Role of c-MYC, BCL2, and BCL6 Expression in Pathogenesis of Diffuse Large B-Cell Lymphoma
DOI:
https://doi.org/10.21320/2500-2139-2014-7-4-512-521According to modern concepts based on results of examination of the gene expression profile, there are several subtypes of diffuse large B cell lymphoma (DLBCL): germinal center B cell-like (GCB) and activated B cell-like (ABC) lymphomas. Genes c-MYC, BCL6, and BCL2 are key regulators of B-cell germinal (follicular) differentiation. Genetic abnormalities with their participation are most common in molecular pathogenesis of DLBCL. A total level of activity as well as mechanisms that lead to overexpression each of these genes and production of corresponding proteins have an impact on a disease prognosis. We assume that quantitative assay of c-MYC, BCL6, and BCL2 gene expression, as well as proteins encoded by these genes, can allow to determine high risk DLBCL patients with great accuracy.
- Swerdlow S.H., Campo E., Harris N.L. et al (eds.). WHO Classification of Tumors of Haematopoetic and Lymphoid Tissues. Lyon: IARC, 2008: 233–4.
- Frick M., Dorken B., Lenz G. New insights into the biology of molecular subtypes of diffuse large B-cell lymphoma and Burkitt lymphoma. Best Pract. Res. Clin. Haematol. 2012; 25(1): 3–12. DOI: https://doi.org/10.1016/j.beha.2012.01.003
- Alizadeh A.A., Eisen M.B., Davis R.E. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000; 403: 503–11. DOI: https://doi.org/10.1038/35000501
- Rosenwald A., Wright G., Chan W.C. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 2002; 346(25): 1937–47. DOI: https://doi.org/10.1056/NEJMe020050
- Alizadeh A.A., Eisen M.B., Davis R.E. et al. The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harbor Symp. Quant. Biol. 1999; 62: 71–8. DOI: https://doi.org/10.1101/sqb.1999.64.71
- Lenz G., Wright G., Dave S.S. et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 2008; 359(22): 2313–23. DOI: https://doi.org/10.1056/NEJMoa0802885
- Rosenwald A., Wright G., Leroy K. et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J. Exp. Med. 2003; 198(6): 851–62. DOI: https://doi.org/10.1084/jem.20031074
- Savage K.J., Monti S., Kutok J.L. et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003; 102(12): 3871–9. DOI: https://doi.org/10.1182/blood-2003-06-1841
- Wright G., Tan B., Rosenwald A. et al. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA. 2003; 100: 9991–6. DOI: https://doi.org/10.1073/pnas.1732008100
- Muller A.M., Medvinsky A., Strouboulis J., Grosveld F., Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994; 1: 291–301. DOI: https://doi.org/10.1016/1074-7613(94)90081-7
- Melchers F. The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat. Rev. Immunol. 2005; 5: 578–84. DOI: https://doi.org/10.1038/nri1649
- van Zelm M.C., Szczepanski T., van der Burg M., van Dongen J.J. Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J. Exp. Med. 2007; 204: 645–55. DOI: https://doi.org/10.1084/jem.20060964
- Martin F., Oliver A.M., Kearney J.F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001; 14: 617–29. DOI: https://doi.org/10.1016/S1074-7613(01)00129-7
- Chen J., Trounstine M., Alt F.W. et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immunol. 1993; 5: 647–56. DOI: https://doi.org/10.1093/intimm/5.6.647
- Teng G., Papavasiliou F.N. Immunoglobulin somatic hypermutation. Annu. Rev. Genet. 2007; 41: 107–20. DOI: https://doi.org/10.1146/annurev.genet.41.110306.130340
- Liu Y.J., Arpin C. Germinal center development. Immunol. Rev. 1997; 156: 111–26. DOI: https://doi.org/10.1111/j.1600-065X.1997.tb00963.x
- Yuan D. Regulation of IgM and IgD synthesis in B lymphocytes. II. Translational and post-translational events. J. Immunol. 1984; 132: 1566–70. DOI: https://doi.org/10.4049/jimmunol.132.3.1566
- Yasodha N. The Biology of the Germinal Center. ASH Education Book. 2007; 1: 210–5. DOI: https://doi.org/10.1182/asheducation.V2007.1.210.0010210
- Komori T., Okada A., Stewart V., Alt F.W. Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science. 1993; 261: 1171–5. DOI: https://doi.org/10.1126/science.8356451
- Willenbrock K., Jungnickel B., Hansmann M.L., Kuppers R. Human splenic marginal zone B cells lack expression of activation-induced cytidine deaminase. Eur. J. Immunol. 2005; 35: 3002–7. DOI: https://doi.org/10.1002/eji.200535134
- Raghavan S.C., Hsieh C.L., Lieber M.R. Both V(D)J coding ends but neither signal end can recombine at the bcl-2 major breakpoint region, and the rejoining is ligase IV dependent. Mol. Cell. Biol. 2005; 15: 6475–84. DOI: https://doi.org/10.1128/MCB.25.15.6475-6484.2005
- Luscher B. MAD1 and its life as a MYC antagonist: an update. Eur. J. Cell. Biol. 2012; 91(6–7): 506–14. DOI: https://doi.org/10.1016/j.ejcb.2011.07.005
- McDuff F.O., Naud J.F., Montagne M., Sauve S., Lavigne P. The Max homodimeric b-HLH-LZ significantly interferes with the specific heterodimerization between the c-Myc and Max b-HLH-LZ in absence of DNA: a quantitative analysis. J. Mol. Recognit. 2009; 22(4): 261–9. DOI: https://doi.org/10.1002/jmr.938
- Dang C.V. MYC on the path to cancer. Cell. 2012; 149(1): 22–35. DOI: https://doi.org/10.1016/j.cell.2012.03.003
- Luscher B., Vervoorts J. Regulation of gene transcription by the oncoprotein MYC. Gene. 2012; 494(2): 145–60. DOI: https://doi.org/10.1016/j.gene.2011.12.027
- Meyer N., Penn L.Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer. 2008; 8(12): 976–90. DOI: https://doi.org/10.1038/nrc2231
- Keller U.B., Old J.B., Dorsey F.C. et al. Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphoma agenesis. EMBO. J. 2007; 26(10): 2562–74. DOI: https://doi.org/10.1038/sj.emboj.7601691
- Bueno M.J., Malumbres M. MicroRNAs and the cell cycle. Biochim. Biophys. Acta. 2011; 1812(5): 592–601. DOI: https://doi.org/10.1016/j.bbadis.2011.02.002
- Nie Z., Hu G., Wei G. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012; 151(1): 68–79. DOI: https://doi.org/10.1016/j.cell.2012.08.033
- Lin C.Y., Loven J., Rahl P.B. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012; 151(1): 56–67. DOI: https://doi.org/10.1016/j.cell.2012.08.026
- Lin Y., Wong K., Calame K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science. 1997; 276(5312): 596–9. DOI: https://doi.org/10.1126/science.276.5312.596
- Basso K., Dalla-Favera R. BCL6: master regulator of the germinal center reaction and key oncogene in B cell lymphomagenesis. Adv. Immunol. 2010; 105: 193–210. DOI: https://doi.org/10.1016/S0065-2776(10)05007-8
- Phan R.T., Saito M., Basso K., Niu H., Dalla-Favera R. BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat. Immunol. 2005; 6(10): 1054–60. DOI: https://doi.org/10.1038/ni1245
- Niu H., Ye B.H., Dalla-Favera R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 1998; 12(13): 1953–61. DOI: https://doi.org/10.1101/gad.12.13.1953
- Phan R.T., Saito M., Kitagawa Y., Means A.R., Dalla-Favera R. Genotoxic stress regulates expression of the proto-oncogene Bcl6 in germinal center B cells. Nat. Immunol. 2007; 8(10): 1132–9. DOI: https://doi.org/10.1038/ni1508
- Phan R.T., Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004; 432(7017): 635–9. DOI: https://doi.org/10.1038/nature03147
- Basso K., Saito M., Sumazin P. et al. Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood. 2010; 115(5): 975–84. DOI: https://doi.org/10.1182/blood-2009-06-227017
- Wagner S.D., Ahearne M., Ko Ferrigno P. The role of BCL6 in lymphomas and routes to therapy. Br. J. Haematol. 2011; 152(1): 3–12. DOI: https://doi.org/10.1111/j.1365-2141.2010.08420.x
- Basso K., Dalla-Favera R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol. Rev. 2012; 247(1): 172–83. DOI: https://doi.org/10.1111/j.1600-065X.2012.01112.x
- Merino R., Ding L., Veis D.J. et al. Developmental regulation of the Bcl-2 protein and susceptibility to cell death in B lymphocytes. EMBO. J. 1994; 13: 683–91. DOI: https://doi.org/10.1002/j.1460-2075.1994.tb06307.x
- McDonnell T.J., Nunez G., Platt F.M. et al. Deregulated Bcl-2-immunoglobulin transgene expands a resting but responsive immunoglobulin M and D-expressing B-cell population. Mol. Cell. Biol. 1990; 10: 1901–7. DOI: https://doi.org/10.1128/MCB.10.5.1901
- McDonnell T.J., Deane N., Platt F.M. et al. Bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell. 1989; 57: 79–88. DOI: https://doi.org/10.1016/0092-8674(89)90174-8
- Veis D.J., Sorenson C.M., Shutter J.R. et al. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993; 75: 229–40. DOI: https://doi.org/10.1016/0092-8674(93)80065-M
- Wilson W.H., Teruya-Feldstein J., Fest T. et al. Relationship of p53, bcl-2, and tumor proliferation to clinical drug resistance in non-Hodgkin’s lymphomas. Blood. 1997; 89: 601–9. DOI: https://doi.org/10.1182/blood.V89.2.601
- Monti S., Savage K.J., Kutok J.L. et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood. 2005; 105(5): 1851–61. DOI: https://doi.org/10.1182/blood-2004-07-2947
- Dent A.L., Shaffer A.L., Yu X. et al. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science. 1997; 276(5312): 589–92. DOI: https://doi.org/10.1126/science.276.5312.589
- Никитин Е.А. Патогенез зрелоклеточных лимфатических опухолей. Материалы конгрессов и конференций. VIII Российский онкологический конгресс [Электронный документ] (http://www.rosoncoweb.ru/library/ congress/ru/08/19.php). [Nikitin E.A. Pathogenesis of mature cell lymphomas. Materialy kongressov i konferentsii. VIII Rossiiskii onkologicheskii kongress (Materials of congresses and conferences. VIII Russian oncological congress). Available at: http://www. rosoncoweb.ru/library/congress/ru/08/19.php (In Russ.)]
- Davis R.E., Brown K.D., Siebenlist U. et al. Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 2001; 194(12): 1861–74. DOI: https://doi.org/10.1084/jem.194.12.1861
- Jost P.J., Ruland J. Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood. 2007; 109(7): 2700–7. DOI: https://doi.org/10.1182/blood-2006-07-025809
- Ngo V.N., Davis R.E., Lamy L. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature. 2006; 441(7089): 106–10. DOI: https://doi.org/10.1038/nature04687
- Rawlings D.J., Sommer K., Moreno-Garcia M.E. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat. Rev. Immunol. 2006; 6(11): 799–812. DOI: https://doi.org/10.1038/nri1944
- Lenz G., Davis R.E., Ngo V.N. et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008; 319(5870): 1676–9. DOI: https://doi.org/10.1126/science.1153629
- Davis R.E., Ngo V.N., Lenz G. et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010; 463(7277): 88–92. DOI: https://doi.org/10.1038/nature08638
- Compagno M., Lim W.K., Grunn A. et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009; 459(7247): 717–21. DOI: https://doi.org/10.1038/nature07968
- Kato M., Sanada M., Kato I. et al. Frequent inactivation of A20 in B-cell lymphomas. Nature. 2009; 459(7247): 712–6. DOI: https://doi.org/10.1038/nature07969
- Ding B.B., Yu J.J., Yu R.Y. et al. Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large Bcell lymphomas. Blood. 2008; 111(3): 1515–23. DOI: https://doi.org/10.1182/blood-2007-04-087734
- Lam L.T., Wright G., Davis R.E. et al. Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-{kappa}B pathways in subtypes of diffuse large B-cell lymphoma. Blood. 2008; 111(7): 3701–13. DOI: https://doi.org/10.1182/blood-2007-09-111948
- Ngo V.N., Young R.M., Schmitz R. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011; 470(7332): 115–9. DOI: https://doi.org/10.1038/nature09671
- Bea S., Zettl A., Wright G. et al. Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve geneexpression-based survival prediction. Blood. 2005; 106(9): 3183–90. DOI: https://doi.org/10.1182/blood-2005-04-1399
- Boerma E.G., Siebert R., Kluin P.M., Baudis M. Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of today’s knowledge. Leukemia. 2009; 23(2): 225–34. DOI: https://doi.org/10.1038/leu.2008.281
- Salaverria I., Zettl A., Bea S. et al. Chromosomal alterations detected by comparative genomic hybridization in subgroups of gene expression-defined Burkitt’s lymphoma. Haematologica. 2008; 93(9): 1327–34. DOI: https://doi.org/10.3324/haematol.13071
- Scholtysik R., Kreuz M., Klapper W. et al. Detection of genomic aberrations in molecularly defined Burkitt’s lymphoma by array-based, high resolution, single nucleotide polymorphism analysis. Haematologica. 2010; 95(12): 2047–55. DOI: https://doi.org/10.3324/haematol.2010.026831
- Pasqualucci L., Neumeister P., Goossens T. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001; 412(6844): 341–6. DOI: https://doi.org/10.1038/35085588
- Hemann M.T., Bric A., Teruya-Feldstein J. et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature. 2005; 436(7052): 807–11. DOI: https://doi.org/10.1038/nature03845
- Giulino-Roth L., Wang K., MacDonald T.Y. et al. Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood. 2012; 120(26): 5181–4. DOI: https://doi.org/10.1182/blood-2012-06-437624
- Bhatia K., Huppi K., Spangler G. et al. Point mutations in the c-Myc transactivation domain are common in Burkitt’s lymphoma and mouse plasmacytomas. Nat. Genet. 1993; 5(1): 56–61. DOI: https://doi.org/10.1038/ng0993-56
- Snuderl M., Kolman O.K., Chen Y.B. et al. B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma. Am. J. Surg. Pathol. 2010; 34(3): 327–40.
- Le Gouill S., Talmant P., Touzeau C. et al. The clinical presentation and prognosis of diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC rearrangement. Haematologica. 2007; 92(10): 1335–42. DOI: https://doi.org/10.3324/haematol.11305
- Li S., Lin P., Fayad L.E. et al. B-cell lymphomas with B-cell lymphomas with MYC/8q24 rearrangements and IGH@BCL2/t(14;18)(q32;q21): an aggressive disease with heterogeneous histology, germinal center B-cell immunophenotype and poor outcome. Mod. Pathol. 2012; 25(1): 145–56. DOI: https://doi.org/10.1038/modpathol.2011.147
- Klapper W., Stoecklein H., Zeynalova S. et al. Structural aberrations affecting the MYC locus indicate a poor prognosis independent of clinical risk factors in diffuse large B-cell lymphomas treated within randomized trials of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Leukemia. 2008; 22(12): 2226–9. DOI: https://doi.org/10.1038/leu.2008.230
- Savage K.J., Johnson N.A., Ben-Neriah S. et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009; 114(17): 3533–7. DOI: https://doi.org/10.1182/blood-2009-05-220095
- Horn H., Ziepert M., Becher C. et al. MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood. 2013; 121(12): 2253–63. DOI: https://doi.org/10.1182/blood-2012-06-435842
- Barrans S., Crouch S., Smith A. et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J. Clin. Oncol. 2010; 28(20): 3360–5. DOI: https://doi.org/10.1200/JCO.2009.26.3947
- Valera A., Lopez-Guillermo A., Cardesa-Salzman T. et al. MYC protein expression and genetic alterations have prognostic impact in diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica. 2013; 98(10): 1554–62.
- Hummel M., Bentink S., Berger H. et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N. Engl. J. Med. 2006; 354(23): 2419–30. DOI: https://doi.org/10.1056/NEJMoa055351
- Salaverria I., Siebert R. The gray zone between Burkitt’s lymphoma and diffuse large B-cell lymphoma from a genetics perspective. J. Clin. Oncol. 2011; 29(14): 1835–43. DOI: https://doi.org/10.1200/JCO.2010.32.8385
- Bertrand P., Bastard C., Maingonnat C. et al. Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas. Leukemia. 2007; 21(3): 515–23. DOI: https://doi.org/10.1038/sj.leu.2404529
- Tomita N. BCL2 and MYC Dual-Hit Lymphoma/Leukemia. J. Clin. Exp. Hematopathol. 2011; 51(1): 7–12. DOI: https://doi.org/10.3960/jslrt.51.7
- Johnson N.A., Savage K.J., Ludkovski O. et al. Lymphomas with concurrent BCL2 and MYC translocations: the critical factors associated with survival. Blood. 2009; 114(11): 2273–9. DOI: https://doi.org/10.1182/blood-2009-03-212191
- Snuderl M., Kolman O.K., Chen Y.B. et al. B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma. Am. J. Surg. Pathol. 2010; 34(3): 327–40. DOI: https://doi.org/10.1097/PAS.0b013e3181cd3aeb
- Hoeller S., Copie-Bergman C. Grey Zone Lymphomas: Lymphomas with Intermediate Features. Advances in Hematology 2012. http://dx.doi. org/10.1155/2012/460801. DOI: https://doi.org/10.1155/2012/460801
- Tauro S., Cochrane L., Lauritzsen G.F. et al. Dose-intensified treatment of Burkitt lymphoma and B-cell lymphoma unclassifiable, (with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma) in young adults (< 50 years): A comparison of two adapted BFM protocols. Am. J. Hematol. 2010; 85(4): 261–3. DOI: https://doi.org/10.1002/ajh.21648
- Kobayashi T., Tsutsumi Y., Sakamoto N. et al. Double-hit Lymphomas Constitute a Highly Aggressive Subgroup in Diffuse Large B-cell Lymphomas in the Era of Rituximab. Jpn. J. Clin. Oncol. 2012; 42(11): 1035–42. DOI: https://doi.org/10.1093/jjco/hys148
- Fanidi A., Harrington E.A., Evan G.I. Cooperative in reactions between c-myc and bcl-2 protooncogenes. Nature. 1992; 359: 554–6. DOI: https://doi.org/10.1038/359554a0
- Vaux D.L., Cory S., Adams J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988; 335(6189): 440–2. DOI: https://doi.org/10.1038/335440a0
- Zhaohui J., Stratford M.W., Fengqin G., Tammy F., Xingming D. Bcl2 suppresses DNA repair by enhancing c-myc transcriptional activity. J. Biol. Chem. 2005; 281: 14446–56. DOI: https://doi.org/10.1074/jbc.M511914200
- Masao N., Shinobu T., Keiichiro H., Osamu T., Masao S. Synergistic effect of Bcl2, Myc and Ccnd1 transforms mouse primary B cells into malignant cells. Haematologica. 2011; 96(9): 1318–26. DOI: https://doi.org/10.3324/haematol.2011.041053
- DeoCampo N.D., Wilson M.R., Trosko J.E. Cooperation of bcl-2 and myc in the neoplastic transformation of normal rat liver epithelial cells is related to the down-regulation of gap junction-mediated intercellular communication. Carcinogenesis. 2000; 21(8): 1501–6. DOI: https://doi.org/10.1093/carcin/21.8.1501
- Leucci E., Cocco M., Onnis A. et al. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J. Pathol. 2008; 216(4): 440–50. DOI: https://doi.org/10.1002/path.2410
- Onnis A., De Falco G., Antonicelli G. et al. Аlteration of microRNAs regulated by c-MYC in Burkitt lymphoma. PLoS One. 2010; 5(9); e12960. DOI: https://doi.org/10.1371/journal.pone.0012960
- Stasik C.J., Nitta H., Zhang W. et al. Increased MYC gene copy number correlates with increased mRNA levels in diffuse large B-cell lymphoma. Haematologica. 2010; 95(4): 597–603. DOI: https://doi.org/10.3324/haematol.2009.012864
- Schrader A., Bentink S., Spang R. et al. High MYC activity is an independent negative prognostic factor for DLBCL. Cancer. 2012; 131(4): 348–61. DOI: https://doi.org/10.1002/ijc.26423
- Yoon S.O., Jeon Y.K., Paik J.H. et al. MYC translocation and an increased copy number predict poor prognosis in adult DLBCL, especially in GCB-type. Histopathology. 2008; 53(2): 205–17. DOI: https://doi.org/10.1111/j.1365-2559.2008.03076.x
- Mossafa H., Damotte D., Jenabian A. et al. Non-Hodgkin lymphomas with Burkitt-like cells are associated with c-Myc amplification and poor prognosis. Leuk. Lymphoma. 2006; 47(9): 1885–93. DOI: https://doi.org/10.1080/10428190600687547
- Martin-Subero J.I., Odero M.D., Hernandez R. et al. Amplification of IGH/ MYC fusion in clinically aggressive IGH/BCL2-positive germinal center B-cell lymphomas. Genes Chromosomes Cancer. 2005; 43(4): 414–23. DOI: https://doi.org/10.1002/gcc.20187
- Tapia G., Lopez R., Munoz-Marmol A.M. et al. Immunohistochemical detection of MYC protein correlates with MYC gene status in aggressive B-cell lymphoma. Histopathology. 2011; 59(4): 672–8. DOI: https://doi.org/10.1111/j.1365-2559.2011.03978.x
- Green T.M., Nielsen O., de SK. et al. High levels of nuclear MYC protein predict the presence of MYC rearrangement in diffuse large B-cell lymphoma. Am. J. Surg. Pathol. 2012; 36(4): 612–9. DOI: https://doi.org/10.1097/PAS.0b013e318244e2ba
- Johnson N.A., Slack G.W., Savage K.J. et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J. Clin. Oncol. 2012; 30(28): 3452–9.
- Kluk M.J., Chapuy B., Sinha P. et al. Immunohistochemical detection of MYC-driven diffuse large B-cell lymphomas. PLoS One. 2012; 7(4): e33813. DOI: https://doi.org/10.1371/journal.pone.0033813
- Testoni M., Kwee I., Greiner T.C. et al. Gains of MYC locus and outcome in patients with diffuse large B-cell lymphoma treated with R-CHOP. Br. J. Haematol. 2011; 155(2): 274–7. DOI: https://doi.org/10.1111/j.1365-2141.2011.08675.x
- Hu S., Xu-Monette Z.Y., Tzankov A. et al. MYC/BCL2 protein co-expression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2013; 121(20): 4021–31. DOI: https://doi.org/10.1182/blood-2012-10-460063
- Piris M.A., Pezzella F., Martinez-Montero J.C. et al. p53 and bcl-2 expression in high-grade B-cell lymphomas: Correlation with survival time. Br. J. Cancer. 1994; 69: 337–41. DOI: https://doi.org/10.1038/bjc.1994.61
- Tang S.C., Visser L., Hepperle B. et al. Clinical significance of bcl-2-MBR gene rearrangement and protein expression in diffuse large-cell non-Hodgkin’s lymphoma: An analysis of 83 cases. J. Clin. Oncol. 1994; 12: 149–54. DOI: https://doi.org/10.1200/JCO.1994.12.1.149
- Barrans S.L., Carter I., Owen R.G. et al. Germinal center phenotype and bcl-2 expression combined with the International Prognostic Index improves patient risk stratification in diffuse large B-cell lymphoma. Blood. 2002; 99: 1136–43. DOI: https://doi.org/10.1182/blood.V99.4.1136
- Colomo L., Lopez-Guillermo A., Perales M. et al. Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma. Blood. 2003; 101: 78–84. DOI: https://doi.org/10.1182/blood-2002-04-1286
- Gascoyne R.D., Adomat S.A., Krajewski S. et al. Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood. 1997; 90: 244–51. DOI: https://doi.org/10.1182/blood.V90.1.244.244_244_251
- Martinka M., Comeau T., Foyle A. et al. Prognostic significance of t(14;18) and bcl-2 gene expression in follicular small cleaved cell lymphoma and diffuse large cell lymphoma. Clin. Invest. Med. 1997; 20: 364–70.
- Hill M.E., MacLennan K.A., Cunningham D.C. et al. Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in dif- fuse large cell non-Hodgkin’s lymphoma: A British National Lymphoma Investigation Study. Blood. 1996; 88: 1046–51. DOI: https://doi.org/10.1182/blood.V88.3.1046.1046
- Kramer M.H., Hermans J., Wijburg E. et al. Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood. 1998; 92: 3152–62. DOI: https://doi.org/10.1182/blood.V92.9.3152.421a07_3152_3162
- Hermine O., Haioun C., Lepage E. et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin’s lymphoma: Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood. 1996; 87: 265–72. DOI: https://doi.org/10.1182/blood.V87.1.265.bloodjournal871265
- Iqbal J., Neppalli V.T., Wright G., Dave B.J. BCL2 Expression Is a Prognostic Marker for the Activated B-Cell–Like Type of Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2006; 24(6): 961–8. DOI: https://doi.org/10.1200/JCO.2005.03.4264
- Green T.M., Young K.H., Visco C. et al. Immunohistochemical DoubleHit Score Is a Strong Predictor of Outcome in Patients With Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J. Clin. Oncol. 2012; 30(28): 3460–7. DOI: https://doi.org/10.1200/JCO.2011.41.4342
- Johnson N.A., Slack G.W., Savage K.J. et al. Concurrent Expression of MYC and BCL2 in Diffuse Large B-Cell Lymphoma Treated With Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J. Clin. Oncol. 2012; 30(28): 3452–9.
- Valera A., Lopez-Guillermo A., Cardesa-Salzmann T. et al. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Haematologica. 2013; 98(10): 1554–62. DOI: https://doi.org/10.3324/haematol.2013.086173
Keywords:
diffuse large B cell lymphoma, molecular subtypes, risk groups, c-MYC, BCL6, BCL2
License
Copyright (c) 2014 Clinical Oncohematology

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



