Assessment Report (EPAR 2011).
  21. Quintas-Cardama A., Kantarjian H., O’Brien S. et al. Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. Clin. Oncol. 2007; 25(25): 3908–14.
  22. Mattei D., Feola M., Orzan F. et al. Reversible dasatinib-induced pulmonary arterial hypertension and right ventricle failure in a previously allografted CML patient. Bone Marrow Transplant. 2009; 43(12): 967–8.
  23. Dumitrescu D., Seck C., ten Freyhaus H. et al. Fully reversible pulmonary arterial hypertension associated with dasatinib treatment for chronic myeloid leukemia. Respir. J. 2011; 38(1): 218–20.
  24. Hennigs J.K., Keller G., Baumann H.J. et al. Multi tyrosine kinase inhibitor dasatinib as novel cause of severe pre-capillary pulmonary hypertension? BMC Pulm. Med. 2011; 23: 11–30.
  25. Orlandi E.M., Rocca B., Pazzano A.S. et al. Reversible pulmonary arterial hypertension likely related to long-term, low dose dasatinib treatment for chronic myeloid leukemia. Leuk. Res. 2012; 36(81): 4–6.
  26. Breccia M., Efficace F., Alimena G. et al. Progressive arterial occlusive disease (PAOD) and pulmonary arterial hypertension (PAH) as new adverse events of second generation TKIs in CML treatment: Who’s afraid of the big bad wolf? Res. 2012; 36: 813–4.
  27. Montani D., Bergot E., Ganter S. et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 2012; 125(17): 2128–37.
  28. Philibert L., Cazorla C., Peyrire H. et al. Pulmonary arterial hypertension induced by dasatinib: positive reintroduction with nilotinib (Abstract). Fundam. Clin. Pharmacol. 2011; 25(Suppl. 1): 95.
  29. Aichberger K.J., Herndlhofer S., Schernthaner G.-H. et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Hematology 2011; 86: 533–9.

Тактика выявления частых и редких типов химерного транскрипта BCR-ABL при хроническом миелоидном лейкозе

Никулина О.В. 1,2,  Цаур Г.А.1,2,3,  Ригер Т.О.1,2,  Яковлева Ю.А.1,2,  Демина А.С.1,2,  Семенихина Е.Р.1, Спильник Т.В. 3,  Савельев Л.И.1,2,3, Фечина Л.Г. 1,2

1 ГБУЗ СО «Областная детская клиническая больница № 1», ул. Серафимы Дерябиной, д. 32, Екатеринбург, Российская Федерация, 620149

2 ГАУЗ СО «Институт медицинских клеточных технологий», ул. К. Маркса, д. 22а, Екатеринбург, Российская Федерация, 620026

 3 ГБОУ ВПО «Уральский государственный медицинский университет» Минздрава России, ул. Репина, д. 3, Екатеринбург, Российская Федерация, 620219

Для переписки: Григорий Анатольевич Цаур, канд. мед. наук, ул. Серафимы Дерябиной, д. 32, Екатеринбург, Российская Федерация, 620149; тел.: +7(343)216-25-17; e-mail: tsaur@mail.ru

Для цитирования: Никулина О.В., Цаур Г.А., Ригер Т.О. и др. Тактика выявления частых и редких типов химерного транскрипта BCR-ABL при хроническом миелоидном лейкозе. Клиническая онкогематология. 2015;8(2):161–8.


РЕФЕРАТ

Актуальность и цели. Диагноз хронического миелоидного лейкоза (ХМЛ) считается установленным при обнаружении транслокации t(9;22)(q34;q11) цитогенетическим методом и/или выявлении химерного транскрипта BCR-ABL методом полимеразной цепной реакции с обратной транскрипцией (ОТ-ПЦР). Известно, что у пациентов с ХМЛ наиболее часто проводят определение двух наиболее распространенных вариантов химерного транскрипта BCRABL: e13a2 (b2a2) и e14a2 (b3a2). Однако описаны и редкие варианты химерного транскрипта BCRABL, которые могут остаться незамеченными. Более того, своевременная диагностика и выявление различных вариантов химерного транскрипта представляются важной задачей, т. к. от строения химерного гена BCR-ABL может зависеть клиническое течение заболевания и эффективность проводимой терапии ингибиторами тирозинкиназ. Принимая во внимание, что в ряде случаев диагноз ХМЛ может быть установлен без стандартного цитогенетического исследования, только по данным ОТ-ПЦР, мы посчитали важным создать диагностический алгоритм, который позволял бы выявлять практически любой тип химерного транскрипта BCRABL.

Методы. С января 2004 г. по декабрь 2013 г. в лаборатории молекулярной биологии отдела детской онкологии и гематологии ОДКБ № 1 (г. Екатеринбург) диагноз ХМЛ был подтвержден у 1082 пациентов. Среди них было мужчин — 531 (49 %), женщин — 551 (51 %). Медиана возраста составила 50 лет (диапазон 5–88 лет). Всем пациентам проведены стандартное цитогенетическое и молекулярно-генетическое исследования. Праймеры, комплементарные нуклеотидной последовательности гена ABL, локализуются в экзонах 2 и 3 ABL и используются для выявления всех типов транскриптов. Праймеры, комплементарные нуклеотидной последовательности гена BCR, локализуются либо в экзонах 12 и 13 для выявления наиболее типичных типов транскриптов e13a2, e14a2 (M-bcr), либо в экзоне 1 для обнаружения транскрипта e1a2 (m-bcr). При обнаружении ампликонов, отличных по размеру от e13a2, e14a2 и e1a2, проводилось их прямое секвенирование в двух направлениях c применением праймеров, использовавшихся во втором раунде гнездной ОТ-ПЦР, и набора Big Dye Terminator 3.1.

Результаты. Проанализировав данные 1082 пациентов с верифицированным диагнозом ХМЛ, мы разработали диагностический алгоритм выявления частых и редких типов химерного транскрипта BCRABL при ХМЛ с использованием метода ОТ-ПЦР. Используя данный алгоритм, мы выявили частые варианты BCRABL — e13a2 и e14a2 в 35,89 и 62,53 % случаев соответственно. На долю редких транскриптов — e13a3, e14a3, e19a2, e1a2, e3a2, e6a2, e8a2 — суммарно пришлось 1,57 % случаев.

Заключение. Таким образом, предложенный диагностический алгоритм оказался эффективным для выявления частых и редких типов химерного транскрипта BCRABL у пациентов с ХМЛ.


Ключевые слова: хронический миелоидный лейкоз, молекулярная диагностика, химерный транскрипт BCR-ABL.

Получено: 31 декабря 2014 г.

Принято в печать: 4 февраля 2015 г.

 Читать статью в PDF pdficon


ЛИТЕРАТУРА

  1. Nowell P.C., Hungerford D.A. Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. 1960; 25: 85–109.
  2. Rowley J.D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973; 243: 290–3.
  3. Телегеев Г.Д., Дубровская А.Н., Дыбков М.В. и др. Роль белка BCR-ABL в лейкогенезе. Экспериментальная онкология. 1999; 21: 182–94. [Telegeev G.D., Dubrovskaya A.N., Dybkov M.V. et al. The role of BCR-ABL protein in leukomogenesis. Eksperimental’naya onkologiya. 1999; 21: 182–94. (In Russ.)]
  4. Туркина А.Г., Челышева Е.Ю. Стратегия терапии хронического ми- елолейкоза: возможности и перспективы. Терапевтический архив. 2013; 85(7): 4–9. [Turkina A.G., Chelysheva E.Yu. Therapeutic strategy for chronic myeloid leukemia: potentials and prospects. Terapevticheskii arkhiv. 2013; 85(7): 4–9. (In Russ.)]
  5. Dongen van J.J.M., Macintyre E.A., Gabert J.A. et al. Standardized RTPCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia. 1999; 13(12): 1901–28.
  6. Verma D., Kantarjian H.M., Jones D. et al. Chronic myeloid leukemia (CML) with P190 BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood. 2009; 114: 2232–5.
  7. Beel K.A., Lemmens J., Vranckx H. et al. CML with e6a2 BCR-ABL1 transcript: an aggressive entity? Ann. Hematol. 2011; 90: 1241–3.
  8. Demehri S., Paschka P., Schultheis B. et al. e8a2 BCR–ABL: more frequent than other atypical BCR–ABL variants? Leukemia. 2005; 19: 681–4.
  9. Martin S.E., Sausen M., Joseph A., Kingham B.F. Chronic myeloid leukemia with e19a2 atypical transcript: early Imatinib resistance and complete response to dasatinib. Cancer Gen. Cytogen. 2010; 201(2): 133–4.
  10. Langabeer S.E., McCarron S.L., Carrol P. et al. Molecular response to first line nilotinib in a patient with e19a2 BCR-ABL 1 chronic myeloid leukemia. Leuk. Res. 2011; 35: 169–70.
  11. Baccarani M., Deininger M., Rosti G. et al. European Leukemia Net Recommendations for the Management of Chronic Myeloid Leukemia: 2013. Blood. 2013; 122(6): 872–84.
  12. Цаур Г.А., Друй А.Е., Попов А.М. и др. Возможность использования микроструйных биочипов для оценки качества и количества РНК у па- циентов с онкологическими и онкогематологическими заболеваниями. Вестник Уральской медицинской академической науки. 2011; 4(37): 107–11. [Tsaur G.A., Drui А.Е., Popov А.М. et al. Microfluidic biochips for RNA quantity and quality evaluation in patients with oncological and oncohematological disorders. Vestnik Ural’skoi meditsinskoi akademicheskoi nauki. 2011; 4(37): 107–11. (In Russ.)]
  13. Tabassum N., Saboor M., Moinuddin M. et al. Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan. Pakist. J. Med. Sci. 2014; 30(4): 850–3.
  14. Yaghmaie M., Seyed H., Ghaffari H. et al. Frequency of BCR-ABL fusion transcripts in Iranian patients with chronic myeloid leukemia. Arch. Iran. Med. 2008; 11(3): 247–51.
  15. Goh H.-G., Hwang J.-Y., Kim S.-H. et al. Comprehensive analysis of BCRABL transcript types in Korean CML patients using a newly developed multiplex RT-PCR. Transl. Res. 2006; 148(5): 249–56.
  16. Ito T., Tanaka H., Tanaka K. et al. Insertion of a genomic fragment of chromosome 19 between BCR intron 19 and ABL intron 1a in a chronic myeloid leukaemia patient with BCR-ABL (e19a2) transcript. Br. J. Hematol. 2004; 126: 750–5.
  17. Bennour A., Ouahchi I., Achour B. et al. Analysis of the clinico-hematological relevance of the breakpoint location within M-BCR in chronic myeloid leukemia. Med. Oncol. 2013; 30: 348.
  18. Pane F., Frigeri F., Sindona M. et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR-ABL with C3/A2 Junction). Blood 1996; 88 (7): 2410-2414.
  19. Vefring H.K., Gruber F.X.E., Wee L. et al. Chronic myelogenous leukemia with the e6a2 BCR-ABL and lacking Imatinib response: presentation of two cases. Acta Haematol. 2009; 122: 11–6.
  20. Schnittger S., Bacher U., Kern W. et al. A new case with rare e6a2 BCR– ABL fusion transcript developing two new resistance mutations during imatinib mesylate, which were replaced by T315I after subsequent dasatinib treatment. Leukemia. 2008; 22: 856–88.
  21. Breccia M., Cannella L., Diverio D. et al. Isolated thrombocytosis as first sign of chronic myeloid leukemia with e6a2 BCR/ABL fusion transcript, JAK2 negativity and complete response to Imatinib. Leuk. Res. 2008; 32: 177–80.
  22. Schultheis B., Wang L., Clark R.E. et al. BCR-ABL with an e6a2 fusion in a CML patient diagnosed in blast crisis. Leukemia. 2003; 17: 2054–5.
  23. Popovici C., Cailleres S., David M. et al. e6a2 BCR-ABL fusion with BCR exon 5-deleted transcript in a Philadelphia positive CML responsive to Imatinib. Leuk. Lymphoma. 2005; 46(9): 1375–7.
  24. Roti G., Starza R., Gorello P. et al. e6a2 BCR/ABL1 fusion with cryptic der(9)t(9;22) deletions in a patient with chronic myeloid leukemia. Haematologica. 2005; 90: 1139–41.
  25. Branford S., Rudzki Z., Hughes T.P. A novel BCR-ABL transcript (e8a2) with the insertion of an inverted sequence of ABL intron I b in a patient with Philadelphia-positive chronic myeloid leukaemia. Br. J. Hematol. 2000; 109: 635–7.
  26. Cayuela J.-M., Rousselot P., Nicolini F. et al. Identification of a rare e8a2 BCR-ABL fusion gene in three novel chronic myeloid leukemia patients treated with Imatinib. Leukemia. 2005; 19: 2234–6.
  27. Tchirkov A., Couderc J.-L., Perissel B. et al. Major molecular response to imatinib in a patient with chronic myeloid leukemia expressing a novel form of e8a2 BCR-ABL transcript. Leukemia. 2006; 20: 167–8.
  28. Sugimoto T., Ijima K., Hisatomi H. et al. Second case of CML with aberrant BCR-ABL fusion transcript (e8/a2) with insertion of an inverted ABL intron 1b sequence. Am. J. Hematol. 2004; 77: 164–6.
  29. Martinelli G., Terragna C., Amabile M. et al. Alu and translisin recognition site sequences flank translocation sites in a novel type of chimeric BCR-ABL transcript and suggest a possible general mechanism for BCR-ABL breakpoints. Haematologica. 2000; 85: 40–6.
  30. How G., Lim L., Kulkarni S. et al. Two patients with novel BCR/ABL fusion transcripts (e8/a2 and e13/a2) resulting from translocation breakpoints within BCR exons. Br. J. Haematol. 1999; 105: 434–6.
  31. Qin Y.Z., Jiang B., Jiang Q. et al. Imatinib mesylate resistance in a chronic myeloid leukemia patient with a novel e8a2 BCR-ABL transcript variant. Acta Haematol. 2008; 120: 146–9.
  32. Park I.J., Lim Y.A., Lee W.G. et al. A case of chronic myelogenous leukemia with e8a2 fusion transcript. Cancer Gen. Cytogen. 2008; 185: 106–8.
  33. Burmeister T., Reinhardt R. A multiplex PCR for improved detection of typical and atypical BCR-ABL fusion transcripts. Leuk. Res. 2008; 32: 579–85.
  34. Дубина М.В., Куевда Д.А., Хомякова Т.Е. и др. Молекулярный мони- торинг эффективности терапии больных хроническим миелолейкозом в России (по материалам Всероссийской научно-практической конфе- ренции, Иркутск, 3–4 сентября 2010 г.). Современная онкология. 2010; 4: 9–15. [Dubina M.V., Kuevda D.A., Khomyakova T.E. et al. Molecular monitoring of the treatment efficacy in patients with chronic myeloid leukemia in Russia (Materials of Russian Theoretical and Practical Conference, Irkutsk, September 3–4, 2010). Sovremennaya onkologiya. 2010; 4: 9–15. (In Russ.)]
  35. Hughes T., Deininger M., Hochhaus A. et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors — review and recommendations for ‘harmonizing’ current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006; 108: 28–37.
  36. Schliben S., Borkhardt A., Reinisch J. et al. Incidence and clinical outcome of children with BCR-ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-FM-90 and CoALL-05-92. Leukemia. 1996; 10: 957–63.