Carmustine in the Therapy of B-Cell Lymphomas

DA Koroleva, EE Zvonkov

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Daria Aleksandrovna Koroleva, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-44-72; e-mail:

For citation: Koroleva DA, Zvonkov EE. Carmustine in the Therapy of B-Cell Lymphomas. 2021;14(4):496–502. (In Russ).

DOI: 10.21320/2500-2139-2021-14-4-496-502


Aim. To analyze the efficacy and toxicity of different high-dose chemotherapy protocols for the purpose of determining the optimal conditioning regimen with autologous hematopoietic stem cell transplantation (auto-HSCT).

Materials & Methods. The present review provides the analysis of some comparative retrospective studies. The evidence-based analysis proceeded in two stages consisting of a search and then primary processing of available literature. The PubMed database was searched for publications for the period 2004–2020.

Results. In relapsed and refractory non-Hodgkin’s lymphomas as well as in Hodgkin’s lymphoma, the literature analysis demonstrated satisfactory efficacy of carmustine as part of BEAM conditioning. With the use of the BEAM conditioning regimen with subsequent auto-HSCT, up to 50 % of complete remissions were achieved in patients with non-Hodgkin’s lymphomas and up to 70 % in patients with Hodgkin’s lymphoma. Comparative studies show that despite concerns about severe toxicity, the use of carmustine was not associated with an increase in the incidence of adverse events. Lung and liver toxicity proved to be comparable with that of being observed while using alternative programs of high-dose chemotherapy and corresponded to 9 % and 6 % on LEAM and BEAM regimens, respectively. Besides, carmustine feasibility in primary diffuse large B-cell CNS lymphoma was considered and analyzed in the context of the lack of thiotepa.

Conclusion. High efficacy of carmustine as part of BEAM conditioning with subsequent auto-HSCT was proved in extremely unfavorable patients with relapsed and refractory non-Hodgkin’s lymphomas and Hodgkin’s lymphoma with an acceptable toxicity profile. The study of carmustine in the therapy of primary CNS lymphoma seems to be аn important area of clinical studies aimed at developing rational treatment options.

Keywords: carmustine, non-Hodgkin’s lymphomas, Hodgkin’s lymphoma, auto-HSCT, lomustine, thiotepa, primary diffuse large B-cell CNS lymphoma.

Received: July 15, 2021

Accepted: September 10, 2021

Read in PDF

Статистика Plumx английский


  1. Fleming AB, Saltzman WM. Pharmacokinetics of the carmustine implant. Clin Pharmacokinet. 2002;41(6):403–19. doi: 10.2165/00003088-200241060-00002.
  2. Damaj G, Cornillon J, Bouabdallah K, et al. Carmustine replacement in intensive chemotherapy preceding reinjection of autologous HSCs in Hodgkin and non-Hodgkin lymphoma: A review. Bone Marrow Transplant. 2017;52(7):941–9. doi: 10.1038/bmt.2016.340.
  3. Fenske TS, Zhang MJ, Carreras J, et al. Autologous or reduced-intensity conditioning allogeneic hematopoietic cell transplantation for chemotherapy-sensitive mantle-cell lymphoma: Analysis of transplantation timing and modality. J Clin Oncol. 2014;32(4):273–81. doi: 10.1200/jco.2013.49.2454.
  4. Dreyling M, Lenz G, Hoster E, et al. Early consolidation by myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission significantly prolongs progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL Network. Blood. 2005;105(7):2677–84. doi: 10.1182/blood-2004-10-3883.
  5. Wang TF, Fiala MA, Cashen AF, et al. A phase II study of V-BEAM as conditioning regimen before second auto-SCT for multiple myeloma. Bone Marrow Transplant. 2014;49(11):1366–70. doi: 10.1038/bmt.2014.163.
  6. Bachanova V, Burns LJ. Hematopoietic cell transplantation for Waldenstrom macroglobulinemia. Bone Marrow Transplant. 2012;47(3):330–6. doi: 10.1038/bmt.2011.105.
  7. Sharma A, Kayal S, Iqbal S, et al. Comparison of BEAM vs. LEAM regimen in autologous transplant for lymphoma at AIIMS. Springerplus. 2013;2(1):1–6. doi: 10.1186/2193-1801-2-489.
  8. Colita A, Colita A, Bumbea H, et al. LEAM vs. BEAM vs. CLV Conditioning Regimen for Autologous Stem Cell Transplantation in Malignant Lymphomas. Retrospective Comparison of Toxicity and Efficacy on 222 Patients in the First 100 Days After Transplant, On Behalf of the Romanian Society for Bon. Front Oncol. 2019;9:892. doi: 10.3389/fonc.2019.00892.
  9. Kothari J, Foley M, Peggs KS, et al. A retrospective comparison of toxicity and initial efficacy of two autologous stem cell transplant conditioning regimens for relapsed lymphoma: LEAM and BEAM. Bone Marrow Transplant. 2016;51(10):1397–9. doi: 10.1038/bmt.2016.134.
  10. Tsang ES, Villa D, Loscocco F, et al. High-dose Benda-EAM versus BEAM in patients with relapsed/refractory classical Hodgkin lymphoma undergoing autologous stem cell transplantation. Bone Marrow Transplant. 2019;54(3):481–4. doi: 10.1038/s41409-018-0328-9.
  11. Joffe E, Rosenberg D, Rozovski U, et al. Replacing carmustine by thiotepa and cyclophosphamide for autologous stem cell transplantation in Hodgkin’s and non-Hodgkin’s B-cell lymphoma. Bone Marrow Transplant. 2018;53(1):29–33. doi: 10.1038/bmt.2017.205.
  12. Duque-Afonso J, Ihorst G, Waterhouse M, et al. Comparison of reduced-toxicity conditioning protocols using fludarabine, melphalan combined with thiotepa or carmustine in allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2021;56(1):110–20. doi: 10.1038/s41409-020-0986-2.
  13. Puig N, De La Rubia J, Remigia MJ, et al. Morbidity and transplant-related mortality of CBV and BEAM preparative regimens for patients with lymphoid malignancies undergoing autologous stem-cell transplantation. Leuk Lymphoma. 2006;47(8):1488–94. doi: 10.1080/10428190500527769.
  14. Caimi PF, William BM, Rondon CH S, et al. Comparison of 2 Carmustine-Containing Regimens in the Rituximab Era: Excellent Outcomes Even in Poor-Risk Patients. Biol Blood Marrow Transplant. 2015;21(11):1926–31. doi: 10.1016/j.bbmt.2015.06.007.
  15. Kirschey S, Flohr T, Wolf HH, et al. Rituximab combined with DexaBEAM followed by high dose therapy as salvage therapy in patients with relapsed or refractory B-cell lymphoma: Mature results of a phase II multicentre study. Br J Haematol. 2015;168(6):824–34. doi: 10.1111/bjh.13234.
  16. Brandes AA, Tosoni A, Amista P, et al. How effective is BCNU in recurrent glioblastoma in the modern era? A phase II trial. Neurology. 2004;63(7):1281–4. doi: 10.1212/
  17. Alnahhas I, Jawish M, Alsawas M, et al. Autologous Stem-Cell Transplantation for Primary Central Nervous System Lymphoma: Systematic Review and Meta-analysis. Clin Lymphoma Myel Leuk. 2019;19(3):е129–е141. doi: 10.1016/j.clml.2018.11.018.
  18. Omuro A, Correa DD, DeAngelis LM, et al. R-MPV followed by high-dose chemotherapy with TBC and autologous stem-cell transplant for newly diagnosed primary CNS lymphoma. 2015;125(9):1403–10. doi: 10.1182/blood-2014-10-604561.

Stable Chronology of Granulopoiesis under R(G)-DHAP Immunochemotherapy-Induced Cytotoxic Stress in Non-Hodgkin’s Lymphomas

In memory of Academician A.I. Vorob’ev,
Russian Academy of Medical Sciences and Russian Academy of Sciences

KA Sychevskaya, SK Kravchenko, FE Babaeva, AE Misyurina, AM Kremenetskaya, AI Vorob’ev

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Kseniya Andreevna Sychevskaya, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(910)409-79-44; e-mail:

For citation: Sychevskaya KA, Kravchenko SK, Babaeva FE, et al. Stable Chronology of Granulopoiesis under R(G)-DHAP Immunochemotherapy-Induced Cytotoxic Stress in Non-Hodgkin’s Lymphomas. Clinical oncohematology. 2021;14(2):204–19. (In Russ).

DOI: 10.21320/2500-2139-2021-14-2-204-219


Background. Chronology of granulopoiesis based on periodic hematopoiesis model has been thoroughly studied. However, the pattern of influence of chemotherapy- and immunotherapy-induced cytotoxic stress on the development rhythm of a stem cell requires further investigation. The interaction of antitumor drugs with normal hematopoietic cells is relevant for assessing the intensity of chemotherapy adverse events. Besides, there is a demand for studying hematopoiesis under cytotoxic stress to predict immunological reactivity as a condition for efficacy of immunotherapeutic agents, the effect of which is based on cell immunity.

Aim. To study the chronological pattern of leukocyte count dynamics after R(G)-DHAP immunochemotherapy in non-Hodgkin’s lymphomas.

Materials & Methods. The dynamics of leukocyte count changes after R(G)-DHAP immunochemotherapy was analyzed using the data of 39 treatment courses in 19 non-Hodgkin’s lymphomas patients. After 18 out of 39 cycles of treatment granulocyte colony-stimulating factor (G-CSF) was administered to prevent granulocytopenia, in other cases the previously planned hematopoietic stem cell mobilization was performed according to the accepted protocol.

Results. Time to activation of spontaneous granulopoiesis depends neither on G-CSF stimulation, nor on the total dose of growth-stimulating factor and corresponds on average to Day 10 or Day 11 of the break from the last day of immunochemotherapy. The tendency of shorter agranulocytosis duration on prophylactic use of G-CSF is associated with transient hyperleukocytosis at an early stage after completing immunochemotherapy. Regimens with platinum-based drugs, like R(G)-DHAP, are suggested to be combined with immunochemotherapeutic agents in patients with the failure of first-line chemotherapy. The time interval preceding myelopoiesis activation within the first days of the break between the courses is likely to contribute to the initiation of treatment with immunotherapeutic drugs after second-line chemotherapy.

Conclusion. The determination of granulopoiesis dynamics under R(G)-DHAP immunochemotherapy-induced cytotoxic stress enables to plan the optimum G-CSF regimen and to predict the optimum timing of immune antitumor effect combined with chemotherapy.

Keywords: periodic hematopoiesis, mathematical hematopoiesis model, non-Hodgkin’s lymphomas, chemotherapy, immunotherapy, G-CSF, antitumor immunity, R(G)-DHAP.

Received: November 15, 2020

Accepted: February 25, 2021

Read in PDF

Статистика Plumx английский


  1. Foley C, Mackey MC. Dynamic hematological disease: a review. J Math Biol. 2009;58(1–2):285–322. doi: 10.1007/s00285-008-0165-3.
  2. Morley AA. A neutrophil cycle in healthy individuals. Lancet. 1966;2(7475):1220–2. doi: 10.1016/s0140-6736(66)92303-8.
  3. Mackey MC, Glass L. Oscillation and chaos in physiological control systems. Science. 1977;197(4300):287–9. doi: 10.1126/science.267326.
  4. Mackey Cell kinetic status of haematopoietic stem cells. Cell Prolif. 2001;34(2):71–83. doi: 10.1046/j.1365-2184.2001.00195.x.
  5. Pujo-Menjouet L, Mackey MC. Contribution to the study of periodic chronic myelogenous leukemia. Compt Rend Biol. 2004;327(3):235–44. doi: 10.1016/j.crvi.2003.05.004.
  6. Schirm S, Engel C, Loeffler M, Scholz M. Modelling chemotherapy effects on granulopoiesis. BMC Syst Biol. 2014;8(1):138. doi: 10.1186/s12918-014-0138-7.
  7. Dale DC, Bolyard AA, Aprikyan A. Cyclic neutropenia. Semin Hematol. 2002;39(2):89–94. doi: 10.1053/shem.2002.31917.
  8. Levy EJ, Schetman D. Cyclic neutropenia. Arch Dermatol. 1961;84(3):429–33. doi: 10.1001/archderm.1961.01580150075012.
  9. Colijn C, Mackey MC. A mathematical model of hematopoiesis: II. Cyclical neutropenia. J Theor Biol. 2005;237(2):133–46. doi: 10.1016/j.jtbi.2005.03.034.
  10. Horwitz M, Benson KF, Person RE, et al. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet. 1999;23(4):433–6. doi: 10.1038/70544.
  11. Aprikyan AA, Liles WC, Rodger E, et al. Impaired survival of bone marrow hematopoietic progenitor cells in cyclic neutropenia. Blood. 2001;97(1):147–53. doi: 10.1182/blood.v97.1.147.
  12. Horwitz MS, Corey SJ, Grimes HL, Tidwell T. ELANE mutations in cyclic and severe congenital neutropenia: genetics and pathophysiology. Hematol Oncol Clin N Am. 2013;27(1):19-vii. doi: 10.1016/j.hoc.2012.10.004.
  13. Welte K, Zeidler C, Dale DC. Severe congenital neutropenia. Semin Hematol. 2006;43(3):189–95. doi: 10.1053/j.seminhematol.2006.04.004.
  14. Haurie C, Dale DC, Rudnicki R, Mackey MC. Modeling complex neutrophil dynamics in the grey collie. J Theor Biol. 2000;204(4):505–19. doi: 10.1006/jtbi.2000.2034.
  15. Horwitz MS, Duan Z, Korkmaz B, et al. Neutrophil elastase in cyclic and severe congenital neutropenia. Blood. 2007;109(5):1817–24. doi: 10.1182/blood-2006-08-019166.
  16. Go RS. Idiopathic cyclic thrombocytopenia. Blood Rev. 2005;19(1):53–9. doi: 10.1016/j.blre.2004.05.001.
  17. Zhuge C, Mackey MC, Lei J. Origins of oscillation patterns in cyclical thrombocytopenia. J Theor Biol. 2019;462:432–45. doi: 10.1016/j.jtbi.2018.11.024.
  18. Apostu R, Mackey MC. Understanding cyclical thrombocytopenia: a mathematical modeling approach. J Theor Biol. 2008;251(2):297–316. doi: 10.1016/j.jtbi.2007.11.029.
  19. Colijn C, Mackey MC. A mathematical model of hematopoiesis–I. Periodic chronic myelogenous leukemia. J Theor Biol. 2005;237(2):117–32. doi: 10.1016/j.jtbi.2005.03.033.
  20. Fortin P, Mackey MC. Periodic chronic myelogenous leukaemia: spectral analysis of blood cell counts and aetiological implications. Br J Haematol. 1999;104(2):336–45. doi: 10.1046/j.1365-2141.1999.01168.x.
  21. Morley A, Stohlman F Jr. Cyclophosphamide-induced cyclical neutropenia. An animal model of a human periodic disease. N Engl J Med. 1970;282(12):643–6. doi: 10.1056/NEJM197003192821202.
  22. Kennedy Cyclic leukocyte oscillations in chronic myelogenous leukemia during hydroxyurea therapy. Blood. 1970;35(6):751–60. doi: 10.1182/blood.v35.6.751.751.
  23. Zhuge C, Lei J, Mackey MC. Neutrophil dynamics in response to chemotherapy and G-CSF. J Theor Biol. 2012;293:111–20. doi: 10.1016/j.jtbi.2011.10.017.
  24. Price TH, Chatta GS, Dale DC. Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood. 1996;88(1):335–40. doi: 10.1182/blood.V88.1.335.335.
  25. Chatta GS, Price TH, Allen RC, Dale DC. Effects of in vivo recombinant methionyl human granulocyte colony-stimulating factor on the neutrophil response and peripheral blood colony-forming cells in healthy young and elderly adult volunteers. Blood. 1994;84(9):2923–9. doi: 10.1182/blood.V84.9.2923.2923.
  26. Dancey JT, Deubelbeiss KA, Harker LA, Finch CA. Neutrophil kinetics in man. J Clin Invest. 1976;58(3):705–15. doi: 10.1172/JCI108517.
  27. Kerrigan DP, Castillo A, Foucar K, et al. Peripheral blood morphologic changes after high-dose antineoplastic chemotherapy and recombinant human granulocyte colony-stimulating factor administration. Am J Clin Pathol. 1989;92(3):280–5. doi: 10.1093/ajcp/92.3.280.
  28. Hakansson L, Hoglund M, Jonsson UB, et al. Effects of in vivo administration of G-CSF on neutrophil and eosinophil adhesion. Br J Haematol. 1997;98(3):603–11. doi: 10.1046/j.1365-2141.1997.2723093.x.
  29. Ohsaka A, Saionji K, Sato N, et al. Granulocyte colony-stimulating factor down-regulates the surface expression of the human leucocyte adhesion molecule-1 on human neutrophils in vitro and in vivo. Br J Haematol. 1993;84(4):574–80. doi: 10.1111/j.1365-2141.1993.tb03130.x.
  30. Mehta HM, Malandra M, Corey SJ. G-CSF and GM-CSF in Neutropenia. J Immunol. 2015;195(4):1341–9. doi: 10.4049/jimmunol.1500861.
  31. Dale DC, Bonilla MA, Davis MW, et al. A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood. 1993;81(10):2496–502. doi: 10.1182/blood.V81.10.2496.2496.
  32. Shinjo K, Takeshita A, Ohnishi K, Ohno R. Granulocyte colony-stimulating factor receptor at various differentiation stages of normal and leukemic hematopoietic cells. Leuk Lymphoma. 1997;25(1–2):37–46. doi: 10.3109/10428199709042494.
  33. Clark OA, Lyman GH, Castro AA, et al. Colony-stimulating factors for chemotherapy-induced febrile neutropenia: a meta-analysis of randomized controlled trials. J Clin Oncol. 2005;23(18):4198–214. doi: 10.1200/JCO.2005.05.645.
  34. Garcia-Carbonero R, Mayordomo JI, Tornamira MV, et al. Granulocyte colony-stimulating factor in the treatment of high-risk febrile neutropenia: a multicenter randomized trial. J Natl Cancer Inst. 2001;93(1):31–8. doi: 10.1093/jnci/93.1.31.
  35. Maher DW, Lieschke GJ, Green M, et al. Filgrastim in patients with chemotherapy-induced febrile neutropenia. A double-blind, placebo-controlled trial. Ann Intern Med. 1994;121(7):492–501. doi: 10.7326/0003-4819-121-7-199410010-00004.
  36. Mitchell PL, Morland B, Stevens MC, et al. Granulocyte colony-stimulating factor in established febrile neutropenia: a randomized study of pediatric patients. J Clin Oncol. 1997;15(3):1163–70. doi: 10.1200/JCO.1997.15.3.1163.
  37. Trillet-Lenoir V, Green J, Manegold C, et al. Recombinant granulocyte colony stimulating factor reduces the infectious complications of cytotoxic chemotherapy. Eur J Cancer. 1993;29A(3):319–24. doi: 10.1016/0959-8049(93)90376-q.
  38. Crawford J, Ozer H, Stoller R, et al. Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N Engl J Med. 1991;325(3):164–70. doi: 10.1056/NEJM199107183250305.
  39. Crawford J, Becker PS, Armitage JO, et al. Myeloid Growth Factors, Version 2.2017. NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2017;15(12):1520–41. doi: 10.6004/jnccn.2017.0175.
  40. Aapro MS, Bohlius J, Cameron DA, et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer. 2011;47(1):8–32. doi: 10.1016/j.ejca.2010.10.013.
  41. Crawford J, Caserta C, Roila F, ESMO Guidelines Working Group. Hematopoietic growth factors: ESMO Clinical Practice Guidelines for the applications. Ann Oncol. 2010;21(Suppl 5):v248–v251. doi: 10.1093/annonc/mdq195.
  42. Lawrence SM, Corriden R, Nizet V. The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev. 2018;82(1):e00057–17. doi: 10.1128/MMBR.00057-17.
  43. Murphy P. The Neutrophil. Boston: Springer; 1976. pp. 33–67.
  44. Lord BI, Bronchud MH, Owens S, et al. The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc Natl Acad Sci USA. 1989;86(23):9499–503. doi: 10.1073/pnas.86.23.9499.
  45. Lie AK, Hui CH, Rawling T, et al. Granulocyte colony-stimulating factor (G-CSF) dose-dependent efficacy in peripheral blood stem cell mobilization in patients who had failed initial mobilization with chemotherapy and G-CSF. Bone Marrow Transplant. 1998;22(9):853–7. doi: 10.1038/sj.bmt.1701463.
  46. van Der Auwera P, Platzer E, Xu ZX, et al. Pharmacodynamics and pharmacokinetics of single doses of subcutaneous pegylated human G-CSF mutant (Ro 25-8315) in healthy volunteers: comparison with single and multiple daily doses of filgrastim. Am J Hematol. 2001;66(4):245–51. doi: 10.1002/ajh.1052.
  47. Morstyn G, Campbell L, Souza LM, et al. Effect of granulocyte colony stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet. 1988;1(8587):667–72. doi: 10.1016/s0140-6736(88)91475-4.
  48. Shochat E, Rom-Kedar V, Segel LA. G-CSF control of neutrophils dynamics in the blood. Bull Math Biol. 2007;69(7):2299–338. doi: 10.1007/s11538-007-9221-1.
  49. Shochat E, Rom-Kedar V. Novel strategies for granulocyte colony-stimulating factor treatment of severe prolonged neutropenia suggested by mathematical modeling. Clin Cancer Res. 2008;14(20):6354–63. doi: 10.1158/1078-0432.CCR-08-0807.
  50. Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9(1):181–218. doi: 10.1146/annurev-pathol-020712-164023.
  51. Hayes MP, Enterline JC, Gerrard TL, Zoon KC. Regulation of interferon production by human monocytes: requirements for priming for lipopolysaccharide-induced production. J Leuk Biol. 1991;50(2):176–81. doi: 10.1002/jlb.50.2.176.
  52. Boneberg EM, Hareng L, Gantner F, et al. Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-γ. Blood. 2000;95(1):270–6. doi: 10.1182/blood.V95.1.270.
  53. de Kleijn S, Langereis JD, Leentjens J, et al. IFN-γ-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1. PLoS One. 2013;8(8):e72249. doi: 10.1371/journal.pone.0072249.
  54. Rutella S, Zavala F, Danese S, et al. Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol. 2005;175(11):7085– doi: 10.4049/jimmunol.175.11.7085.
  55. Ali N. Chimeric antigen T cell receptor treatment in hematological malignancies. Blood Res. 2019;54(2):81– doi: 10.5045/br.2019.54.2.81.
  56. Bais S, Bartee E, Rahman MM, et al. Oncolytic virotherapy for hematological malignancies. Adv Virol. 2012;2012:1–8. doi: 10.1155/2012/186512.
  57. Calton CM, Kelly KR, Anwer F, et al. Oncolytic Viruses for Multiple Myeloma Therapy. Cancers (Basel). 2018;10(6):198. doi: 10.3390/cancers10060198.
  58. Matveeva OV, Chumakov PM. Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses. Rev Med Virol. 2018;28(6):e2008. doi: 10.1002/rmv.2008.

Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity in Vitro

AV Petukhov1, VA Markova2, DV Motorin1, AK Titov1, NS Belozerova2, PM Gershovich2, AV Karabel’skii2, RA Ivanov2, EK Zaikova1, EYu Smirnov2, PA Butylin1, AYu Zaritskey1

1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Biocad Biotechnology Company, 34-A Svyazi str., Strel’na, Saint Petersburg, Russian Federation, 198515

For correspondence: Andrei Yur’evich Zaritskey, MD PhD, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(812)702-68-28, Fax: +7(812)702-37-65; e-mail:

For citation: Petukhov AV, Markova VA, Motorin DV, et al. Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity in Vitro. Clinical oncohematology. 2018;11(1):1–9.

DOI: 10.21320/2500-2139-2018-11-1-1-9


Background. The most promising variant of adoptive immunotherapy of the B-line oncohematological diseases includes the use of cells with the chimeric antigen receptor (CAR T-cells), that showed extraordinary results in clinical studies.

Aim. To manufacture CAR T-cells for the clinical use and to study their cytotoxicity in vitro.

Methods. Human T-lymphocytes were transduced by the lentiviral vector containing anti-CD19-CAR, RIAD, and GFP genes. The T-cell transduction efficacy was assessed on the basis of GFP protein signal by flow cytometry. Propidium iodide was used to analyse the cell viability. Cytotoxic activity of the manufactured CAR T-cells was studied in the presence of the target cells being directly co-cultivated. Analysis of the number and viability of CAR T-cells and cytokine expression was performed by flow cytometry.

Results. The viability of the transduced T-cells and GFP expression reached 91.87 % and 50.87 % respectively. When cultured in the presence of IL-2 and recombinant CD19 (the target antigen), the amount of CAR-T after 120 h of the process was 1.4 times larger compared with the period of 48 h. In the cytotoxic test of co-cultivation CAR-T with the K562-CD19+ cells the percentage of CAR-T increased to 57 % and 84.5 % after 48 h and 120 h of exposure respectively. When cultured with the K562 cells (test line not expressing CD19) the number of CAR T-cells decreased to 36.2 % within 48 h while the number of K562 cells increased to 58.3 %. The viability of target cells in the experimental and control groups was 3.5 % and 36.74 % respectively. Comparison of IL-6 level in the control and experimental groups revealed that the differences are insignificant, as opposed to the level of other cytokines (IFN-γ, IL-2, TNF) which proved to be different in both groups.

Conclusion. The present work resulted in the production of anti-CD19 CAR T-cells with adequate viability. The in vitro model demonstrated their cytotoxicity. Manufacturing of CAR T-cells for clinical use is the first step of the development of adoptive immunotherapy in the Russian Federation.

Keywords: CAR T-cells, adoptive immunotherapy, acute lymphoblastic leukemia, non-Hodgkin’s lymphomas, lentiviral transduction, graft-versus-host reaction, сytokine release syndrome.

Received: September 15, 2017

Accepted: December 7, 2017

Read in PDF 


  1. Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2015;13(1):10–24. doi: 10.1038/nrclinonc.2015.128.
  2. Podhorecka M, Markowicz J, Szymczyk A, Pawlowski J. Target therapy in hematological malignances: new monoclonal antibodies. Int Sch Res Not. 2014;2014(3):1–16. doi: 10.1155/2014/701493.
  3. Hussaini M. Biomarkers in Hematological Malignancies: A Review of Molecular Testing in Hematopathology. Cancer Control. 2015;22(2):158–66. doi: 10.1177/107327481502200206.
  4. Forman SJ, Rowe JM. The myth of the second remission of acute leukemia in the adult. Blood. 2013;121(7):1077–82. doi: 10.1182/blood-2012-08-234492.
  5. Im A, Pavletic SZ. Immunotherapy in hematologic malignancies: past, present, and future. J Hematol Oncol. 2017;10(1):94. doi: 10.1186/s13045-017-0453-8.
  6. Luskin MR, DeAngelo DJ. Chimeric Antigen Receptor Therapy in Acute Lymphoblastic Leukemia Clinical Practice. Curr Hematol Malig Rep. 2017;12(4):370–9. doi: 10.1007/s11899-017-0394-x.
  7. Fesnak A, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566–81. doi: 10.1038/nrc.2016.97.
  8. Lim W, June C. The Principles of Engineering Immune Cells to Treat Cancer. Cell. 2017;168(4):724–40. doi: 10.1016/j.cell.2017.01.016.
  9. Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98. doi: 10.1158/2159-8290.CD-12-0548.
  10. Brentjens RJ, Davila ML, Riviere I, et al. CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci Transl Med. 2013;5(177):177ra38. doi: 10.1126/scitranslmed.3005930.
  11. Maude SL, Frey N, Shaw P, et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N Engl J Med. 2014;371(16):1507–17. doi: 10.1056/NEJMoa1407222.
  12. Turtle CJ, Hanafi L-A, Berger C, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38. doi: 10.1172/JCI85309.
  13. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. doi: 10.1016/S0140-6736(14)61403-3.
  14. Onea AS, Jazirehi AR. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas. Am J Cancer Res. 2016;6(2):403–24.
  15. Kebriaei P, Singh H, Huls MH, et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest. 2016;126(9):3363–76. doi: 10.1172/JCI86721.
  16. ICML 2017: Data From the TRANSCEND Trial of JCAR017 in Relapsed and Refractory Aggressive B-Cell Non-Hodgkin Lymphoma — The ASCO Post. Available from: (accessed 7.10.2017).
  17. Locke FL, Neelapu SS, Bartlett NL, et al. Abstract CT019: Primary results from ZUMA-1: a pivotal trial of axicabtagene ciloleucel (axicel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (NHL). Cancer Res. 2017;77(13 Suppl):CT019. doi: 10.1158/1538-7445.AM2017-CT019.
  18. Kalos M, Levine BL, Porter DL, et al. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci Transl Med. 2011;3(95):95ra73. doi: 10.1126/scitranslmed.3002842.
  19. Porter DL, Hwang W-T, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. doi: 10.1126/scitranslmed.aac5415.
  20. Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol. 2015;33:9–15. doi: 10.1016/j.coi.2015.01.002.
  21. Павлова А.А., Масчан М.А., Пономарев В.Б. Адоптивная иммунотерапия генетически модифицированными Т-лимфоцитами, экспрессирующими химерные антигенные рецепторы. Онкогематология. 2017;12(1):17–32. doi: 10.17650/1818-8346-2017-12-1-17-32. [Pavlova AА, Maschan MА, Ponomarev VB. Adoptitive immunotherapy with genetically engineered T lymphocytes modified to express chimeric antigen receptors. Oncohematology. 2017;12(1):17–32. doi: 10.17650/1818-8346-2017-12-1-17-32. (In Russ)]
  22. Dai H, Wang Y, Lu X, Han W. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. J Natl Cancer Inst. 2016;108(7):1–15. doi: 10.1093/jnci/djv439.
  23. Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics. 2016;3:16014. doi: 10.1038/mto.2016.14.
  24. Holzinger A, Barden M, Abken H. The growing world of CAR T cell trials: a systematic review. Cancer Immunol Immunother. 2016;65(12):1433–50. doi: 10.1007/s00262-016-1895-5.
  25. Jensen MC, Popplewell L, Cooper LJ, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant. 2010;16(9):1245–56. doi: 10.1016/j.bbmt.2010.03.014.
  26. Gong MC, Latouche JB, Krause A, et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia. 1999;1(2):123–7.
  27. Davila ML, Sadelain M. Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol. 2016;104(1):6–17. doi: 10.1007/s12185-016-2039-6.
  28. Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood. 2016;127(26):3312–20. doi: 10.1182/blood-2016-02-629063.
  29. Grupp S, Kalos M, Barrett D, et al. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. N Engl J Med. 2013;368(16):1509–18. doi: 10.1056/NEJMoa1215134.
  30. Yu H, Sotillo E, Harrington C, et al. Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma. Am J Hematol. 2017;92(1):E11–E13. doi: 10.1002/ajh.24594.
  31. Sotillo E, Barrett DM, Black KL, et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015;5(12):1282–95. doi: 10.1158/2159-8290.CD-15-1020.
  32. Fischer J, Paret C, El Malki K, et al. CD19 Isoforms Enabling Resistance to CART-19 Immunotherapy Are Expressed in B-ALL Patients at Initial Diagnosis. J Immunother. 2017;40(5):187–95. doi: 10.1097/CJI.0000000000000169.
  33. Jacoby E, Nguyen SM, Fountaine TJ, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320. doi: 10.1038/ncomms12320.
  34. Gardner R, Wu D, Cherian S, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406–10. doi: 10.1182/blood-2015-08-665547.
  35. Zah E, Lin M-Y, Silva-Benedict A, et al. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res. 2016;4(6):498–508. doi: 10.1158/2326-6066.CIR-15-0231.
  36. Shah NN, Stetler-Stevenson M, Yuan CM, et al. Minimal Residual Disease Negative Complete Remissions Following Anti-CD22 Chimeric Antigen Receptor (CAR) in Children and Young Adults with Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL). Blood. 2016;128(22):650.
  37. Davila ML, Riviere I, Wang X, et al. Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Sci Transl Med. 2014;6(224):224ra25. doi: 10.1126/scitranslmed.3008226.
  38. Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90. doi: 10.1038/nm.3838.
  39. Hay KA, Turtle CJ. Chimeric Antigen Receptor (CAR) T Cells: Lessons Learned from Targeting of CD19 in B-Cell Malignancies. Drugs. 2017;77(3):237–45. doi: 10.1007/s40265-017-0690-8.
  40. Wehbi VL, Tasken K. Molecular mechanisms for cAMP-mediated immunoregulation in T cells – role of anchored protein kinase a signaling units. Front Immunol. 2016;7:1–19. doi: 10.3389/fimmu.2016.00222.
  41. Newick K, O’Brien S, Sun J, et al. Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization. Cancer Immunol Res. 2016;4(6):541–51. doi: 10.1158/2326-6066.CIR-15-0263.
  42. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783–4. doi: 10.1038/nmeth.3047.
  43. Kochenderfer JN, Feldman SA, Zhao Y, et al. Construction and Preclinical Evaluation of an Anti-CD19 Chimeric Antigen Receptor. J Immunother. 2009;32(7):689–702. doi: 10.1097/CJI.0b013e3181ac6138.
  44. Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. doi: 10.1186/2162-3619-1-36.
  45. Uckun FFM, Jaszcz W, Ambrus JJL, et al. Detailed Studies on Expression and Function of CD19 Surface Determinant by Using B43 Monoclonal Antibody and the Clinical Potential of Anti-CD19 Immunotoxins. Blood. 1988;71(1):13–29.
  46. Wei G, Ding L, Wang J, et al. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp Hematol Oncol. 2017;6(1):10. doi: 10.1186/s40164-017-0070-9.
  47. Barrett DM, Singh N, Hofmann TJ, et al. Interleukin 6 Is Not Made By Chimeric Antigen Receptor T Cells and Does Not Impact Their Function. Blood. 2016;128(22):2016–7.
  48. Singh N, Hofmann TJ, Gershenson Z, et al. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy. 2017;19(7):867–80. doi: 10.1016/j.jcyt.2017.04.001.
  49. Hartmann J, Schussler‐Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183–97. doi: 10.15252/emmm.201607485.
  50. Hagen T. Novartis Sets a Price of $475,000 for CAR T-Cell Therapy. Available from: (accessed 31.10.2017).
  51. Yang Y, Jacoby E, Fry TJ. Challenges and opportunities of allogeneic donor-derived CAR T cells. Curr Opin Hematol. 2015;22(6):509–15. doi: 10.1097/MOH.0000000000000181.
  52. Li H, Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell. 2017;8(8):573–89. doi: 10.1007/s13238-017-0411-9.

Prognostic Significance of Thymidine Kinase-1 versus β2-Microglobulin and Lactate Dehydrogenase in Lymphoproliferative Diseases

N.K. Parilova1, N.S. Sergeeva1,2, N.V. Marshutina1, N.G. Tyurina1, I.S. Meisner2

1 P.A. Hertzen Moscow Cancer Research Institute, a branch of the National Medical Research Radiological Center under the Ministry of Health of the Russian Federation, 3 Botkinskii pr-d, Moscow, Russia 125284

2 N.I. Pirogov Russian National Research Medical University under the Ministry of Health of the Russian Federation, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Natal’ya Konstantinovna Parilova, junior researcher, 3 2nd Botkinskii pr-d, Moscow, Russia, 125284; Tel.: + 7(495)945-74-15; e-mail:

For citation: Parilova NK, Sergeeva NS, Marshutina NV, et al. Prognostic Significance of Thymidine Kinase-1 versus b2-Microglobulin and Lactate Dehydrogenase in Lymphoproliferative Diseases. Clinical oncohematology. 2016;9(1):6–12 (In Russ).

DOI: 10.21320/2500-2139-2016-9-1-6-12


Background & Aims. Lactate dehydrogenase (LDH) and b2-microglobulin (b2-MG) are usually detected as serological tumor markers (TM) in malignant lymphoproliferative diseases (LPD); however, their use in monitoring of chemotherapy (CT) is limited due to their low sensitivity and specificity. The aim of this paper is to evaluate the prognostic value of baseline levels of thymidine kinase-1 (TK-1) versus b2-MG and LDH in patients with non-Hodgkin’s lymphomas (NHL) and Hodgkin’s lymphoma (HL) and to assess their clinical significance of changes in these parameters during CT as criteria of its effectiveness.

Methods. TK-1, b2-MG and LDH levels were evaluated in 61 NHL patients and 34 HL patients at baseline and after each subsequent CT cycle. The average age of patients enrolled in the study was 42.5 years (range 18–77 years). Of them 45 were men and 50 were women. Marker levels were determined in serum using the following tests: enzyme-linked immunosorbent assay (ELISA) for TK-1, immunoturbidimetry for b2-MG, and biochemical method for LDH. Discriminatory levels specified by test-system manufacturers were used in calculations: 50 DU/l for TK-1, 800–2400 mg/l for b2-MG, and 225–450 U/l for LDH.

Results. The study demonstrated that lower baseline levels of all three TM were associated with higher probability of complete or partial remission, and the statistical difference was higher. Baseline levels of TK-1 < 150 DU/l and b2-MG < 2200 mg/l may serve as prognostic factors of higher probability of achievement of complete or partial remission.

Conclusion. 4-fold increase in TK-1 serum activity from baseline after the 1st course of CT can predict the effectiveness of antitumor therapy. At the same time, no significant associations between b2-MG and LDH serum levels changes during the treatment and efficacy of the treatment were found.

Keywords: thymidine kinase-1, b2-microglobulin, lactate dehydrogenase, Hodgkin’s lymphoma, non-Hodgkin’s lymphomas.

Received: June 17, 2015

Accepted: November 3, 2015

Read in PDF (RUS)pdficon


  1. Павлова О.А., Тюрина Н.Г. Лимфома Ходжкина. Лимфопролиферативные опухоли. В кн.: Онкология. Клинические рекомендации. Под ред. В.И. Чиссова, С.Л. Дарьяловой. 2-е изд., испр. и доп. М.: ГЭОТАР-Медиа, 2009. С. 829–88.
    [Pavlova OA, Tyurina NG. Hodgkin’s lymphoma. Lymphoproliferative diseases. In Chissov VI, Dar’yalova SL, eds. Onkologiya. Klinicheskie rekomendatsii. (Oncology. Clinical recommendations.) 2nd revised edition. Moscow: GEOTAR-Media Publ.; 2009. p. 829–88. (In Russ)]
  2. Долгов В.В., Козлов А.В., Раков С.С. Лабораторная энзимология. М.: Витал Диагностикс, 2002. С. 104–18.
    [Dolgov VV, Kozlov AV, Rakov SS. Laboratornaya enzimologiya. (Laboratory methods in enzymology.) Moscow: Vital Diagnostiks Publ.; 2002. p. 104–18. (In Russ)]
  3. Bien E, Balcerska A. Serum soluble interleukin-2 receptor, beta2-microglobulin, lactate dehydrogenase and erythrocyte sedimentation rate in children with Hodgkin’s lymphoma. Scand J Immunol. 2009;70(5):490–500. doi: 10.1111/j.1365-3083.2009.02313.x.
  4. Shipp MA, Harrington DP, Andersen JR, et al. A predictive model for aggressive non-Hodgkin’s lymphoms. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/nejm199309303291402.
  5. Дати Ф., Метцманн Э. Белки. Лабораторные тесты и их клиническое применение: Пер. с англ. М.: Лабора, 2007. 560 с.
    [Dati F, Metzman E. Proteins. Laboratory testing and clinical use. Holzheim; 2005. (Russ. ed.: Dati F, Metzman E. Belki. Laboratornye testy i ikh klinicheskoe primenenie. Moscow: Labora Publ.; 2007. 560 p.)]
  6. Votava T, Topolcan O, Holubec L Jr, et al. Changes of serum thymidine kinase in children with acute leukemia. Anticancer Res. 2007;27(4A):1925–8.
  7. Chen F, Tang L, Xia T, et al. Serum thymidine kinase 1 levels predict cancer-free survival following neoadjuvant, surgical and adjuvant treatment of patients with locally advanced breast cancer. Mol Clin Oncol. 2013;1(5):894–902. doi: 10.3892/mco.2013.149.
  8. Chen Y, Ying M, Chen YS, et al. Serum thymidine kinase 1 correlates to clinical stages and clinical reactions and monitors the outcome of therapy of 1,247 cancer patients in routine clinical settings. Int J Clin Oncol. 2010;15(4):359–68. doi: 10.1007/s10147-010-0067-4.
  9. Pan ZL, Ji XY, Shi YM, et al. Serum thymidine kinase 1 concentration as a prognostic factor of chemotherapy-treated non-Hodgkin’s lymphoma patients. J Cancer Res Clin Oncol. 2010;136(8):1193–9. doi: 10.1007/s00432-010-0769-z.
  10. Парилова Н.К., Сергеева Н.С., Тюрина Н.Г. и др. Сывороточные уровни тимидинкиназы-1 (ТК-1) у больных с лимфопролиферативными заболеваниями. Онкология. Журнал им. П.А. Герцена. 2012;1:33–8.
    [Parilova NK, Sergeeva NS, Tyurina NG, et al. Serum thymidine kinase 1 (TK-1) levels in patients with lymphoproliferative disorders. Onkologiya. Zhurnal im PA Gertsena. 2012;1:33–8. (In Russ)]
  11. Bogni A, Cortinois A, Grasseli G, et al. Thymidine kinase (TK) activity as a prognostic parameter of survival in lymphoma patients. J Biol Regul Homeost Agents. 1994;8(4):10.
  12. Nisman B, Nechushtan H, Biran H, et al. Serum thymidine kinase 1 activity in the prognosis and monitoring of chemotherapy in lung cancer patients: a brief report. J Thorac Oncol. 2014;9(10):1568–72. doi: 10.1097/jto.0000000000000276.
  13. Nisman B, Nchushtan H, Biran H, et al. Serum thymidine kinase 1 activity in prognosis and monitoring chemotherapy in lung cancer patients. Tumor Biol. 2014;35(1):22–3. doi: 10.1097/jto.0000000000000276.


Modern Aspects of Diagnosis and Treatment of Complicated Forms of Non-Hodgkin’s Lymphomas of Small and Large Intestine

OA Malikhova, AO Tumanyan, VA Shalenkov, AG Malikhov, YuP Kuvshinov, GV Ungiadze

N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Ol’ga Aleksandrovna Malikhova, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-43-27; e-mail:

For citation: Malikhova OA, Tumanyan AO, Shalenkov VA, et al. Modern Aspects of Diagnosis and Treatment of Complicated Forms of Non-Hodgkin’s Lymphomas of Small and Large Intestine. Clinical oncohematology. 2015;8(2):129–35 (In Russ).


Background & Aims. Lymphomas constitute 5 to 10 % of gastrointestinal tumors and most of them are non-Hodgkin’s lymphomas (NHLs). They constitute 30–45 % of all extranodal NHLs. Primary involvement of the gastrointestinal tract is observed in 2/3 of patients. The objective of this study is to determine clinical and morphological features and treatment outcomes of complicated forms of NHLs of the small and large intestine.

Methods. NHLs of the small and large intestine were studied in 189 patients treated in the N.N. Blokhin Russian Cancer Research Center within the period of 1985–2010. Large intestine involvement was observed in 64 patients and small intestine involvement in 125 patients.

Results. Surgical interventions for ileus, bleeding or perforation of a hollow organ were performed in 92 patients with primary or secondary involvement of the small and large intestine (48.7 %). The intestine involvement was primary in 58.9 % of cases and secondary in 41.0 % of cases.

Conclusion. Complications of gastrointestinal NHLs deteriorate the overall survival rate. Patients with small or large intestine involvement require a special approach to diagnosis and treatment because of a high risk of surgical complications.

Keywords: lymphoma, small intestine, large intestine, oncohematology, non-Hodgkin’s lymphomas.

Received: January 30, 2014

Accepted: February 12, 2015

Read in PDF (RUS)pdficon


  1. Thorling MS. Gastrointestinal lymphomas: Clinical features, treatment and prognosis. Acta Radiol Oncol. 1984;23(2–3):193–7. doi: 10.3109/02841868409136011.
  2. Ковынев И.Б., Поспелова Т.И., Агеева Т.А., Лосева М.И. Частота и структура неходжкинских злокачественных лимфом в Новосибирске, НСО и городах Сибирского федерального округа. Бюллетень СО РАМН. 2006;4(122):175–81.
    [Kovynev IB, Pospelova TI, Ageeva TA, Loseva MI. Incidence and structure of non-Hodgkin’s malignant lymphomas in Novosibirsk, Novosibirsk Oblast, and cities of Siberian Federal Okrug. Byulleten’ SO RAMN. 2006;4(122):175–81. (In Russ)]
  3. Поддубная И.В. Первичные лимфомы желудочно-кишечного тракта. В кн.: Клиническая онкогематология. Под ред. М.А. Волковой. М.: Медицина, 2007. С. 734–70.
    [Poddubnaya IV. Primary lymphomas of the gastrointestinal tract. In: Volkova MA, ed. Klinicheskaya onkogematologiya. (Clinical oncohematology.) Moscow: Meditsina Publ.; 2007. pp. 734–70. (In Russ)]
  4. Mihaljevic B. Primary Extranodal Lymphomas of Gastrointestinal Localization: A Single Institution 5-yr Experience. Med. Oncol. 2006;23(2):225–7. doi: 10.1385/mo:23:2:225.
  5. Bilsel Y, Balik E, Yamaner S, Bugra D. Clinical and therapeutic considerations of rectal lymphoma: A case report and literature review. World J Gastroenterol. 2005;11(3):460–1. doi: 10.3748/wjg.v11.i3.460.
  6. Feller AJ. Histopathology of nodal and extra nodal non-Hodgkin’s lymphomas. 3rd edition. Berlin: Springer-Verlag; 2004. doi: 10.1007/978-3-642-18653-0.
  7. Ferreri AJ. Summary statement on primary central nervous system lymphomas from the Eighth International Conference on Malignant Lymphoma, Lugano, Switzerland, June 12–15, 2002. J Clin Oncol. 2003;21(12):2407–14. doi: 10.1200/jco.2003.01.135.
  8. Rosas ME, Frisnacho VO, Yabar BA. Malignant duodenal neoplasia: clinical-pathologic profile. Rev Gastroenterol Peru. 2003;23(2):99–106.
  9. Ghimire P, Wu GY, Zhu L. Primary gastrointestinal lymphomas. World J Gastroenterol. 2011;17(6):697–707. doi: 10.3748/wjg.v17.i6.697.
  10. Balfe P, O’Brian S, Daly P, et al. Management of gastric lymphoma. Surgeon. 2008;6(5):262–5. doi: 10.1016/s1479-666x(08)80048-0.
  11. Contreary K, Nance FC, Becker WF. Primary lymphoma of gastrointestinal tract. Ann Surg. 1980;191(5):593–8. doi: 10.1097/00000658-198005000-00011.
  12. Dar AM. Isolated primary esophageal lymphoma – a rare case report. Indian J Thorac Cardiovasc Surg. 2011;27(1):53–5. doi: 10.1007/s12055-010-0069-x.
  13. Al-Saleem T. Immunoproliferative small intestinal disease (IPSID): a model for mature B-cell neoplasms. Blood. 2005;105(6):2274–80. doi: 0.1182/blood-2004-07-2755.
  14. Cavalli F, Isaacson PG, Gascoyne RD, Zucca E. MALT Lymphomas. Hematology Am Soc Hematol Educ Program. 2001:241–58.
  15. Azarm T. Primary Gastrointestinal lymphoma, Clinicopathologic Study of 49 Small Intestinal Lymphoma Cases and the Treatment Option of Choice. Intern J Hematol Oncol Stem Cell Res. 2009;3(4):21–3.
  16. Bairey O, Shpilberg O. Non-Hodgkin’s Lymphomas of the Colon. Israel Med Assoc J. 2006;8(12):832–5.
  17. Berthold D, Ghielmini M. Treatment of malignant lymphomas. Swiss Med Wkly. 2004;134(33–34):472–80.
  18. Dughayli MS, Baidoun F, Lupovitch A. Synchronous perforation of Non-Hodgkin’s Lymphoma of the small intestine and colon: a case report. J Med Case Rep. 2011;5:57. doi: 10.1186/1752-1947-5-57.
  19. Cappell MS. Acute Nonvariceal Upper Gastrointestinal Bleeding: Endoscopic Diagnosis and Therapy. Med Clin. 2008;92(3):511–50. doi: 10.1016/j.mcna.2008.01.001.
  20. Неред С.Н., Стилиди И.С., Поддубная И.В., Шаленков В.А. Хирургическое лечение осложненных форм первичных неходжкинских лимфом желудка. Вестник РОНЦ им. Н.Н. Блохина. 2011;1:66–74.
    [Nered SN, Stilidi IS, Poddubnaya IV, Shalenkov VA. Surgical treatment of complicated forms of gastric non-Hodgkin’s lymphomas. Vestnik RONTs im. N.N. Blokhina. 2011;1:66–74. (In Russ)]
  21. Pennazio M. Small-intestinal pathology on capsule endoscopy: spectrum of vascular lesions. Endoscopy. 2005;37(9):864–9. doi: 10.1055/s-2005-870212.
  22. Khan SH, Ahmaf M, Wani NA, Khardi MY. Primary Ileocaecal Lymphoma: Clinico-Pathological Features and Results of Treatment. JK Science. 2000;2(2):232.
  23. Shum JB, Croome K. Upper gastrointestinal and intra-abdominal hemorrhage secondary to diffuse large B-cell gastric lymphoma. Can J Surg. 2008;51(3):E56–7.
  24. Урядов С.Е., Шапкин Ю.Г., Капралов С.В. Эндоскопический гемостаз при толстокишечных кровотечениях. Саратовский научно-медицинский журнал. 2010;6(3):719–22.
    [Uryadov SE, Shapkin YuG, Kapralov SV. Endoscopic hemostasis in bleeding from large intestine. Saratovskii nauchno-meditsinskii zhurnal. 2010;6(3):719–22. (In Russ)]
  25. Толпинский А.П., Токарев Б.В., Бахлаев И.Е. Осложнения рака желудка: методические указания к практическим занятиям по онкологии. Петрозаводск: ПетрГУ, 1995. C. 25.
    [Tolpinskii AP, Tokarev BV, Bakhlaev IE. Oslozhneniya raka zheludka: metodicheskie ukazaniya k prakticheskim zanyatiyam po onkologii. (Complications of gastric cancer: guidelines for practical training in oncology.) Petrozavodsk: PetrGU Publ.; 1995. pр. 25. (In Russ)]
  26. Vadala G, Salice M, L’Anfusa G, et al. Complication of ileal lymphoma. Minerva Chir. 1995;50(11):963–6.
  27. Varghese C, Jose CC, Subhashii J, et al. Primary Small Intestinal Lymphoma. Oncology. 1992;49(5):340–2. doi: 10.1159/000227069.