Ribonucleases with Antiproliferative Properties: Molecular Biological and Biochemical Characteristics

Vadim Sergeevich Pokrovskii, E.M. Treshchalina, N.V. Andronova, S.M. Deev,

DOI:

https://doi.org/10.21320/2500-2139-2016-9-2-130-137

The article dwells on ribonucleases (RNAses) whose cytotoxic activity depends on the enzymatic activity, i.e. the ability to catalyze the cleavage of phosphodiester bonds of RNA. It presents both well-known information and our own data on RNAses of different origins with antitumor properties; it investigates the relation between the mechanism of cytotoxicity and biochemical and molecular biological characteristics. The analysis of published data demonstrates that all above characteristics contribute to the antiproliferative activity of RNAses. The major challenge for this group of enzymes is the achieving of selective bioavailability. This problem can be solved by creating conjugates as in case with ranpirnase and barnase. Based on their major pharmacological properties, active antitumor RNAses have great perspectives for treatment of not only oncohematological, but also solid malignancies.

  • Vadim Sergeevich Pokrovskii N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478 ; ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478
  • E.M. Treshchalina N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478 ; ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478
  • N.V. Andronova N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478 ; ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478
  • S.M. Deev M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya str., Moscow, Russian Federation, 117997 ; ФГБУН «Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова» РАН, ул. Миклухо-Маклая, д. 16/10, Москва, Российская Федерация, 117997
  1. Deutscher MP, Li Z. Exoribonucleases and their multiple roles in RNA metabolism. Prog Nucl Acid Res Mol Biol. 2001;66:67–105. doi: 10.1016/s0079-6603(00)66027-0. DOI: https://doi.org/10.1016/S0079-6603(00)66027-0
  2. Зеленихин П.В., Мамедзаде К.Р., Ильинская О.Н. Цитофлуориметрическая характеристика влияния РНКаз на клетки про- и эукариот. Гены и клетки. 2012;3(7):62–5.
  3. [Zelenikhin PV, Mamedzade KR, Ilinskaya ON. The cytofluorimetric characteristics of RNAse influence towards pro- and eucariotic cells. Geny i kletki. 2012;3(7):62–5. (In Russ)]
  4. Ledoux L. Action of ribonuclease on two solid tumours in vivo. Nature. 1955;176(4470):36–7. doi: 10.1038/176036a0. DOI: https://doi.org/10.1038/176036a0
  5. Edelweiss E, Balandin TG, Ivanova JL, et al. Barnase as a new therapeutic agent triggering apoptosis in human cancer cells. PLoS ONE. 2008;3(6):e2434. doi: 10.1371/journal.pone.0002434. DOI: https://doi.org/10.1371/journal.pone.0002434
  6. Глинка Е.М., Эдельвейс Э.Ф., Деев С.М. Эукариотические экспрессирующие векторы и иммуноконъюгаты для терапии рака. Биохимия. 2006;71:597–60.
  7. [Glinka EM, Edel’veis EF, Deev SM. Eukaryotic expressing vectors and immunoconjugates for treatment of cancer. Biokhimiya. 2006;71:597–60. (In Russ)]
  8. Deyev SM, Lebedenko EN, Petrovskaya LE, et al. Man-made antibodies and immunoconjugates with desired properties: function optimization using structure engineering. Russ Chem Rev. 2015;84(1):1–26. doi: 10.1070/RCR4459. DOI: https://doi.org/10.1070/RCR4459
  9. Mitkevich VA, Tchurikov NA, Zelenikhin PV, et al. Binase cleaves cellular noncoding RNAs and affects coding mRNAs. FEBS J. 2010;277(1):186–96. doi: 10.1111/j.1742-4658.2009.07471.x. DOI: https://doi.org/10.1111/j.1742-4658.2009.07471.x
  10. Кабрера Фуентес Э.А., Зеленихин П.В., Колпаков А.И. и др. Сравнительная цитотоксичность биназы по отношению к опухолевым и нормальным клеткам. Ученые записки Казанского университета. Серия: Естественные науки. 2010;152(3):143–8.
  11. [Caberra Fuentes HA, Zelenikhin PV, Kolpakov AI, et al. Comparative Toxicity of Binase towards Tumor and Normal Cells. Uchenye zapiski Kazanskogo universiteta. Seriya: Estestvennye nauki. 2010;152(3):143–8. (In Russ)]
  12. Darzynkiewicz Z, Carter SP, Mikulski SM, et al. Cytostatic and cytotoxic effects of Pannon (P-30 Protein), a novel anticancer agent. Cell Tissue Kinet. 1988;21(3):169–82. doi: 10.1111/j.1365-2184.1988.tb00855.x. DOI: https://doi.org/10.1111/j.1365-2184.1988.tb00855.x
  13. Ardelt W, Mikulski SM, Shogen K. Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. Biol Chem. 1991;266(1):245–51. DOI: https://doi.org/10.1016/S0021-9258(18)52427-3
  14. Raines RT. Active site of ribonuclease A. In: Zenkova MA, ed. Artificial Nucleases. Heidelberg: Springer Verlag; 2004. pp. 19–32. DOI: https://doi.org/10.1007/978-3-642-18510-6_3
  15. Juan G, Ardelt B, Mikulski SM, et al. G1 arrest of U-937 cells by onconase is associated with suppression of cyclin D3 expression, induction of p16INK4A, p21WAF1/CIP1 and p27KIP and decreased pRb phosphorylation. Leukemia. 1998;12(8):1241–8. doi: 10.1038/sj.leu.2401100. DOI: https://doi.org/10.1038/sj.leu.2401100
  16. Deptala A, Halicka HD, Ardelt B, et al. Potentiation of tumor necrosis factor induced apoptosis by onconase. Int J Oncol. 1998;13(1):11–6. doi: 10.3892/ijo.13.1.11. DOI: https://doi.org/10.3892/ijo.13.1.11
  17. Tsai SY, Ardelt B, Hsieh TC, et al. Treatment of Jurkat acute T-lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF-kappaB. Int J Oncol. 2004;25(6):1745–52. doi: 10.3892/ijo.25.6.1745. DOI: https://doi.org/10.3892/ijo.25.6.1745
  18. Rodriguez M, Torrent G, Bosch M, et al. Intracellular pathway of Onconase that enables its delivery to the cytosol. J Cell Sci. 2007;120(8):1405–11. doi: 10.1242/jcs.03427. DOI: https://doi.org/10.1242/jcs.03427
  19. Marquez M, Nilsson S, Lennartsson L, et al. Charge dependent targeting: Results in six tumor cell lines. Anticancer Res. 2004;24:1347–51.
  20. Leland PA, Raines RT. Cancer chemotherapy: ribonucleases to the rescue. Chem Biol. 2001;8(5):405–13. doi: 10.1016/s1074-5521(01)00030-8. DOI: https://doi.org/10.1016/S1074-5521(01)00030-8
  21. Wu Y, Mikulski SM, Ardelt W, et al. A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J Biol Chem. 1993;268(14):10686–93. DOI: https://doi.org/10.1016/S0021-9258(18)82252-9
  22. Saxena SK, Sirdeshmukh R, Ardelt W, et al. Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J Biol Chem. 2002;277(17):15142–6. doi: 10.1074/jbc.m10811520020. DOI: https://doi.org/10.1074/jbc.M108115200
  23. Suhasini AN, Sirdeshmukh R. Transfer RNA cleavages by onconase reveal unusual cleavage sites. J Biol Chem. 2006;281(18):12201–9. doi: 10.1074/jbc.m504488200. DOI: https://doi.org/10.1074/jbc.M504488200
  24. Gong J, Li X, Darzynkiewicz Z. Different patterns of apoptosis of HL-60 cells induced by cycloheximide and camptothecin. J Cell Physiol. 1993;157(2):263–70. doi: 10.1002/jcp.1041570208. DOI: https://doi.org/10.1002/jcp.1041570208
  25. Ardelt B, Ardelt W, Darzynkiewicz Z. Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle 2003;2(1):22–4. doi: 10.4161/cc.2.1.232. DOI: https://doi.org/10.4161/cc.2.1.232
  26. Zhao H, Ardelt B, Ardelt W, et al. The cytotoxic ribonuclease Onconase targets RNA interference (siRNA). Cell Cycle. 2008;7(20):3258–61. doi: 10.4161/cc.7.20.6855. DOI: https://doi.org/10.4161/cc.7.20.6855
  27. Volinia S, Calin GA, Liu CG, et al. A microRNAs expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103(7):2257–61. doi: 10.1073/pnas.0510565103. DOI: https://doi.org/10.1073/pnas.0510565103
  28. Basseres DS, Baldwin AS. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 2006;30(25):6817–30. doi: 10.1038/sj.onc.1209942. DOI: https://doi.org/10.1038/sj.onc.1209942
  29. Lee I, Kalota A, Gewirtz AM, Shogen K. Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice. Anticancer Res. 2007;27(1A):299–307.
  30. Lee I, Lee YH, Mikulski SM, Shogen K. Effect of onconase +/- tamoxifen on ASPC-1 human pancreatic tumors in nude mice. Adv Exp Med Biol. 2003;530:187–96. doi: 10.1007/978-1-4615-0075-9_18 DOI: https://doi.org/10.1007/978-1-4615-0075-9_18
  31. Rybak SM, Pearson JW, Fogler WE, et al. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. J Natl Cancer Inst. 1996;88(11):747–53. doi: 10.1093/jnci/88.11.747. DOI: https://doi.org/10.1093/jnci/88.11.747
  32. Ita M, Halicka HD, Tanaka T, et al. Remarkable enhancement of cytotoxicity of onconase and cepharanthine when used in combination on various tumor cell lines. Cancer Biol Ther. 2008;7(7):1104–8. doi: 10.4161/cbt.7.7.6172. DOI: https://doi.org/10.4161/cbt.7.7.6172
  33. Smolewski P, Witkowska M, Zwolinska M, et al. Cytotoxic activity of the amphibian ribonucleases onconase and r-amphinase on tumor cells from B cell lymphoproliferative disorders. Int J Oncol. 2014;45(1):419–25. doi: 10.3892/ijo.2014.2405. DOI: https://doi.org/10.3892/ijo.2014.2405
  34. Majchrzak A, Witkowska M, Medra A, et al. In vitro cytotoxicity of ranpirnase (onconase) in combination with components of R-CHOP regimen against diffuse large B cell lymphoma (DLBCL) cell line. Postepy Hig Med Dosw. 2013;67:1166–72. doi: 10.5604/17322693.107838632. DOI: https://doi.org/10.5604/17322693.1078386
  35. Porta C, Paglino C, Mutti L. Ranpirnase and its potential for the treatment of unresectable malignant mesothelioma. Biologics. 2008;2(4):601–9. doi: 10.2147/btt.s2383. DOI: https://doi.org/10.2147/BTT.S2383
  36. Costanzi J, Sidransky D, Navon A, et al. Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest. 2005;23(7):643–50. doi: 10.1080/07357900500283143. DOI: https://doi.org/10.1080/07357900500283143
  37. Mikulski SM, Costanzi JJ, Vogelzang NJ, et al. Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J Clin Oncol. 2002;20(1):274–81. doi: 10.1200/jco.20.1.274. DOI: https://doi.org/10.1200/JCO.2002.20.1.274
  38. Vasandani VM, Burris JA, Sung C. Reversible nephrotoxicity of onconase and effect of lysine pH on renal onconase uptake. Cancer Chemother Pharmacol. 1999;44(2):164–9. doi: 10.1007/s002800050962. DOI: https://doi.org/10.1007/s002800050962
  39. Singh UP, Ardelt W, Saxena SK, et al. Enzymatic and Structural Characterisation of Amphinase, a Novel Cytotoxic Ribonuclease from Rana pipiens Oocytes. J Mol Biol. 2007;371(1):93–111. doi: 10.1016/j.jmb.2007.04.071. DOI: https://doi.org/10.1016/j.jmb.2007.04.071
  40. Ardelt B, Ardelt W, Pozarowski P, et al. Cytostatic and cytotoxic properties of Amphinase: a novel cytotoxic ribonuclease from Rana pipiens oocytes. Cell Cycle. 2007;6(24):3097–102. doi: 10.4161/cc.6.24.5045. DOI: https://doi.org/10.4161/cc.6.24.5045
  41. Sevcik J, Sanishili RG, Pavlovsky AG, Polyakov KM. Comparison of active sites of some microbial ribonucleases: structural basis for guanylic specificity. Trends Biochem Sci. 1990;15(4):158–62. doi: 10.1016/0968-0004(90)90217-y. DOI: https://doi.org/10.1016/0968-0004(90)90217-Y
  42. Makarov AA, Ilinskaya ON. Cytotoxic ribonucleases: molecular weapons and their targets. FEBS Lett. 2003;540(1–3):15–20. doi: 10.1016/s0014-5793(03)00225-4. DOI: https://doi.org/10.1016/S0014-5793(03)00225-4
  43. Makarov AA, Kolchinski A, Ilinskaya ON. Binase and other microbial RNases as potential anticancer agents. BioEssays. 2008;30(8):789–90. doi: 10.1002/bies.20789. DOI: https://doi.org/10.1002/bies.20789
  44. Ильинская О.Н., Макаров А.А. Почему рибонуклеазы вызывают гибель раковых клеток. Молекулярная биология. 2005;39(1):3–13.
  45. [Il’inskaya ON, Makarov AA. Why ribonucleases cause tumor cell death. Molekulyarnaya biologiya. 2005;39(1):3–13. (In Russ)]
  46. Ильинская О.Н., Зеленихин П.В., Колпаков А.И. и др. Избирательная цитотоксичность биназы в отношении фибробластов, экспрессирующих онкогены ras и AML/ETO. Ученые записки Казанского университета. Серия: Естественные науки. 2008;150(4):268–73.
  47. [Ilinskaya ON, Zelenikhin PV, Kolpakov AI, et al. Selective Cytotoxicity of Binase towards Fibroblasts with Expression of the ras- and AML/ETO Oncogenes. Uchenye zapiski Kazanskogo universiteta. Seriya: Estestvennye nauki. 2008;150(4):268–73. (In Russ)]
  48. Mitkevich VA, Petrushanko IY, Spirin PV, et al. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and АML1-ETO oncogenes. Cell Cycle. 2011;10(23):4090–7. doi: 10.4161/cc.10.23.18210. DOI: https://doi.org/10.4161/cc.10.23.18210
  49. Mitkevich VA, Kretova OV, Petrushanko IY, et al. Ribonuclease binase apoptotic signature in leukemic Kasumi-1 cells. Biochimie. 2013;95(6):1344–9. doi: 10.1016/j.biochi.2013.02.016. DOI: https://doi.org/10.1016/j.biochi.2013.02.016
  50. Петрушанко И.Ю., Зеленихин П.В., Митькевич В.А. и др. Биназа обладает избирательным цитотоксическим действием на kit-трансформированные предшественники миелоидных клеток. Биофизика. 2007;52(5):876–81.
  51. [Petrushanko IYu, Zelenikhin PV, Mit’kevich VA, et al. Binasa produces selective cytotoxic effect on kit-transformed myeloid cell precursors. Biofizika. 2007;52(5):876–81. (In Russ)]
  52. Зеленихин П.В., Колпаков А.И., Черепнев Г.В., Ильинская О.Н. Индукция апоптоза опухолевых клеток биназой. Молекулярная биология. 2005;39(3):457–63.
  53. [Zelenikhin PV, Kolpakov AI, Cherepnev GV, Il’inskaya ON. Induction of tumor cell apoptosis by binasa. Molekulyarnaya biologiya. 2005;39(3):457–63. (In Russ)]
  54. Трещалина Е.М. Коллекция опухолевых штаммов человека. М.: Практическая медицина, 2009. 70 с.
  55. [Treshchalina EM. Kollektsiya opukholevykh shtammov cheloveka. (Collection of human tumor strains.) Moscow: Prakticheskaya Meditsina Publ.; 2009. 70 p. (In Russ)]
  56. Трещалина Е.М. Иммунодефицитные мыши разведения РОНЦ им. Н.Н. Блохина РАМН. Возможности использования. М.: Издательская группа РОНЦ, 2010. 16 с.
  57. [Treshchalina EM. Immunodefitsitnye myshi razvedeniya RONTs im. N.N. Blokhina RAMN. Vozmozhnosti ispol’zovaniya. (Mice with immune deficiency bred in NN Blokhin Russian Cancer Research Center. Opportunities for use.) Moscow: Izdatel’skaya gruppa RONTs Publ.; 2010. 16 p. (In Russ)]
  58. Трещалина Е.М., Жукова О.С., Герасимова Г.К. и др. Методические рекомендации по доклиническому изучению противоопухолевой активности лекарственных средств. В кн.: Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К, 2012. С. 642–57.
  59. [Treshchalina EM, Zhukova OS, Gerasimova GK, et al. Guidelines for pre-clinical studies of antitumor activity of drugs. In: Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. (Guidelines for pre-clinical studies of medicinal agents.) Part 1. Moscow: Grif i K Publ.; 2012. pp. 642–57. (In Russ)]
  60. Ulyanova V, Vershinina V, Ilinskaya O. Barnase and binase: twins with distinct fates. FEBS J. 2011;8(19):3633–43. doi: 10.1111/j.1742-4658.2011.08294.x. DOI: https://doi.org/10.1111/j.1742-4658.2011.08294.x
  61. Hoefling M, Gottschalk KE. Barnase–barstar: from first encounter to final complex. J Struct Biol. 2010;171(1):52–63. doi: 10.1016/j.jsb.2010.03.001. DOI: https://doi.org/10.1016/j.jsb.2010.03.001
  62. Deyev SM, Yazynin SA, Kuznetsov DA, et al. Ribonuclease-charged vector for facile direct cloning with positive selection. Mol Gen Genet. 1998;259(4):379–82. doi: 10.1007/s004380050825. DOI: https://doi.org/10.1007/s004380050825
  63. Semenyuk EG, Stremovskiy OA, Edelweiss EF, et al. Expression of single-chain antibody–barstar fusion in plants. Biochimie. 2007;89(1):31–8. doi: 10.1016/j.biochi.2006.07.012. DOI: https://doi.org/10.1016/j.biochi.2006.07.012
  64. Liao YD, Huang HC, Chan HJ, Kuo SJ. Large-scale preparation of a ribonuclease from Rana catesbeiana (bullfrog) oocytes and characterization of its specific cytotoxic activity against tumor cells. Prot Express Purif. 1996;7(2):194–202. doi: 10.1006/prep.1996.0027. DOI: https://doi.org/10.1006/prep.1996.0027
  65. Tatsuta T, Sugawara S, Takahashi K, et al. Cancer-selective induction of apoptosis by leczyme. Front Oncol. 2014;4:139. doi: 10.3389/fonc.2014.00139. DOI: https://doi.org/10.3389/fonc.2014.00139
  66. Zhang R, Zhao L, Wang H, Ng TB. A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina. Int J Mol Med. 2014;33(1):209–14. DOI: https://doi.org/10.3892/ijmm.2013.1553
  67. Tatsuta T, Sugawara S, Takahashi K, et al. Leczyme: A New Candidate Drug for Cancer Therapy. BioMed Re Intern. 2014. doi: 10.1155/2014/421415. DOI: https://doi.org/10.1155/2014/421415
  68. Nitta K, Ozaki K, Ishikawa M, et al. Inhibition of cell proliferation by Rana catesbeiana and Rana japonica lectins belonging to the ribonuclease superfamily. Cancer Res. 1994;54(4):920–7.
  69. Tatsuta T, Hosono M, Sugawara S, et al. Sialic acid-binding lectin (leczyme) induces caspase-dependent apoptosis-mediated mitochondrial perturbation in Jurkat cells. Intern J Oncol. 2013;43(5):1402–12. doi: 10.3892/ijo.2013.2092. DOI: https://doi.org/10.3892/ijo.2013.2092
  70. Glinka EM, Edelweiss EF, Sapozhnikov AM, Deyev SM. A new vector for controllable expression of an anti-HER2/neu mini-antibody-barnase fusion protein in HEK 293T cells. Gene. 2006;366(1):97–103. doi: 10.1016/j.gene.2005.06.042. DOI: https://doi.org/10.1016/j.gene.2005.06.042
  71. Chang CH, Sapra P, Vanama SS, et al. Effective therapy of human lymphoma xenografts with a novel recombinant ribonuclease/anti-CD74 humanized IgG4 antibody immunotoxin. Blood. 2005;106(13):4308–14. doi: 10.1182/blood-2005-03-1033. DOI: https://doi.org/10.1182/blood-2005-03-1033
  72. Newton DL, Stockwin LH, Rybak SM. Anti-CD22 Onconase: preparation and characterization. Meth Mol Biol. 2009;525:425–43. doi: 10.1007/978-1-59745-554-1_22. DOI: https://doi.org/10.1007/978-1-59745-554-1_22
  73. Newton DL, Hansen HJ, Mikulski SM, et al. Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma. Blood. 2001;97(2):528–35. doi: 10.1182/blood.v97.2.528. DOI: https://doi.org/10.1182/blood.V97.2.528
  74. Глинка Е.M., Эдельвейс Э.Ф., Деев С.М. Эукариотические экспрессирующие векторы и иммуноконъюгаты для терапии рака. Биохимия. 2006;71(6):742–53.
  75. [Glinka EM, Edel’veis EF, Deev SM. Eukaryotic expressing vectors and immunoconjugates for treatment of cancer. Biokhimiya. 2006;71(6):742–53. (In Russ)]
  76. Deyev SM, Lebedenko EN. Modern technologies for creating synthetic antibodies for clinical application. Acta Naturae. 2009;1(1):32–50. DOI: https://doi.org/10.32607/20758251-2009-1-1-32-50
  77. Эдельвейс Э.Ф. Иммунобарназные конъюгаты для диагностики и терапии рака: Автореф. дис. ¼ канд. биол. наук. М., 2010. 24 с.
  78. [Edel’veis EF. Immunobarnaznye kon’yugaty dlya diagnostiki i terapii raka. (Immunobarnase conjugates for diagnosis and treatment of cancer.) [dissertation] Moscow; 2010. 24 p. (In Russ)]
  79. Эдельвейс Э.Ф., Баландин Т.Г., Стремовский О.А. и др. Иммуноконъюгат анти-EGFR-мини-антитело–барназа высокотоксичен для опухолевых клеток человека. Доклады Академии наук. 2010;434(4):558–61.
  80. [Edel’veis EF, Balandin TG, Stremovskii OA, et al. Anti-anti-EGFR–barnase immunoconjugate is highly toxic for human tumor cells. Doklady Akademii nauk. 2010;434(4):558–61. (In Russ)]
  81. Schirrmann T, Krauss J, Arndt MA, et al. Targeted therapeutic RNases (ImmunoRNases). Expert Opin Biol Ther. 2009;9:79–95. doi: 10.1517/14712590802631862. DOI: https://doi.org/10.1517/14712590802631862
  82. De Lorenzo C, Arciello A, Cozzolino R, et al. A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res. 2004;64(14):4870–4. doi: 10.1158/0008-5472.can-03-3717. DOI: https://doi.org/10.1158/0008-5472.CAN-03-3717
  83. De Lorenzo C, Tedesco A, Terrazzano G, et al. A human, compact, fully functional anti-ErbB2 antibody as a novel antitumour agent. Br J Cancer. 2004;91(6):1200–4. doi: 10.1038/sj.bjc.6602110. DOI: https://doi.org/10.1038/sj.bjc.6602110
  84. Покровский В.С., Трещалина Е.М. Ферментные препараты в онкогематологии: актуальные направления экспериментальных исследований и перспективы клинического применения. Клиническая онкогематология. 2014;7(1):28–39. DOI: https://doi.org/10.21320/2500-2139-2014-7-1-28-38
  85. [Pokrovskii VS, Treshchalina EM. Enzymes in oncohaematology: relevant directions of experimental studies and prospects of clinical use. Klinicheskaya onkogematologiya. 2014;7(1):28–39. (In Russ)]
  86. Покровский В.С., Лесная Н.А., Трещалина Е.М. и др. Перспективы разработки новых ферментных противоопухолевых препаратов. Вопросы онкологии. 2011;57(2):155–64.
  87. [Pokrovskii VS, Lesnaya NA, Treshchalina EM, et al. Perspectives of development of novel enzymatic antitumor agents. Voprosy onkologii. 2011;57(2):155–64. (In Russ)]
  88. Hatlen MA, Wang L, Nimer SD. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med. 2012;6(3):248–62. doi: 10.1007/s11684-012-0206-6. DOI: https://doi.org/10.1007/s11684-012-0206-6
  89. Ziai JM, Siddon AJ, et al. Pathology Consultation on Gene Mutations in Acute Myeloid Leukemia. Am J Clin Pathol. 2015;144(4):539–54. doi: 10.1309/AJCP77ZFPUQGYGWY. DOI: https://doi.org/10.1309/AJCP77ZFPUQGYGWY

Keywords:

ribonucleases, ranpirnase, amphinase, binase, barnase, pharmacological properties

Downloads

Download data is not yet available.

Author Biography

  • Vadim Sergeevich Pokrovskii, N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478, ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

    PhD

Published

01.04.2016

Issue

EXPERIMENTAL STUDIES

How to Cite

Pokrovskii V.S., Treshchalina E.M., Andronova N.V., Deev S.M. Ribonucleases with Antiproliferative Properties: Molecular Biological and Biochemical Characteristics. Clinical Oncohematology. Basic Research and Clinical Practice. 2016;9(2):130–137. doi:10.21320/2500-2139-2016-9-2-130-137.

Most read articles by the same author(s)