The Role of Somatic Mutations in Various Genes and the Issue of Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia Patients: A Literature Review

Elena Andreevna Kuzmina, E.Yu. Chelysheva, B.V. Biderman, A.G. Turkina,

DOI:

https://doi.org/10.21320/2500-2139-2025-18-1-10-20

The use of tyrosine kinase inhibitors (TKI) considerably improved the prognosis for most patients with chronic myeloid leukemia (CML). However, the issue of resistance to TKI therapy remains a challenge. At present, much attention is paid to the study of molecular genetic profile of tumor cells in CML patients and the role of somatic mutations in various genes, beyond BCR::ABL1, in the development of resistance to TKI therapy. New data emerge on the frequency of somatic mutations in various genes by the time of primary diagnosis of CML, commonly in the chronic phase, and on clonal changes during treatment, also when the disease progresses. Of particular interest is the role of somatic gene mutations in the transformation of CML into accelerated phase and blast crisis. Special importance is attributed to the time between the detection of somatic mutations and the registration of disease progression. This review focuses on the results of recent and most relevant studies of molecular genetic profile of CML patients at various disease stages. These studies aim to reveal the associations between somatic mutations in genes and a response to TKI therapy, as well as to assess the prognostic value of the mutations detected upon primary diagnosis and CML therapy. In future, this knowledge could be used in the clinic to optimize the therapy by decision making on the most effective TKIs and administering the targeted drugs aimed at alternative genetic abnormalities, as well as early allogeneic hematopoietic stem cell transplantation. The role of the most common somatic mutations in various genes, beyond BCR::ABL1, and the issues of disease resistance attract the attention of hematologists and basic scientists as a current and clinically relevant area of CML studies.

  • Elena Andreevna Kuzmina National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167 ; ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167 https://orcid.org/0000-0002-9181-6050 (unauthenticated)
  • E.Yu. Chelysheva National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167 ; ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167 https://orcid.org/0000-0001-6423-1789 (unauthenticated)
  • B.V. Biderman National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167 ; ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167 https://orcid.org/0000-0002-6253-3334 (unauthenticated)
  • A.G. Turkina National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167 ; ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167 https://orcid.org/0000-0001-9947-2371 (unauthenticated)
  1. Cortes J, Pavlovsky C, Saussele S. Chronic myeloid leukaemia. Lancet. 2021;398(10314):1914–26. doi: 10.1016/S0140-6736(21)01204-6. DOI: https://doi.org/10.1016/S0140-6736(21)01204-6
  2. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5(3):172–83. doi: 10.1038/nrc1567. DOI: https://doi.org/10.1038/nrc1567
  3. Shtivelman E, Lifshitz B, Gale RP, et al. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315(6020):550–4. doi: 10.1038/315550a0. DOI: https://doi.org/10.1038/315550a0
  4. Quintas-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 2009;113(8):1619–30. doi: 10.1182/blood-2008-03-144790. DOI: https://doi.org/10.1182/blood-2008-03-144790
  5. Куликов С.М., Виноградова О.Ю., Челышева Е.Ю. и др. Заболеваемость хроническим миелолейкозом в 6 регионах России по данным популяционного исследования 2009–2012 гг. Терапевтический архив. 2014;86(7):24–30. [Kulikov S.M., Vinogradova O.Yu., Chelysheva E.Yu., et al. The incidence of chronic myeloid leukemia in 6 regions of Russia according to the population-based study of 2009–2012. Terapevticheskii arkhiv. 2014;86(7):24–30. (In Russ)]
  6. Hoffmann VS, Baccarani M, Hasford J, et al. The EUTOS population-based registry: incidence and clinical characteristics of 2904 CML patients in 20 European countries. Leukemia. 2015;29(6):1336–43. doi: 10.1038/leu.2015.73. DOI: https://doi.org/10.1038/leu.2015.73
  7. Hehlmann R. Chronic Myeloid Leukemia in 2020. Hemasphere. 2020;4(5):E468. doi: 10.1097/HS9.0000000000000468. DOI: https://doi.org/10.1097/HS9.0000000000000468
  8. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia;34(4):966–84. doi: 10.1038/s41375-020-0776-2. DOI: https://doi.org/10.1038/s41375-020-0776-2
  9. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. Am J Hematol. 2022;97(9):1236–56. doi: 10.1002/ajh.26642. DOI: https://doi.org/10.1002/ajh.26642
  10. Gambacorti-Passerini C, Brummendorf TH, Kim DW, et al. Bosutinib efficacy and safety in chronic phase chronic myeloid leukemia after imatinib resistance or intolerance: Minimum 24-month follow-up. Am J Hematol. 2014;89(7):732–42. doi: 10.1002/ajh.23728. DOI: https://doi.org/10.1002/ajh.23728
  11. Giles F, le Coutre P, Pinilla-Ibarz J, et al. Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia. 2013;27:107–12. doi: 10.1038/leu.2012.181. DOI: https://doi.org/10.1038/leu.2012.181
  12. Cortes JE, Khoury HJ, Kantarjian HM, et al. Long-term bosutinib for chronic phase chronic myeloid leukemia after failure of imatinib plus dasatinib and/or nilotinib. Am J Hematol. 2016;91(12):1206–14. doi: 10.1002/ajh.24536. DOI: https://doi.org/10.1002/ajh.24536
  13. Shah NP, Rousselot P, Schiffer C, et al. Dasatinib in imatinib-resistant or -intolerant chronic-phase, chronic myeloid leukemia patients: 7-year follow-up of study CA180-034. Am J Hematol. 2016;91(9):869–74. doi: 10.1002/ajh.24423. DOI: https://doi.org/10.1002/ajh.24423
  14. Rea D, Hughes TP. Development of asciminib, a novel allosteric inhibitor of BCR-ABL1. Crit Rev Oncol Hematol. 2022;171:103580. doi: 10.1016/j.critrevonc.2022.103580. DOI: https://doi.org/10.1016/j.critrevonc.2022.103580
  15. Туркина А.Г., Кузьмина Е.А., Ломаиа Е.Г. и др. Асциминиб у больных хроническим миелолейкозом, не имеющих альтернативных методов лечения: результаты исследования в рамках программы расширенного доступа МАР (Managed Access Program, NCT04360005) в России. Клиническая онкогематология. 2023;16(1):54–68. doi: 10.21320/2500-2139-2023-16-1-54-68. [Turkina A.G., Kuzmina E.A., Lomaia E.G., et al. Asciminib in Chronic Myeloid Leukemia Patients Without Therapeutic Alternatives Alternatives: Results of the MAP (Managed Access Program, NCT04360005) Trial in Russia. Clinical oncohematology. 2023;16(1):54–68. doi: 10.21320/2500-2139-2023-16-1-54-68. (In Russ)] DOI: https://doi.org/10.21320/2500-2139-2023-16-1-54-68
  16. Hughes TP, Mauro MJ, Cortes JE, et al. Asciminib in Chronic Myeloid Leukemia after ABL Kinase Inhibitor Failure. N Engl J Med. 2019;381(24):2315. doi: 10.1056/NEJMoa1902328. DOI: https://doi.org/10.1056/NEJMoa1902328
  17. Cortes JE, Kim DW, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132(4):393–404. doi: 10.1182/blood-2016-09-739086. DOI: https://doi.org/10.1182/blood-2016-09-739086
  18. Andrews C, Lipton J. The role of ponatinib in chronic myeloid leukemia in the era of treatment free remission. Leuk Lymphoma. 2019;60(13):3099–101. doi: 10.1080/10428194.2019.1665667. DOI: https://doi.org/10.1080/10428194.2019.1665667
  19. Branford S, Rudzki Z, Walsh S, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood. 2003;102(1):276–83. doi: 10.1182/blood-2002-09-2896. DOI: https://doi.org/10.1182/blood-2002-09-2896
  20. Cortes JE, Talpaz M, Giles F, et al. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood. 2003;101(10):3794–800. doi: 10.1182/blood-2002-09-2790. DOI: https://doi.org/10.1182/blood-2002-09-2790
  21. Lahaye T, Riehm B, Berger U, et al. Response and resistance in 300 patients with BCR-ABL-positive leukemias treated with imatinib in a single center: a 4.5-year follow-up. Cancer. 2005;103(8):1659–69. doi: 10.1002/cncr.20922. DOI: https://doi.org/10.1002/cncr.20922
  22. Branford S, Dong D, Kim H, et al. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia behalf of the International CML Foundation Genomics Alliance. Leukemia. 2019;33(8):1835–50. doi: 10.1038/s41375-019-0512-y. DOI: https://doi.org/10.1038/s41375-019-0512-y
  23. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi: 10.1182/blood-2016-08-733196. DOI: https://doi.org/10.1182/blood-2016-08-733196
  24. Pfirrmann M, Baccarani M, Saussele S, et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia. 2016;30(1):48–56. doi: 10.1038/leu.2015.261. DOI: https://doi.org/10.1038/leu.2015.261
  25. Sokal J, Cox E, Baccarani M, et al. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood. 1984;63(4):789–99. DOI: https://doi.org/10.1182/blood.V63.4.789.789
  26. Hasford J, Baccarani M, Hoffmann V, et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood. 2011;118(3):686–92. doi: 10.1182/blood-2010-12-319038. DOI: https://doi.org/10.1182/blood-2010-12-319038
  27. Sant’Antonio E, Camerini C, Rizzo V, et al. Genetic Heterogeneity in Chronic Myeloid Leukemia: How Clonal Hematopoiesis and Clonal Evolution May Influence Prognosis, Treatment Outcome, and Risk of Cardiovascular Events. Clin Lymphoma Myeloma Leuk. 2021;21(9):573–9. doi: 10.1016/j.clml.2021.04.014. DOI: https://doi.org/10.1016/j.clml.2021.04.014
  28. Steensma DP. Clinical consequences of clonal hematopoiesis of indeterminate potential. Blood Adv. 2018;2(22):3404–10. doi: 10.1182/bloodadvances.2018020222. DOI: https://doi.org/10.1182/bloodadvances.2018020222
  29. Luis TC, Wilkinson AC, Beerman I, et al. Biological implications of clonal hematopoiesis. Exp Hematol. 2019;77:1–5. doi: 10.1016/j.exphem.2019.08.004. DOI: https://doi.org/10.1016/j.exphem.2019.08.004
  30. Calvillo-Arguelles O, Jaiswal S, Shlush LI, et al. Connections between Clonal Hematopoiesis, Cardiovascular Disease, and Cancer: A Review. JAMA Cardiol. 2019;4(4):380–7. doi: 10.1001/jamacardio.2019.0302. DOI: https://doi.org/10.1001/jamacardio.2019.0302
  31. Jaiswal S, Ebert BL. Clonal hematopoiesis in human aging and disease. Science. 2019;366(6465). doi: 10.1126/science.aan4673. DOI: https://doi.org/10.1126/science.aan4673
  32. Виноградова О.Ю., Асеева Е.А., Воронцова А.В. и др. Влияние различных хромосомных аномалий в Ph-позитивных клетках костного мозга на течение хронического миелолейкоза при терапии ингибиторами тирозинкиназ. Онкогематология. 2014;7(4):24–34. doi: 10.17650/1818-8346-2012-7-4-24-34. [Vinogradova O.Yu., Aseeva E.A., Vorontsova A.V., et al. Influence of different chromosomal abnormalities in Ph-positive bone marrow cells on the chronic myeloid leukemia course during tyrosine kinase inhibitors therapy. Oncohematology. 2012;7(4):24–34. doi: 10.17650/1818-8346-2012-7-4-24-34. (In Russ)]
  33. Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7:12484. doi: 10.1038/ncomms12484. DOI: https://doi.org/10.1038/ncomms12484
  34. Genovese G, Kahler AK, Handsaker RE, et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N Engl J Med. 2014;371(26):2477–87. doi: 10.1056/NEJMoa1409405. DOI: https://doi.org/10.1056/NEJMoa1409405
  35. Walter MJ. Antecedent CHIP in CML? Blood. 2017;129(1):3–4. doi: 10.1182/blood-2016-11-746842. DOI: https://doi.org/10.1182/blood-2016-11-746842
  36. Rose D, Haferlach T, Schnittger S, et al. Subtype-specific patterns of molecular mutations in acute myeloid leukemia. Leukemia. 2017;31(1):11–7. doi: 10.1038/leu.2016.163. DOI: https://doi.org/10.1038/leu.2016.163
  37. Corces-Zimmerman MR, Majeti R. Pre-leukemic evolution of hematopoietic stem cells: The importance of early mutations in leukemogenesis. Leukemia. 2014;28(12):2276–82. doi: 10.1038/leu.2014.211. DOI: https://doi.org/10.1038/leu.2014.211
  38. Shlush LI, Zandi S, Itzkovitz S, Schuh AC. Aging, clonal hematopoiesis and preleukemia: not just bad luck? Int J Hematol. 2015;102(5):513–22. doi: 10.1007/s12185-015-1870-5. DOI: https://doi.org/10.1007/s12185-015-1870-5
  39. Luque Paz D, Kralovics R, Skoda RC. Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood. 2023;141(16):1909. doi: 10.1182/blood.2022017578. DOI: https://doi.org/10.1182/blood.2022017578
  40. Sargas C, Ayala R, Larrayoz MJ, et al. Molecular Landscape and Validation of New Genomic Classification in 2668 Adult AML Patients: Real Life Data from the PETHEMA Registry. Cancers (Basel). 2023;15(2):438. doi: 10.3390/cancers15020438. DOI: https://doi.org/10.3390/cancers15020438
  41. Tazi Y, Arango-Ossa JE, Zhou Y, et al. Unified classification and risk-stratification in Acute Myeloid Leukemia. Nat Commun. 2022;13(1):4622. doi: 10.1038/s41467-022-32103-8. DOI: https://doi.org/10.1038/s41467-022-32103-8
  42. Ganguly BB, Kadam NN. Mutations of myelodysplastic syndromes (MDS): An update. Mutat Res Rev Mutat Res. 2016;769:47–62. doi: 10.1016/j.mrrev.2016.04.009. DOI: https://doi.org/10.1016/j.mrrev.2016.04.009
  43. Roumier C, Fenaux P, Lafage M, et al. New mechanisms of AML1 gene alteration in hematological malignancies. Leukemia. 2003;17(1):9–16. doi: 10.1038/sj.leu.2402766. DOI: https://doi.org/10.1038/sj.leu.2402766
  44. Ichikawa M, Asai T, Saito T, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004;10(3):299–304. doi: 10.1038/nm997. DOI: https://doi.org/10.1038/nm997
  45. Puyan FO, Alkan S. The Progress of Next Generation Sequencing in the Assessment of Myeloid Malignancies. Balkan Med J. 2019;36(2):78–87. doi: 10.4274/balkanmedj.galenos.2018.2018.1195. DOI: https://doi.org/10.4274/balkanmedj.galenos.2018.2018.1195
  46. Мисюрин А.В. Цитогенетические и молекулярно-генетические факторы прогноза острых миелоидных лейкозов. Клиническая онкогематология. 2017;10(2):227–34. doi: 10.21320/2500-2139-2017-10-2-227-234. [Misyurin A.V. Cytogenetic and Molecular Genetic Prognostic Factors of Acute Myeloid Leukemia. Clinical oncohematology. 2017;10(2):227–34. doi: 10.21320/2500-2139-2017-10-2-227-234. (In Russ)] DOI: https://doi.org/10.21320/2500-2139-2017-10-2-227-234
  47. Меликян А.Л., Суборцева И.Н. Биология миелопролиферативных новообразований. Клиническая онкогематология. 2016;9(3):314–25. doi: 10.21320/2500-2139-2016-9-3-314-325. [Melikyan A.L., Subortseva I.N. Biology of Myeloproliferative Malignancies. Clinical oncohematology. 2016;9(3):314–25. doi: 10.21320/2500-2139-2016-9-3-314-325. (In Russ)] DOI: https://doi.org/10.21320/2500-2139-2016-9-3-314-325
  48. De Fromentel CC, Soussi T. TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer. 1992;4(1):1–15. doi: 10.1002/gcc.2870040102. DOI: https://doi.org/10.1002/gcc.2870040102
  49. Jongen-Lavrencic M, Grob T, Hanekamp D, et al. Molecular Minimal Residual Disease in Acute Myeloid Leukemia. N Engl J Med. 2018;378(13):1189–99. doi: 10.1056/NEJMoa1716863. DOI: https://doi.org/10.1056/NEJMoa1716863
  50. Mitani K, Nagata Y, Sasaki K, et al. Somatic mosaicism in chronic myeloid leukemia in remission. Blood. 2016;128(24):2863–6. doi: 10.1182/blood-2016-06-723494. DOI: https://doi.org/10.1182/blood-2016-06-723494
  51. Mologni L, Piazza R, Khandelwal P, et al. Somatic mutations identified at diagnosis by exome sequencing can predict response to imatinib in chronic phase chronic myeloid leukemia (CML) patients. Am J Hematol. 2017;92(10):E623–5. doi: 10.1002/ajh.24865. DOI: https://doi.org/10.1002/ajh.24865
  52. Togasaki E, Takeda J, Yoshida K, et al. Frequent somatic mutations in epigenetic regulators in newly diagnosed chronic myeloid leukemia. Blood Cancer J. 2017;7(4):e559. doi: 10.1038/bcj.2017.36. DOI: https://doi.org/10.1038/bcj.2017.36
  53. Schmidt M, Rinke J, Schafer V, et al. Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia. 2014;28(12):2292–9. doi: 10.1038/leu.2014.272. DOI: https://doi.org/10.1038/leu.2014.272
  54. Kim TH, Tyndel MS, Kim HJ, et al. Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy. Blood. 2017;129(1):38–47. doi: 10.1182/blood-2016-04-708560. DOI: https://doi.org/10.1182/blood-2016-04-708560
  55. Nteliopoulos G, Bazeos A, Claudiani S, et al. Somatic variants in epigenetic modifiers can predict failure of response to imatinib but not to second-generation tyrosine kinase inhibitors. Haematologica. 2019;104(12):2400. doi: 10.3324/haematol.2018.200220. DOI: https://doi.org/10.3324/haematol.2018.200220
  56. Awad SA, Kankainen M, Ojala T, et al. Mutation accumulation in cancer genes relates to nonoptimal outcome in chronic myeloid leukemia. Blood Adv. 2020;4(3):546. doi: 10.1182/bloodadvances.2019000943. DOI: https://doi.org/10.1182/bloodadvances.2019000943
  57. Branford S, Wang P, Yeung DT, et al. Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood. 2018;132(9):948–61. doi: 10.1182/blood-2018-02-832253. DOI: https://doi.org/10.1182/blood-2018-02-832253
  58. Soverini S, De Benedittis C, Mancini M, Martinelli G. Mutations in the BCR-ABL1 Kinase Domain and Elsewhere in Chronic Myeloid Leukemia. Clin Lymphoma Myeloma Leuk. 2015;15(Suppl):S120–8. doi: 10.1016/j.clml.2015.02.035. DOI: https://doi.org/10.1016/j.clml.2015.02.035
  59. Sondka Z, Bamford S, Cole CG, et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696. doi: 10.1038/s41568-018-0060-1. DOI: https://doi.org/10.1038/s41568-018-0060-1
  60. Phan CL, Megat Baharuddin PJNB, Chin LP, et al. Amplification of BCR-ABL and t(3;21) in a patient with blast crisis of chronic myelogenous leukemia. Cancer Genet Cytogenet. 2008;180(1):60–4. doi: 10.1016/j.cancergencyto.2007.09.014. DOI: https://doi.org/10.1016/j.cancergencyto.2007.09.014
  61. CML-1: Understanding the clonal hierarchy in Chronic Myeloid Leukemia to help improve patient outcomes – HARMONY Alliance. Available from: https://www.harmony-alliance.eu/projects/research-project/cml-understanding-the-clonal-hierarchy-in-chronic-myeloid-leukemia-to-help-improve-patient-outcomes-1655723411 (accessed 18.07.2024).
  62. Branford S, Fernandes A, Shahrin NH, et al. Beyond BCR::ABL1-The Role of Genomic Analyses in the Management of CML. J Natl Compr Canc Netw. 2024;22(1):e237335. doi: 10.6004/jnccn.2023.7335. DOI: https://doi.org/10.6004/jnccn.2023.7335
  63. Churchman ML, Low J, Qu C, et al. Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia. Cancer Cell. 2015;28(3):343–56. doi: 10.1016/j.ccell.2015.07.016. DOI: https://doi.org/10.1016/j.ccell.2015.07.016
  64. Adnan Awad S, Dufva O, Ianevski A, et al. RUNX1 mutations in blast-phase chronic myeloid leukemia associate with distinct phenotypes, transcriptional profiles, and drug responses. Leukemia. 2021;35(4):1087–99. doi: 10.1038/s41375-020-01011-5. DOI: https://doi.org/10.1038/s41375-020-01011-5
  65. Mill CP, Fiskus W, DiNardo CD, et al. Effective therapy for AML with RUNX1 mutation by cotreatment with inhibitors of protein translation and BCL2. Blood. 2022;139(6):907–21. doi: 10.1182/blood.2021013156. DOI: https://doi.org/10.1182/blood.2021013156
  66. Nicolini FE, Khoury HJ, Akard L, et al. Omacetaxine mepesuccinate for patients with accelerated phase chronic myeloid leukemia with resistance or intolerance to two or more tyrosine kinase inhibitors. Haematologica. 2013;98(7):e78–е79. doi: 10.3324/haematol.2012.083006. DOI: https://doi.org/10.3324/haematol.2012.083006
  67. Cortes JE, Nicolini FE, Wetzler M, et al. Subcutaneous omacetaxine mepesuccinate in patients with chronic-phase chronic myeloid leukemia previously treated with 2 or more tyrosine kinase inhibitors including imatinib. Clin Lymphoma Myeloma Leuk. 2013;13(5):584–91. doi: 10.1016/j.clml.2013.03.020. DOI: https://doi.org/10.1016/j.clml.2013.03.020
  68. Wang L, Birch NW, Zhao Z, et al. Epigenetic targeted therapy of stabilized BAP1 in ASXL1 gain-of-function mutated leukemia. Nat Cancer. 2021;2(5):515–26. doi: 10.1038/s43018-021-00199-4. DOI: https://doi.org/10.1038/s43018-021-00199-4
  69. Yang H, Kurtenbach S, Guo Y, et al. Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies. Blood. 2018;131(3):328–41. doi: 10.1182/blood-2017-06-789669. DOI: https://doi.org/10.1182/blood-2017-06-789669
  70. Roche-Lestienne C, Marceau A, Labis E, et al. Mutation analysis of TET2, IDH1, IDH2 and ASXL1 in chronic myeloid leukemia. Leukemia. 2011;25(10):1661–4. doi: 10.1038/leu.2011.139. DOI: https://doi.org/10.1038/leu.2011.139
  71. Ernst T, Busch M, Rinke J, et al. Frequent ASXL1 mutations in children and young adults with chronic myeloid leukemia. Leukemia. 2018;32(9):2046–9. doi: 10.1038/s41375-018-0157-2. DOI: https://doi.org/10.1038/s41375-018-0157-2
  72. Адильгереева Э.П., Никитин А.Г., Жегло Д.Г. и др. Молекулярно-генетические предикторы первичной резистентности хронического миелоидного лейкоза к терапии ингибиторами тирозинкиназ. Вестник гематологии. 2021;17(2):45–46. [Adilgereeva E.P., Nikitin A.G., Zheglo D.G., et al. Molecular genetic predictors of primary resistance of chronic myeloid leukemia to tyrosine kinase inhibitor treatment. Vestnik gematologii. 2021;17(2):45–46. (In Russ)]
  73. Shanmuganathan N, Wadham C, Shahrin N, et al. Impact of additional genetic abnormalities at diagnosis of chronic myeloid leukemia for first-line imatinib-treated patients receiving proactive treatment intervention. Haematologica. 2023;108(9):2380–95. doi: 10.3324/haematol.2022.282184. DOI: https://doi.org/10.3324/haematol.2022.282184
  74. Schonfeld L, Rinke J, Hinze A, et al. ASXL1 mutations predict inferior molecular response to nilotinib treatment in chronic myeloid leukemia. Leukemia. 2022;36(9):2242. doi: 10.1038/s41375-022-01648-4. DOI: https://doi.org/10.1038/s41375-022-01648-4
  75. Kim T, Zackova D, Jeziskova I, et al. Somatic mutations in myeloid transcription factors and in activated signaling pathway, but not in epigenetic modifier pathway, predict the risk of treatment failure and progression to advanced phase in chronic myeloid leukemia. Blood. 2022;140(S1):812–4. doi: 10.1182/blood-2022-162676. DOI: https://doi.org/10.1182/blood-2022-162676
  76. Corm S, Biggio V, Roche-Lestienne C, et al. Coexistence of AML1/RUNX1 and BCR-ABL point mutations in an imatinib-resistant form of CML. Leukemia. 2005;19(11):1991–2. doi: 10.1038/sj.leu.2403931. DOI: https://doi.org/10.1038/sj.leu.2403931
  77. Roehe-Lestienne C, Deluche L, Corm S, et al. RUNX1 DNA-binding mutations and RUNX1-PRDM16 cryptic fusions in BCR-ABL+ leukemias are frequently associated with secondary trisomy 21 and may contribute to clonal evolution and imatinib resistance. Blood. 2008;111(7):3735–41. doi: 10.1182/blood-2007-07-102533. DOI: https://doi.org/10.1182/blood-2007-07-102533
  78. Soverini S, Colarossi S, Gnani A, et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res. 2006;12(24):7374–9. doi: 10.1158/1078-0432.CCR-06-1516. DOI: https://doi.org/10.1158/1078-0432.CCR-06-1516
  79. Cortes J, Rousselot P, Kim DW, et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood. 2007;109(8):3207–13. doi: 10.1182/blood-2006-09-046888. DOI: https://doi.org/10.1182/blood-2006-09-046888
  80. Branford S, Melo JV, Hughes TP. Selecting optimal second-line tyrosine kinase inhibitor therapy for chronic myeloid leukemia patients after imatinib failure: does the BCR-ABL mutation status really matter? Blood. 2009;114(27):5426–35. doi: 10.1182/blood-2009-08-215939. DOI: https://doi.org/10.1182/blood-2009-08-215939
  81. Ahuja H, Bar-Eli M, Arlin Z, et al. The spectrum of molecular alterations in the evolution of chronic myelocytic leukemia. J Clin Invest. 1991;87(6):2042. doi: 10.1172/JCI115234. DOI: https://doi.org/10.1172/JCI115234
  82. Feinstein E, Cimino G, Gale RP, et al. p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci USA. 1991;88(14):6293–7. doi: 10.1073/pnas.88.14.6293. DOI: https://doi.org/10.1073/pnas.88.14.6293
  83. Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453(7191):110–4. doi: 10.1038/nature06866. DOI: https://doi.org/10.1038/nature06866
  84. Ochi Y, Yoshida K, Huang YJ, et al. Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia. Nat Commun. 2021;12(1):2833. doi: 10.1038/s41467-021-23097-w. DOI: https://doi.org/10.1038/s41467-021-23097-w
  85. Grossmann V, Kohlmann A, Zenger M, et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia. 2011;25(3):557–60. doi: 10.1038/leu.2010.298. DOI: https://doi.org/10.1038/leu.2010.298
  86. Zhang SJ, Ma LY, Huang QH, et al. Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc Natl Acad Sci USA. 2008;105(6):2076–81. doi: 10.1073/pnas.0711824105. DOI: https://doi.org/10.1073/pnas.0711824105
  87. Meyer C, Burmeister T, Groger D, et al. The MLL recombinome of acute leukemias in 2017. Leukemia. 2018;32(2):273–84. doi: 10.1038/leu.2017.213. DOI: https://doi.org/10.1038/leu.2017.213
  88. Salem A, Loghavi S, Tang G, et al. Myeloid neoplasms with concurrent BCR-ABL1 and CBFB rearrangements: A series of 10 cases of a clinically aggressive neoplasm. Am J Hematol. 2017;92(6):520. doi: 10.1002/ajh.24710. DOI: https://doi.org/10.1002/ajh.24710
  89. Кузьмина Е.А., Бидерман Б.В., Челышева Е.Ю. и др. Определение соматических мутаций генов у больных хроническим миелолейкозом. Гематология и трансфузиология. 2024;69(S2):118. [Kuzmina E.A., Biderman B.V., Chelysheva E.Yu., et al. Determination of somatic mutations in genes of chronic myeloid leukemia patients. Gematologiya i transfuziologiya. 2024;69(S2):118. (In Russ)]
  90. Ko TK, Javed A, Lee KL, et al. An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia. Blood. 2020;135(26):2337–53. doi: 10.1182/blood.2020004834. DOI: https://doi.org/10.1182/blood.2020004834
  91. Magistroni V, Mauri M, D’Aliberti D, et al. De novo UBE2A mutations are recurrently acquired during chronic myeloid leukemia progression and interfere with myeloid differentiation pathways. Haematologica. 2019;104(9):1789. doi: 10.3324/haematol.2017.179937. DOI: https://doi.org/10.3324/haematol.2017.179937

Keywords:

chronic myeloid leukemia, somatic mutations in genes, therapy failure, resistance

Downloads

Download data is not yet available.

Published

01.01.2025

How to Cite

Kuzmina E.A., Chelysheva E.Y., Biderman B.V., Turkina A.G. The Role of Somatic Mutations in Various Genes and the Issue of Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia Patients: A Literature Review. Clinical Oncohematology. Basic Research and Clinical Practice. 2025;18(1):10–20. doi:10.21320/2500-2139-2025-18-1-10-20.

Most read articles by the same author(s)

1 2 3 > >>