Mechanisms of Signal Transduction in Cells. Facts and Hypotheses

Elena B. Vladimirsky1, Vitali D. Mil’man2

1 Itamar Ben Avi, 22/1, Jerusalem, Israel, 92348

2 Department of Mathematics, Tel Aviv University, Tel Aviv, Israel, Schreiber Building, Room 334

For correspondence: Elena B. Vladimirsky, DSci, Professor, Honored Scientist of Russia; Itamar Ben Avi str., 22/1, Jerusalem, Israel, 92348; Tel.: +972(0)2 650-96-82; e-mail: regblood3@yandex.ru

For citation: Elena B Vladimirsky, Vitali D Mil’man. Mechanisms of Signal Transduction in Cells. Facts and Hypotheses. Clinical oncohematology. 2015;8(3):248–54 (In Russ).


ABSTRACT

Our main assumption is that interaction between inductor and target molecules in cells is based on laws of quantum physics in the microcosm of biological objects. An inductor molecule emits a specific monochromatic radiation which is captured by the appropriate target molecule according to the bioresonance absorption principle triggering the emission of its own radiation and thus turning it from the target into the inductor. This is a chain process that creates a signal path, along which the activated molecules move and interact with each other as described by molecular biology. As part of this process, all impact (information) is mediated through electro-magnetic particles (biophotons) that interact with each other in the electromagnetic field according to laws of constructive and destructive interference. Increase or decrease in the target’s response depends on type of interference predominance. Due to this effect, weak signals are sometimes able to produce stronger response than strong ones as the increase in their number leads to expansion of the area of destructive interference. This principle was confirmed in our study using 3 experimental cell models: formation of colonies of granulocyte-macrophage precursors in soft agar under different concentrations of G-CSF; formation of colonies of erythrocyte precursors in methyl-cellulose under different concentrations of erythropoietin; apoptosis of mice melanoma cells (cell line B16) under different concentrations of vincristine. Further development of the biophotonic paradigm of information transduction in cell systems may contribute to better understanding of many normal and pathological processes in human body as well to improvement in some types of drug therapies.


Keywords: signal transduction; biophotons, activation of cell programs.

Received: April 2, 2015

Accepted: May 27, 2015

Read in  PDF (RUS)pdficon


REFERENCES

  1. Владимирская Е.Б. Механизмы кроветворения и лейкемогенеза. М.: Династия, 2007.
    [Vladimirskaya EB. Mekhanizmy krovetvoreniya i leikemogeneza. (Mechanisms of hemopoiesis and leukemogenesis.) Moscow: Dinastiya Publ.; 2007. (In Russ)]
  2. Корпачев В. Фундаментальные основы гомеопатической фармакологии. Киев: Четвертая хвиля, 2005.
    [Korpachev V. Fundamental’nye osnovy gomeopaticheskoi farmakologii. (Fundamentals of homeopathic pharmacology.) Kiev: Chetvertaya khvilya Publ.; 2005. (In Russ)]
  3. Celik E, Uzbay IT, Karakas S. Caffeine and amphetamine produce cross-sensitization to nicotine-induced locomotor activity in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(1):50–5. doi: 10.1016/j.pnpbp.2005.06.014.
  4. Бурлакова Е.Б., Конрадов А.А., Мальцева Е.Л. Сверхслабые воздействия химических соединений и физических факторов на биологические системы. Биофизика. 2004;49:551–64.
    [Burlakova EB, Konradov AA, Mal’tseva EL. Hyperweak effects of chemical compounds and physical factors on biological systems. Biofizika. 2004;49:551–64. (In Russ)]
  5. Svoboda K, Reenstra W. Approaches to studying cellular signaling. Anat Rec. 2002;269(2):123–39. doi: 10.1002/ar.10074.abs.
  6. Alberti C. Cytoskeleton structure and dynamic behavior. Eur Rev Med Pharmacol Sci. 2009;13(1):13–21.
  7. Venter JC, Adams MD, Myers EW, et al. The Sequence of the Human Genome. Science. 2001;291(5507):1304–51.
  8. Афанасьев Б.В., Зарицкий А.Ю., Забелина Т.С. Колониеобразующая способность костного мозга в полутвердой культуральной среде. Физиология человека. 1976;2(6):301–8.
    [Afanas’ev BV, Zaritskii AYu, Zabelina TS. Colony-forming ability of bone marrow cells in in semi-solid cell culture media. Fiziologiya cheloveka. 1976;2(6):301–8. (In Russ)]
  9. Владимирская Е.Б., Мильман В.Д. Биофотонный механизм активации клеточных программ: колониеобразование в мягком агаре. Клеточная трансплантология и тканевая терапия. 2012;8:92–6.
    [Vladimirskaya EB, Mil’man VD. Biophotonic mechanism of activation of cell programs: colony-formation in soft agar. Kletochnaya transplantologiya i tkanevaya terapiya. 2012;8:92–6. (In Russ)]
  10. Testa U, Pelosi E, Gabbianelli M, et al. Cascade Transactivation of Growth Factor Receptors in Early Human Hematopoiesis. Blood. 1993;81(6):1442–56.
  11. Popp FA, Chang JJ. The physical background and the informational character of biophoton emission. In: Chang JJ, Fish J, Popp FA, eds. Biophotons. Dordrecht: Kluwer; 1998. pp. 238–50. doi: 10.1007/978-94-017-0928-6_18.
  12. Gurwitsch AG. Die Natur des spezifischen Erregens der Zellteilung. Entwicklungs Mechanik der Organismen. 1923;100(1–2):11–40. doi: 10.1007/bf02111053.
  13. Gurwitsch AG, Gurwitsch LD. Die mitogenetische Strahlung. Jena: Fischer; 1959.
  14. VanWijk R, Van Aken JM, Mei W, Popp FA. Light-induced photon emission by mammalian cells. J Photochem Photobiol. 1993;18(1):75–9. doi: 10.1016/1011-1344(93)80042-8.
  15. Van Wijk R. Bio-photons and bio-communication. J Sci Explor. 2001;15:183–97.
  16. Popp FA. Biophotonen. Heidelberg: Verlag fuer Medizin Dr. Ewald Fischer; 1976.
  17. Karu T. Action spectra. Importance for low level light therapy. J Photochem Photobiol. 1999;49:1–17.
  18. Казначеев В.П., Михайлова Л.П. Биоинформационная функция естественных электромагнитных полей. Новосибирск: Наука, 1985. 180 с.
    [Kaznacheev VP, Mikhailova LP. Bioinformatsionnaya funktsiya estestvennykh elektromagnitnykh polei. (Bioinformation properties of natural electromagnetic fields.) Novosibirsk: Nauka Publ.; 1985. 180 p. (In Russ)]
  19. Albrecht-Buehler G. Rudimentary form of cellular vision. Proc Nat Acad Sci USA. 1992;89(17):8288–92. doi: 10.1073/pnas.89.17.8288.
  20. Golantsev VP, Koralenko SG, Moltchanov AA, Prutskov VI. Lipid peroxidation, low-level chemiluminescence and regulation of secretion in the mammary gland. Experientia. 1993;49(10):870–5. doi: 10.1007/bf01952600.
  21. Shen X, Mei W, Xu X. Activation of neutrophils by a chemically separated but optically coupled neutrophil population undergoing respiratory burst. Experientia. 1994;50(10):963–8. doi: 10.1007/bf01923488.
  22. Tyner K, Kopelman R, Philbert M. “Nanosized Voltmeter” enabeles cellular-wide electric field mapping. Biophys J. 2007;93(4):1163–74. doi: 10.1529/biophysj.106.092452.
  23. Bokkon I, Salary V, Tuszynski JA, Antal I. Estimation of the number of biophotons involved in the visual perception of single–object image: biophoton intensity can considerably higher inside cells than outside. J Photochem Photobiol. 2010;100(3):160–6. doi: 10.1016/j.jphotobiol.2010.06.001.