Which Calculations Are Required for Treating Patients with Multiple Myeloma?

Aleksander Sergeevich Luchinin, A.A. Semenova,

DOI:

https://doi.org/10.21320/2500-2139-2025-18-3-218-226

Multiple myeloma (ММ) accounts for about 10 % of all hematologic tumors. The diversity of symptoms and variants of clinical course as well as a broad range of potential complications of both the disease itself and chemotherapy, indicate the need for further improvement of personalized treatment principles. The use of medical calculators (MC) integrating clinical, laboratory, and genetic data is becoming an important part of modern medical practice. The application of MC contributes to more credible assessment of the individual prognosis. Besides, current interest is attached to clinical decision support systems (CDSS) designed for the optimization of decision making. This paper reviews the major digital tools employed by professionals at all stages of management of patients with MM. They include laboratory diagnosis, disease staging, comorbidity assessment, complication risk, drug dosage calculations, and drug–drug interaction analysis. Special emphasis is laid on CDSS considering clinical and genetic characteristics of patients to ensure the optimal decision making on the treatment programs with regard to efficacy and safety. This paper provides practical recommendations on the application of the above tools in everyday clinical practice and contains the links to available online calculators and digital services. The implementation of MC and useful digital services facilitates better clinical outcomes, improves quality of life of patients, and optimizes healthcare resources as it contributes to efficacy and safety of MM treatment.

  1. Rajkumar SV. Multiple myeloma: 2024 update on diagnosis, risk-stratification, and management. Am J Hematol. 2024;99(9):1802–24. doi: 10.1002/ajh.27422. DOI: https://doi.org/10.1002/ajh.27422
  2. Schavgoulidze A, Cazaubiel T, Perrot A, et al. Multiple myeloma: heterogeneous in every way. Cancers. 2021;13(6):1285. doi: 10.3390/cancers13061285. DOI: https://doi.org/10.3390/cancers13061285
  3. Green TA, Whitt S, Belden JL, et al. Medical calculators: prevalence, and barriers to use. Comput Methods Programs Biomed. 2019;179:105002. doi: 10.1016/j.cmpb.2019.105002. DOI: https://doi.org/10.1016/j.cmpb.2019.105002
  4. Soleimanpour N, Bann M. Clinical risk calculators informing the decision to admit: a methodologic evaluation and assessment of applicability. PLoS One. 2022;17(12):e0279294. doi: 10.1371/journal.pone.0279294. DOI: https://doi.org/10.1371/journal.pone.0279294
  5. Dziadzko MA, Gajic O, Pickering BW, Herasevich V. Clinical calculators in hospital medicine: availability, classification, and needs. Comput Methods Programs Biomed. 2016;133:1–6. doi: 10.1016/j.cmpb.2016.05.006. DOI: https://doi.org/10.1016/j.cmpb.2016.05.006
  6. Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36(3):842–54. doi: 10.1002/1097-0142(197509)36:3<842::aid-cncr2820360303>3.0.co;2-u. DOI: https://doi.org/10.1002/1097-0142(197509)36:3<842::AID-CNCR2820360303>3.0.CO;2-U
  7. Oyajobi BO. Multiple myeloma/hypercalcemia. Arthritis Res Ther. 2007;9(Suppl 1):S4. doi: 10.1186/ar2168. DOI: https://doi.org/10.1186/ar2168
  8. Walker MD, Shane E. Hypercalcemia: A Review. JAMA. 2022;328(16):1624–36. doi: 10.1001/jama.2022.18331. DOI: https://doi.org/10.1001/jama.2022.18331
  9. Kelly MG, Winkler SS, Lentz SS, et al. Serum Calcium and Serum Albumin Are Biomarkers That Can Discriminate Malignant from Benign Pelvic Masses. Cancer Epidemiol Biomarkers Prev. 2015;24(10):1593–8. doi: 10.1158/1055-9965.EPI-15-0443. DOI: https://doi.org/10.1158/1055-9965.EPI-15-0443
  10. Parent X, Spielmann C, Hanser A-M. “Corrected” calcium: calcium status underestimation in non-hypoalbuminemic patients and in hypercalcemic patients. Ann Biol Clin (Paris). 2009;67(4):411–8. doi: 10.1684/abc.2009.0348. DOI: https://doi.org/10.1684/abc.2009.0348
  11. Elovic A, Pourmand A. MDCalc Medical Calculator App Review. J Digit Imaging. 2019;32(5):682–4. doi: 10.1007/s10278-019-00218-y. DOI: https://doi.org/10.1007/s10278-019-00218-y
  12. Clase CM, Norman GL, Beecroft ML, Churchill DN. Albumin-corrected calcium and ionized calcium in stable haemodialysis patients. Nephrol Dial Transplant. 2000;15(11):1841–6. doi: 10.1093/ndt/15.11.1841. DOI: https://doi.org/10.1093/ndt/15.11.1841
  13. Lian IA, Asberg A. Should total calcium be adjusted for albumin? A retrospective observational study of laboratory data from central Norway. BMJ open. 2018;8(4):e017703. doi: 10.1136/bmjopen-2017-017703. DOI: https://doi.org/10.1136/bmjopen-2017-017703
  14. Ursu SG, Maples S, Williams KJ, et al. The Impact of Renal Impairment in Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplantation With Melphalan Conditioning. J Hematol. 2023;12(5):201–7. doi: 10.14740/jh1148. DOI: https://doi.org/10.14740/jh1148
  15. Salama E, Lam S, Gonsalves WI, et al. Estimation of Kidney Function in Patients With Multiple Myeloma: Implications for Lenalidomide Dosing. Ann Pharmacother. 2023;57(1):29–35. doi: 10.1177/10600280221087218. DOI: https://doi.org/10.1177/10600280221087218
  16. Pratt G, Pinney JH, Cockwell P. How I Treat Light Chain Cast Nephropathy. Clin J Am Soc Nephrol. 2024;19(5):650. doi: 10.2215/CJN.0000000000000400. DOI: https://doi.org/10.2215/CJN.0000000000000400
  17. Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–30. doi: 10.7326/0003-4819-158-11-201306040-00007. DOI: https://doi.org/10.7326/0003-4819-158-11-201306040-00007
  18. Dimopoulos MA, Merlini G, Bridoux F, et al. Management of multiple myeloma-related renal impairment: recommendations from the International Myeloma Working Group. Lancet Oncol. 2023;24(7):e293–e311. doi: 10.1016/S1470-2045(23)00223-1. DOI: https://doi.org/10.1016/S1470-2045(23)00223-1
  19. Dimopoulos MA, Sonneveld P, Leung N, et al. International Myeloma Working Group Recommendations for the Diagnosis and Management of Myeloma-Related Renal Impairment. J Clin Oncol. 2016;34(13):1544–57. doi: 10.1200/JCO.2015.65.0044. DOI: https://doi.org/10.1200/JCO.2015.65.0044
  20. Greipp PR, San Miguel J, Durie BGM, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–20. doi: 10.1200/JCO.2005.04.242. DOI: https://doi.org/10.1200/JCO.2005.04.242
  21. Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J Clin Oncol. 2015;33(26):2863–9. doi: 10.1200/JCO.2015.61.2267. DOI: https://doi.org/10.1200/JCO.2015.61.2267
  22. D’Agostino M, Cairns DA, Lahuerta JJ, et al. Second Revision of the International Staging System (R2-ISS) for Overall Survival in Multiple Myeloma: A European Myeloma Network (EMN) Report Within the HARMONY Project. J Clin Oncol. 2022;40(29):3406–18. doi: 10.1200/JCO.21.02614. DOI: https://doi.org/10.1200/JCO.22.02228
  23. Maura F, Bergsagel PL. Molecular Pathogenesis of Multiple Myeloma: Clinical Implications. Hematol Oncol Clin North Am. 2024;38(2):267–79. doi: 10.1016/j.hoc.2023.12.010. DOI: https://doi.org/10.1016/j.hoc.2023.12.010
  24. Jelinek T, Bezdekova R, Zihala D, et al. More Than 2% of Circulating Tumor Plasma Cells Defines Plasma Cell Leukemia–Like Multiple Myeloma. J Clin Oncol. 2023;41(7):1383–92. doi: 10.1200/JCO.22.01226. DOI: https://doi.org/10.1200/JCO.22.01226
  25. Rees MJ, D’Agostino M, Leypoldt LB, et al. Navigating High-Risk and Ultrahigh-Risk Multiple Myeloma: Challenges and Emerging Strategies. Am Soc Clin Oncol Educ Book. 2024;44(3):e433520. doi: 10.1200/EDBK_433520. DOI: https://doi.org/10.1200/EDBK_433520
  26. Rees MJ, Kumar S. High-risk multiple myeloma: Redefining genetic, clinical, and functional high-risk disease in the era of molecular medicine and immunotherapy. Am J Hematol. 2024;99(8):1560–75. doi: 10.1002/ajh.27327. DOI: https://doi.org/10.1002/ajh.27327
  27. Bladé J, Beksac M, Caers J, et al. Extramedullary disease in multiple myeloma: a systematic literature review. Blood Cancer J. 2022;12(3):45. doi: 10.1038/s41408-022-00643-3. DOI: https://doi.org/10.1038/s41408-022-00643-3
  28. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56. doi: 10.1093/gerona/56.3.m146. DOI: https://doi.org/10.1093/gerona/56.3.M146
  29. Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173(5):489–95. doi: 10.1503/cmaj.050051. DOI: https://doi.org/10.1503/cmaj.050051
  30. Palumbo A, Bringhen S, Mateos M-V, et al. Geriatric assessment predicts survival and toxicities in elderly myeloma patients: an International Myeloma Working Group report. Blood. 2015;125(13):2068–74. doi: 10.1182/blood-2014-12-615187. DOI: https://doi.org/10.1182/blood-2014-12-615187
  31. Engelhardt M, Domm A-S, Dold SM, et al. A concise revised Myeloma Comorbidity Index as a valid prognostic instrument in a large cohort of 801 multiple myeloma patients. Haematologica. 2017;102(5):910–21. doi: 10.3324/haematol.2016.162693. DOI: https://doi.org/10.3324/haematol.2016.162693
  32. Facon T, Dimopoulos MA, Meuleman N, et al. A simplified frailty scale predicts outcomes in transplant-ineligible patients with newly diagnosed multiple myeloma treated in the FIRST (MM-020) trial. Leukemia. 2020;34(1):224–33. doi: 10.1038/s41375-019-0539-0. DOI: https://doi.org/10.1038/s41375-019-0539-0
  33. Chakraborty R, Riaz IB, Malik SU, et al. Venous Thromboembolism Risk With Contemporary Lenalidomide-Based Regimens Despite Thromboprophylaxis in Multiple Myeloma: A Systematic Review and Meta-Analysis. Cancer. 2020;126(8):1640–50. doi: 10.1002/cncr.32682. DOI: https://doi.org/10.1002/cncr.32682
  34. Leleu X, Rodon P, Hulin C, et al. MELISSE, a large multicentric observational study to determine risk factors of venous thromboembolism in patients with multiple myeloma treated with immunomodulatory drugs. Thromb Haemost. 2013;110(4):844–51. doi: 10.1160/TH13-02-0140. DOI: https://doi.org/10.1160/TH13-02-0140
  35. Frenzel L, Decaux O, Macro M, et al. Venous thromboembolism prophylaxis and multiple myeloma patients in real-life: Results of a large survey and clinical guidance recommendations from the IFM group. Thromb Res. 2024;233:153–64. doi: 10.1016/j.thromres.2023.11.021. DOI: https://doi.org/10.1016/j.thromres.2023.11.021
  36. Rola G, Elsabah H, Bakir L, et al. A Comparison of Different Venous Thromboembolism Prediction Scoring Systems in Newly Diagnosed Multiple Myeloma in an Arabic Population. Blood. 2024;144(Suppl 1):7719. doi: 10.1182/blood-2024-204728. DOI: https://doi.org/10.1182/blood-2024-204728
  37. Da Costa IHF, de Pádua CAM, de Miranda Drummond PL, et al. Comparison of three risk assessment models for thromboembolism in multiple myeloma patients receiving immunomodulators: a Brazilian historical cohort. J Thromb Thrombolysis. 2023;56(1):147–55. doi: 10.1007/s11239-023-02817-7. DOI: https://doi.org/10.1007/s11239-023-02817-7
  38. Dima D, Li A, Granat LM, et al. External validation of the SAVED score for venous thromboembolism risk stratification in patients with multiple myeloma receiving immunomodulatory drugs. Br J Haematol. 2023;201(2):280–4. doi: 10.1111/bjh.18630. DOI: https://doi.org/10.1111/bjh.18630
  39. Sanfilippo KM, Luo S, Wang T-F, et al. Predicting Venous Thromboembolism in Multiple Myeloma: Development and Validation of the IMPEDE VTE Score. Am J Hematol. 2019;94(11):1176–84. doi: 10.1002/ajh.25603. DOI: https://doi.org/10.1002/ajh.25603
  40. Gurney H. How to calculate the dose of chemotherapy. Br J Cancer. 2002;86(8):1297–302. doi: 10.1038/sj.bjc.6600139. DOI: https://doi.org/10.1038/sj.bjc.6600139
  41. Flint B, Hall CA. Body Surface Area. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  42. Roca B, Roca M. Assessment of Drug Interactions with Online Electronic Checkers in Multi-Pathological Patients. Pharmacology. 2022;107(1–2):111–5. doi: 10.1159/000518439. DOI: https://doi.org/10.1159/000518439
  43. Xiong G, Yang Z, Yi J, et al. DDInter: an online drug–drug interaction database towards improving clinical decision-making and patient safety. Nucleic Acids Res. 2021;50(D1):D1200–D1207. doi: 10.1093/nar/gkab880. DOI: https://doi.org/10.1093/nar/gkab880
  44. Labkoff SE, Giusti KE, Giusti PA, et al. Evaluation of Multiple Myeloma Clinical Decision Support Tool Value When Populated with Community Health System Data. Blood. 2020;136(Suppl 1):18–9. doi: 10.1182/blood-2020-141458. DOI: https://doi.org/10.1182/blood-2020-141458
  45. Лучинин А.С., Семенова А.А., Семочкин С.В. Множественная миелома: моделирование сценариев терапии с использованием метода Монте-Карло. Клиническая онкогематология. 2024;17(3):246–55. doi: 10.21320/2500-2139-2024-17-3-246-255. [Luchinin A.S., Semenova A.A., Semochkin S.V. Multiple Myeloma: Simulation of Therapy Scenarios Using the Monte Carlo Method. Clinical oncohematology. 2024;17(3):246–55. doi: 10.21320/2500-2139-2024-17-3-246-255. (In Russ)] DOI: https://doi.org/10.21320/2500-2139-2024-17-3-246-255
  46. Christofferson A, Nasser S, Aldrich J, et al. Integrative Analysis of the Genomic Landscape Underlying Multiple Myeloma at Diagnosis: An Mmrf Commpass Analysis. Blood. 2017;130(Suppl 1):326. doi: 10.1182/blood.V130.Suppl_1.326.326.
  47. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e346. doi: 10.1016/S1470-2045(16)30206-6. DOI: https://doi.org/10.1016/S1470-2045(16)30206-6
  48. Charliński G, Jurczyszyn A. Non-secretory multiple myeloma: Diagnosis and management. Adv Clin Exp Med. 2022;31(1):95–100. doi: 10.17219/acem/141455. DOI: https://doi.org/10.17219/acem/141455

Keywords:

multiple myeloma, medical calculator, clinical decision support system

Downloads

Download data is not yet available.

Author Biography

  • Aleksander Sergeevich Luchinin, NN Blokhin National Medical Cancer Research Center, 23 Kashirskoye sh., Moscow, Russian Federation, 115522

    канд. мед. наук

Published

01.07.2025

Issue

LYMPHOID TUMORS

How to Cite

Luchinin A.S., Semenova A.A. Which Calculations Are Required for Treating Patients with Multiple Myeloma?. Clinical Oncohematology. Basic Research and Clinical Practice. 2025;18(3):218–226. doi:10.21320/2500-2139-2025-18-3-218-226.

Most read articles by the same author(s)

1 2 > >>