ROR-1 Expression in the Diagnosis and Monitoring of Minimal Residual Disease in Chronic Lymphocytic Leukemia

EV Pochtar1, SA Lugovskaya1, EV Naumova1, EA Dmitrieva2, VV Dolgov1

1 Russian Medical Academy of Postgraduate Education, 2/1 Barrikadnaya ul., Moscow, Russian Federation, 125993

2 SP Botkin City Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

For correspondence: Evgenii Vladimirovich Pochtar, 12 apt. 53 Verkhnyaya Maslovka, Moscow, Russian Federation, 127083; Tel.: +7(917)550-06-38; e-mail: pochtar_ev@mail.ru

For citation: Pochtar EV, Lugovskaya SA, Naumova EV, et al. ROR-1 Expression in the Diagnosis and Monitoring of Minimal Residual Disease in Chronic Lymphocytic Leukemia. Clinical oncohematology. 2022;15(2):148–55. (In Russ).

DOI: 10.21320/2500-2139-2022-15-2-148-155


ABSTRACT

Background. In view of similar morphological and phenotypic characteristics of some B-cell lymphoproliferative diseases and despite the known phenotype of tumor cells, a search is currently underway for new diagnostic markers, the expression of which remains stable during chronic lymphocytic leukemia (CLL) treatment and can be used for both diagnosis and assessment of residual tumor population. One of such markers is ROR-1.

Aim. To assess the expression and feasibility of the ROR-1 marker using В-lymphocytes in minimal residual disease (MRD) dynamics and monitoring in CLL.

Materials & Methods. Hematological and immunophenotypic analyses were performed in 110 CLL patients (50 of them with newly diagnosed disease and 60 on therapy). In addition to that, 20 patients with reactive lymphocytosis and 32 donors were examined. The ROR-1 expression in В-lymphocytes were measured with FACS Canto II flow cytometer using the following monoclonal antibody panel: CD45, CD19, CD20, and ROR-1.

Results. The analysis showed that ROR-1 is essentially not expressed in normal and reactive В-lymphocytes and is detected in 100 % of CLL tumor cells both at disease onset and on therapy. The ROR-1 expression does not change during CLL treatment and can be used not only for CLL diagnosis but also for detection of MRD. Bone marrow aspirates (n = 64) and peripheral blood samples (n = 6) were analysed for MRD assessment by two methods: according to the standardized protocol, recommended by ERIC (European Research Initiative on CLL) in 2007, with FACS Canto II flow cytometer (BD Biosciences) and using DuraClone RE CLB Tube (Beckman Coulter) with Navious flow cytometer (Beckman Coulter).

Conclusion. The comparison of the two methods for MRD assessment, i.e., the standardized (ERIC) one and DuraClone RE CLB (Beckman Coulter) including ROR-1, yielded a high correlation between them (r = 0.9936.)

Keywords: ROR-1, chronic lymphocytic leukemia, minimal residual disease.

Received: December 27, 2021

Accepted: March 18, 2022

Read in PDF

Статистика Plumx английский

REFERENCES

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. Lyon: IARC Press; 2016.
  2. Daneshmanesh AH, Mikaelsson E, Jeddi-Tehrani M, et al. Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int J Cancer. 2008;123(5):1190–5. doi: 10.1002/ijc.23587.
  3. Bing C, Ghia EM, Liguang C, et al. High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. Blood. 2016;128(25):2931–40. doi: 10.1182/blood-2016-04-712562.
  4. Hasan MK, Yu J, Widhopf GF, et al. Wnt5a induces ROR1 to recruit DOCK2 to activate Rac1/2 in chronic lymphocytic leukemia. Blood. 2018;132(2):170–8. doi: 10.1182/blood-2017-12-819383.
  5. Hasan MK, Rassenti L, Widhopf GF, et al. Wnt5a causes ROR1 to complex and activate cortactin to enhance migration of chronic lymphocytic leukemia cells. Leukemia. 2019;33(3):653–61. doi: 10.1038/s41375-018-0306-7.
  6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013.
  7. Yu J, Chen L, Cui B, et al. Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation. J Clin Invest. 2016;126(2):585–98. doi: 10.1172/JCI83535.
  8. Janovska P, Poppova L, Plevova K, et al. Autocrine signaling by Wnt-5a deregulates chemotaxis of leukemic cells and predicts clinical outcome in chronic lymphocytic leukemia. Clin Cancer Res. 2016;22(2):459–69. doi: 10.1158/1078-0432.CCR-15-0154.
  9. Kauck M, Plevova K, Pavlov S, et al. The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of B-lymphocyte migration. Cancer Res. 2013;73(5):1491–501. doi: 10.1158/0008-5472.CAN-12-1752.
  10. Barna G, Mihalik R, Timar B, et al. ROR1 expression is not a unique marker of CLL. Hematol Oncol. 2011;29(1):17–21. doi: 10.1002/hon.948.
  11. Hojjat-Farsangi M, Moshfegh A, Daneshmanesh AH, et al. The receptor tyrosine kinase ROR1 an oncofetal antigen for targeted cancer therapy. Semin Cancer Biol. 2014;29:21–31. doi: 10.1016/j.semcancer.2014.07.005.
  12. Shabani M, Asgarian-Omran H, Jeddi-Tehrani M, et al. Overexpression of orphan receptor tyrosine kinase Ror1 as a putative tumor-associated antigen in Iranian patients with acute lymphoblastic leukemia. Tumour Biol. 2007;28(6):318–26. doi: 10.1159/000121405.
  13. Baskar S, Kwong KY, Hofer T, et al. Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin Cancer Res. 2008;14(2):396–404. doi: 10.1158/1078-0432.CCR-07-1823.
  14. Fukuda T, Chen L, Endo T, et al. Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci USA. 2008;105(8):3047–52. doi: 10.1073/pnas.0712148105.
  15. Borcherding N, Kusner D, Liu GH, et al. ROR1, an embryonic protein with an emerging role in cancer biology. Protein Cell. 2014;5(7):496–502. doi: 10.1007/s13238-014-0059-7.
  16. Chen Y, Chen L, Yu J, et al. Cirmtuzumab blocks Wnt5a/ROR1 stimulation of NF-κB to repress autocrine STAT3 activation in chronic lymphocytic leukemia. Blood. 2019;134(13):1087–94. doi: 10.1182/blood.2019001366.
  17. Миролюбова Ю.В., Тимофеева Н.С., Барт В.А. и др. Орфанный рецептор ROR1 для детекции минимальной остаточной болезни при хроническом лимфолейкозе. Медицинский алфавит. 2020;5:19–24. doi: 10.33667/2078-5631-2020-5-19-24.
    [Mirolyubova YuV, Timofeeva NS, Bart VA, et al. Orphan receptor ROR1 for detection of minimal residual disease in chronic lymphocytic leukemia. Medical alphabet. 2020;5:19–24. doi: 10.33667/2078-5631-2020-5-19-24. (In Russ)]
  18. Хронический лимфолейкоз. Современная диагностика и лечение. Руководство для клиницистов. Под ред. Е.А. Никитина. М.: Буки-Веди, 2021. 436 с.
    [Nikitin EA, ed. Khronicheskii limfoleikoz. Sovremennaya diagnostika i lechenie. Rukovodstvo dlya klinitsistov. (Chronic Lymphocytic Leukemia. Current methods of diagnosis and treatment. A Clinician’s Manual.) Moscow: Buki-Vedi Publ.; 2021. 436 p. (In Russ)]
  19. Rawstron AC, Villamor N, Ritgen M, et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. 2007;21(5):956–64. doi: 10.1038/sj.leu.2404584.
  20. Rawstron AC, Fazi C, Agathangelidis A, et al. A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study. Leukemia. 2016;30(4):929–36. doi: 10.1038/leu.2015.313.
  21. Rawstron AC, Kreuzer KA, Soosapilla A, et al. Reproducible diagnosis of chronic lymphocytic leukemia by flow cytometry: an European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) Harmonization project. Cytometry B Clin Cytom. 2018;94(1):121–8. doi: 10.1002/cyto.b.21595.
  22. Zalcberg I, D’Andreaa MG, Monteiroa L, et al. Multidisciplinary diagnostics of chronic lymphocytic leukemia: European Research Initiative on CLL – ERIC recommendations. Hematol Transfus Cell Ther. 2020;42(3):269–74. doi: 10.1016/j.htct.2019.07.006.
  23. Bento L, Correia R, de Sousa F, et al. Performance of eight-color dry antibody reagent in the detection of minimal residual disease in chronic lymphocytic leukemia samples. Cytometry B Clin Cytom. 2020;98(6):529–35. doi: 10.1002/cyto.b.21875.
  24. Roche Announces Data at EHA2021 Reinforcing Efficacy of Venclexta/Venclyxto Combinations in Chronic Lymphocytic Leukaemia And Acute Myeloid Leukaemia. 2021. Available from: https://www.roche.com/media/releases/med-cor-2021-06-11b.htm (accessed 24.01.2022).
  25. Миролюбова Ю.В., Стадник Е.А. Клиническая значимость достижения МОБ-негативности у больных хроническим лимфолейкозом. Современная онкология. 2018;20(1):17–22. doi: 10.26442/1815-1434_20.1.17-22.
    [Mirolyubova YuV, Stadnik EA. Clinical significance of the achievement of MRD-negativity in patients with chronic lymphocytic leukemia. Journal of Modern Oncology. 2018;20(1):17–22 doi: 10.26442/1815-1434_20.1.17-22. (In Russ)]
  26. Al-Shawi R, Ashton SV, Underwood C, et al. Expression of the Ror1 and Ror2 receptor tyrosine kinase genes during mouse development. Dev Genes Evol. 2001;211(4):161–71. doi: 10.1007/s004270100140.
  27. Zhang S, Chen L, Wang-Rodriguez J, et al. The onco-embryonic antigen ROR1 is expressed by a variety of human cancers. Am J Pathol. 2012;181(6):1903–10. doi: 10.1016/j.ajpath.2012.08.024.
  28. Klein U, Tu Y, Stolovitzky GA, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194(11):1625–38. doi: 10.1084/jem.194.11.1625.
  29. Rosenwald A, Alizadeh AA, Widhopf G, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001;194(11):1639–47. doi: 10.1084/jem.194.11.1639.
  30. Mahadevan D, Choi J, Cooke L, et al. Gene Expression and Serum Cytokine Profiling of Low Stage CLL Identify WNT/PCP, Flt-3L/Flt-3 and CXCL9/CXCR3 as Regulators of Cell Proliferation, Survival and Migration. Hum Genomics Proteomics. 2009;2009:453634. doi: 10.4061/2009/453634.