Experimental Study of the In Vitro and In Vivo Functional Activity of NKG2D Chimeric Antigen Receptor
DOI:
https://doi.org/10.21320/2500-2139-2022-15-4-327-339Aim. To study antitumor cytotoxic effect of CAR-T NKG2D and CAR-T anti-CD19 in vitro and in vivo in order to compare antitumor activity of chimeric antigen receptors (CAR) with different structural and functional properties.
Materials & Methods. CAR constructions were produced by molecular cloning. CAR-T cell populations were obtained by transduction of healthy donor T-lymphocytes with recombinant lentiviral particles coding CAR NKG2D or CD19 target antigen CAR sequences. CAR-T cell proportion was assessed by FusionRed fluorescence and EGFR membrane receptor imaging. Specific in vitro cytotoxic activity of CAR-T effector cells was analyzed by Real-Time Cytotoxicity Assay (RTCA) during co-cultivation with HeLa_CD19 target cell line using xCELLigence. Interferon-γ (IFN-γ) synthesis in vitro and in vivo along with the degree of cytotoxic effect were analyzed by immunoassay of culture medium of co-cultivated effector cells and target cells as well as isolated auto-plasma from the peripheral blood of mice. To assess the in vivo functional activity, CAR-T cell populations were infused into immunodeficient NSG-SGM3 mice (10 000 000 cells/mouse) 12 days after HeLa_CD19 cell injection and confirmation of engraftment and tumor growth. Upon euthanasia, tumors were removed and fixed in paraffin to prepare histological sections. CAR-T cell tumor infiltration was assessed by CD3 antigen immunohistochemical staining.
Results. The highest ligand (molecules MICA, ULBP1/2/3/4/5/6) expression levels were detected in HeLa cell line. The obtained NKG2D CAR-T cells showed a considerable cytotoxic activity against HeLa_CD19 target line (cell index [CI] = 1.27), which was, however, twice as low as that of CAR-T anti-CD19 (CI = 0.60) (p = 0.0038). IFN-γ level during co-cultivation of CAR-T anti-CD19 with HeLa_CD19 at the ratio of Е/Т = 1:1 was 64,852 pcg/mL, which was 3.5 times higher than IFN-γ level during co-cultivation of CAR-T NKG2D with HeLa_CD19 (18,635 pcg/mL) (p = 0.0360). The degree of tumor infiltration by CAR-T anti-CD19 cells was higher than that by CAR-T NKG2D. The absence of NKG2D proliferating CAR-T cells in mice peripheral blood confirms their low persistence. IFN-γ concentration in mice auto-plasma was 11.89 pcg/mL after CAR-T anti-CD19 infusion and 0.57 pcg/mL after CAR-T NKG2D infusion (p = 0.0079). The mean weight of tumor xenografts in experimental groups 10 days after CAR-T anti-CD19 injection was 0.72 g (p = 0.0142), after Т-lymphocyte and NKG2D CAR-T cell infusions it was 2.12 g and 1.2 g, respectively.
Conclusion. CAR-T anti-CD19 cells are characterized by more pronounced cytotoxic effect under both in vitro and in vivo experimental conditions compared with CAR-T NKG2D cells. The degree of CAR-T anti-CD19 proliferation and their infiltration in mice xenograft models is considerably higher than the levels reached with NKG2D CAR-T cell injections. A single CAR-T NKG2D injection results only in short-term tumor reduction.
- Saez-Borderias A, Guma M, Angulo A, et al. Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. Eur J Immunol. 2006;36(12):3198–206. doi: 10.1002/eji.200636682. DOI: https://doi.org/10.1002/eji.200636682
- Allez M, Tieng V, Nakazawa A, et al. CD4+NKG2D+ T cells in Crohn’s disease mediate inflammatory and cyto-toxic responses through MICA interactions. Gastroenterology. 2007;132(7):2346–58. doi: 10.1053/j.gastro.2007.03.025. DOI: https://doi.org/10.1053/j.gastro.2007.03.025
- Dai Z, Turtle CJ, Booth GC, et al. Normally occurring NKG2D+CD4+ T cells are immunosuppressive and inversely correlated with disease activity in juvenile-onset lupus. J Exp Med. 2009;206(4):793–805. doi: 10.1084/jem.20081648. DOI: https://doi.org/10.1084/jem.20081648
- Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003;3(10):781–90. doi: 10.1038/nri1199. DOI: https://doi.org/10.1038/nri1199
- Le Bert N, Gasser S. Advances in NKG2D ligand recognition and responses by NK cells. Immunol Cell Biol. 2014;92(3):230–6. doi: 10.1038/icb.2013.111. DOI: https://doi.org/10.1038/icb.2013.111
- Rabinovich B, Li J, Wolfson M, et al. NKG2D splice variants: a reexamination of adaptor molecule associations. Immunogenetics. 2006;58(2–3):81–8. doi: 10.1007/s00251-005-0078-x. DOI: https://doi.org/10.1007/s00251-005-0078-x
- Lanier LL. DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev. 2009;227(1):150–60. doi: 10.1111/j.1600-065X.2008.00720.x. DOI: https://doi.org/10.1111/j.1600-065X.2008.00720.x
- Raulet DH, Gasser S, Gowen BG, et al. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31(1):413–41. doi: 10.1146/annurev-immunol-032712-095951. DOI: https://doi.org/10.1146/annurev-immunol-032712-095951
- Luo QZ, Lin L, Gong Z, et al. Positive association of major histocompatibility complex class I chain-related gene A polymorphism with leukemia susceptibility in the people of Han nationality of Southern China. Tissue Antigens. 2011;78(3):178–84. doi: 10.1111/j.1399-0039.2011.01748.x. DOI: https://doi.org/10.1111/j.1399-0039.2011.01748.x
- Kim H, Byun JE, Yoon SR, et al. SARS-CoV-2 peptides bind to NKG2D and increase NK cell activity. Cell Immunol. 2022;371:104454. doi: 10.1016/j.cellimm.2021.104454. DOI: https://doi.org/10.1016/j.cellimm.2021.104454
- Farzad F, Yaghoubi N, Jabbari-Azad F, et al. Prognostic Value of Serum MICA Levels as a Marker of Severity in COVID-19 Patients. Immunol Invest. 2022:1–11. doi: 10.1080/08820139.2022.2069035. DOI: https://doi.org/10.21203/rs.3.rs-458280/v1
- Groh V, Rhinehart R, Randolph-Habecker J, et al. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol. 2001;2(3):255–60. doi: 10.1038/85321. DOI: https://doi.org/10.1038/85321
- Ehrlich LI, Ogasawara K, Hamerman JA, et al. Engagement of NKG2D by cognate ligand or antibody alone is insufficient to mediate costimulation of human and mouse CD8+ T cells. J Immunol. 2005;174(4):1922–31. doi: 10.4049/jimmunol.174.4.1922. DOI: https://doi.org/10.4049/jimmunol.174.4.1922
- O’Hayre M, Salanga CL, Handel TM, Allen SJ. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem J. 2008;409(3):635–49. doi: 10.1042/BJ20071493. DOI: https://doi.org/10.1042/BJ20071493
- Zhang T, Lemoi BA, Sentman CL. Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. Blood. 2005;106(5):1544–51. doi: 10.1182/blood-2004-11-4365. DOI: https://doi.org/10.1182/blood-2004-11-4365
- Zhang T, Barber A, Sentman CL. Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. Cancer Res. 2006;66(11):5927–33. doi: 10.1158/0008-5472.CAN-06-0130. DOI: https://doi.org/10.1158/0008-5472.CAN-06-0130
- Chang YH, Connolly J, Shimasaki N, et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 2013;73(6):1777–86. doi: 10.1158/0008-5472.CAN-12-3558.
- Song DG, Ye Q, Santoro S, et al. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition. Hum Gene Ther. 2013;24(3):295–305. doi: 10.1089/hum.2012.143. DOI: https://doi.org/10.1089/hum.2012.143
- Lehner M, Gotz G, Proff J, et al. Redirecting T cells to Ewing’s sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection. PLoS One. 2012;7(2):e31210. doi: 10.1371/journal.pone.0031210. DOI: https://doi.org/10.1371/journal.pone.0031210
- Sentman CL, Meehan KR. NKG2D CARs as cell therapy for cancer. Cancer J. 2014;20(2):156–9. doi: 10.1097/PPO.0000000000000029. DOI: https://doi.org/10.1097/PPO.0000000000000029
- Barber A, Zhang T, DeMars LR, et al. Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer. Cancer Res. 2007;67(10):5003–8. doi: 10.1158/0008-5472.CAN-06-4047. DOI: https://doi.org/10.1158/0008-5472.CAN-06-4047
- Chang YH, Connolly J, Shimasaki N, et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 2013;73(6):1777–86. doi: 10.1158/0008-5472.CAN-12-3558. DOI: https://doi.org/10.1158/0008-5472.CAN-12-3558
- Barber A, Meehan KR, Sentman CL. Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells. Gene Ther. 2011;18(5):509–16. doi: 10.1038/gt.2010.174. DOI: https://doi.org/10.1038/gt.2010.174
- Smith AJ, Oertle J, Warren D, Prato D. Chimeric antigen receptor (CAR) T cell therapy for malignant cancers: Summary and perspective. J Cell Immunother. 2016;2(2):59–68. doi: 10.1016/j.jocit.2016.08.001. DOI: https://doi.org/10.1016/j.jocit.2016.08.001
- Ng YY, Tay JCK, Li Z, et al. T Cells Expressing NKG2D CAR with a DAP12 Signaling Domain Stimulate Lower Cytokine Production While Effective in Tumor Eradication. Mol Ther. 2021;29(1):75–85. doi: 10.1016/j.ymthe.2020.08.016. DOI: https://doi.org/10.1016/j.ymthe.2020.08.016
- Fontaine M, Demoulin B, Bornschein S, et al. Next generation NKG2D-based CAR T-cells (CYAD-02): co-expression of a single shRNA targeting MICA and MICB improves cell persistence and anti-tumor efficacy in vivo. Blood. 2019;134(Suppl_1):3931. doi: 10.1182/blood-2019-129998. DOI: https://doi.org/10.1182/blood-2019-129998
- Breman E, Demoulin B, Agaugue S, et al. Overcoming Target Driven Fratricide for T Cell Therapy. Front Immunol. 2018;9:2940. doi: 10.3389/fimmu.2018.02940. DOI: https://doi.org/10.3389/fimmu.2018.02940
Keywords:
CAR-T cell therapy, NKG2D chimeric antigen receptor, co-stimulatory domains, NKG2D ligands, cytotoxic effect, CAR-T infiltration, CAR-T persistence
License
Copyright (c) 2022 Clinical Oncohematology

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



