Heme Oxygenase-1/Ferritin in Protection of Leukemia Cells from Oxidative Stress Induced by Catalytic System “Teraphtal + Ascorbic Acid”

TA Sidorova, OO Ryabaya, AA Prokof’eva, DA Khochenkov

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Tat’yana Aleksandrovna Sidorova, MD, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; e-mail: tatsid@yahoo.com

For citation: Sidorova TA, Ryabaya OO, Prokof’eva AA, Khochenkov DA. Heme Oxygenase-1/Ferritin in Protection of Leukemia Cells from Oxidative Stress Induced by Catalytic System “Teraphtal + Ascorbic Acid”. Clinical oncohematology. 2019;12(4):416–27 (In Russ).

DOI: 10.21320/2500-2139-2019-12-4-416-427


ABSTRACT

Background. As is well known, cytotoxic mechanism of antitumor agent, i.e. catalytic system “teraphtal + ascorbic acid” (“TF+AA”), is associated with production of reactive oxygen species (ROS) and induction of oxidative stress in it. The “heme oxygenase-1/ferritin” (HО-1/Ft) system contributes to antioxidant defense.

Aim. To analyze HО-1/Ft value in protection of leukemia cells from toxicity induced by antitumor agent “TF+AA”.

Materials & Methods. The study was based on human leukemia cell lines K562 and U937. HО-1/Ft basal and drug-induced expression on mRNA and protein levels was analyzed by real-time RT-PCR and Western blot, ROS concentration in cells was determined by flow cytometry, and drug cytotoxicity was measured by MTT assay.

Results. Our data showed constitutively active HO-1 in U937 myelomonoblasts whereas in K562 erythroblasts the expression of this protein was blocked on the mRNA level. Hemin, HO-1 agonist, induces HO-1 and Ft co-expression in U937 cells on the mRNA and protein levels. HO-1/Ft activation by hemin in U937 cells does not affect their “TF+AA” sensitivity and doubles, for example, the cytarabine sensitivity. “TF+AA” appeared to cause up-regulation of HO-1/Ft genes, the expression of which quadruples or increases by half, respectively, compared with basal level. Preincubation of U937 myelomonoblasts with deferoxamine, iron chelator, results in doubling of their “TF+AA” resistance. However, the use of iron-containing TF analogs leads to its doubled cytotoxicity.

Conclusion. In leukemia cell line U937 with constitutively active НО-1/Ft the heme-dependent activation of it does not considerably contribute to protection of cells from “TF+AA” toxicity. The system “TF+AA” is -1 and Ft expression inducer in U937 myelomonoblasts. Cytotoxic mechanism of “TF+AA” involves intracellular pool of “labile” non-heme iron, the level of which affects the drug sensibility of leukemia cells.

Keywords: heme oxygenase-1, ferritin, sodium salt of cobalt 4,5-octacarboxyphthalocyanine, iron 4,5-octacarboxyphthalocyanine, human leukemia cell lines.

Received: April 1, 2019

Accepted: September 3, 2019

Read in PDF


REFERENCES

  1. Yoshida T, Kikuchi G. Sequence of the reaction of heme catabolism catalyzed by the microsomal heme oxygenase system. FEBS Lett. 1974;48(2):256–61. doi: 10.1016/0014-5793(74)80481-3.

  2. Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA. 1968;61(2):748–55.

  3. Ryter SW, Otterbein LE, Morse D, Choi AM. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. In: Vallyathan V, Shi X, Castranova V, eds. Oxygen/Nitrogen Radicals: Cell Injury and Disease. Springer; 2002. pp. 249–63. doi: 10.1007/978-1-4615-1087-1_29.

  4. Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA. 1988;85(24):9748–52. doi: 10.1073/pnas.85.24.9748.

  5. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95. doi: 10.1152/physrev.00018.2001.

  6. Gozzelino R, Arosio P. Iron Homeostasis in Health and Disease. Int J Mol Sci. 2016;17(1):E130. doi: 10.3390/ijms17010130.

  7. Cheng HT, Yen CJ, Chang CC, et al. Ferritin heavy chain mediates the protective effect of heme oxygenase-1 against oxidative stress. Biochim Biophys Acta. 2015;1850(12):2506–17. doi: 10.1016/j.bbagen.2015.09.018.

  8. Balla G, Jacob HS, Balla J, et al. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem. 1992;267(25):18148–53.

  9. Lin Q, Weis S, Yang G, et al Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem. 2007;282(28):20621–3.3 doi: 10.1074/jbc.m607954200.

  10. Biswas C, Shah N, Muthu M, et al. Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem. 2014;289(39):26882–94. doi: 10.1074/jbc.M114.567685.

  11. Vanella L, Barbagallo I, Tibullo D, et al. The non-canonical functions of the heme oxygenases. Oncotarget. 2016;7(42):69075–86. doi: 10.18632/oncotarget.11923.

  12. Bian C, Zhong M, Nisar MF, et al. A novel heme oxygenase-1 splice variant, 14kDa HO-1, promotes cell proliferation and increases relative telomere length. Biochem Biophys Res Commun. 2018;500(2):429–34. doi: 10.1016/j.bbrc.2018.04.096.

  13. Abraham NG, Kappas A. Heme oxygenase and the cardiovascular-renal system. Free Radic Biol Med. 2005;39(1):1–25. doi: 10.1016/j.freeradbiomed.2005.03.010.

  14. Mayerhofer M, Florian S, Krauth MT. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res. 2004;64(9):3148–54. doi: 10.1158/0008-5472.can-03-1200.

  15. Schaefer B, Behrends S. Translocation of heme oxygenase-1 contributes to imatinib resistance in chronic myelogenous leukemia. Oncotarget. 2017;8(40):67406–21. doi: 10.18632/oncotarget.18684.

  16. Li Volti G, Tibullo D, Vanella L, et al. The Heme Oxygenase System in Hematological Malignancies. Antioxid Redox Signal. 2017;27(6):363–77. doi: 10.1089/ars.2016.6735.

  17. Zhe N, Wang J, Chen S, et al. Heme oxygenase-1 plays a crucial role in chemoresistance in acute myeloid leukemia. Hematology. 2015;20(7):384–91. doi: 10.1179/1607845414Y.0000000212.

  18. Herrmann H, Kneidinger M, Cerny-Reiterer S, et al. The Hsp32 inhibitors SMA-ZnPP and PEG-ZnPP exert major growth-inhibitory effects on D34+/CD38+ and CD34+/CD38- AML progenitor cells. Curr Cancer Drug Targets. 2012;12(1):51–63. doi: 10.2174/156800912798888992.

  19. Wu W, Ma D, Wang P, et al. Potential crosstalk of the interleukin-6-heme oxygenase-1-dependent mechanism involved in resistance to lenalidomide in multiple myeloma cells. FEBS J. 2016;283(5):834–49. doi: 10.1111/febs.13633.

  20. Raju VS, Maines MD. Coordinated expression and mechanism of induction of HSP32 (heme oxygenase-1) mRNA by hyperthermia in rat organs. Biochim Biophys Acta. 1994;1217(3):273–80. doi: 10.1016/0167-4781(94)90286-0.

  21. Vile GF, Tyrrell RM. Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin. J Biol Chem. 1993;268(20):14678–81.

  22. McDonald JT, Kim K, Norris AJ, et al. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res. 2010;70(21):8886–95. doi: 10.1158/0008-5472.CAN-10-0171.

  23. Lin F, Girotti AW. Hyperresistance of leukemia cells to photodynamic inactivation after long-term exposure to hemin. Cancer Res. 1996;56(20):4636–43.

  24. Mitani K, Fujita H, Fukuda Y, et al. The role of inorganic metals and metalloporphyrins in the induction of haem oxygenase and heat-shock protein 70 in human hepatoma cells. Biochem J. 1993;290(Pt 3):819–25. doi: 10.1042/bj2900819.

  25. Ogborne RM, Rushworth SA, Charalambos CA, et al. Haem oxygenase-1: a target for dietary antioxidants. Biochem Soc Trans. 2004;32(Pt 6):1003–5. doi: 10.1042/bst0321003.

  26. Grosser N, Hemmerle A, Berndt G, et al. The antioxidant defense protein heme oxygenase 1 is a novel target for statins in endothelial cells. Free Radic Biol Med. 2004;37(12):2064–71. doi: 10.1016/j.freeradbiomed.2004.09.009.

  27. Cui ZG, Ogawa R, Tsuneyama K, et al. Insight into the molecular mechanism of heme oxygenase-1 induction by docosahexaenoic acid in U937 cells. Chem Biol Interact. 2015;238:180–8. doi: 10.1016/j.cbi.2015.07.005.

  28. Choi BM, Kim YM, Jeong YR, et al. Induction of heme oxygenase-1 is involved in anti-proliferative effects of paclitaxel on rat vascular smooth muscle cells. Biochem Biophys Res Commun. 2004;321(1):132–7. doi: 10.1016/j.bbrc.2004.06.120.

  29. Visner GA, Lu F, Zhou H, et al Rapamycin induces heme oxygenase-1 in human pulmonary vascular cells: implications in the antiproliferative response to rapamycin. Circulation. 2003;107(6):911–6. doi: 10.1161/01.cir.0000048191.75585.60.

  30. Rushworth SA, MacEwan DJ. HO-1 underlies resistance of AML cells to TNF-induced apoptosis. Blood. 2008;111(7):3793–801. doi: 10.1182/blood-2007-07-104042.

  31. Shan Y, Pepe J, Lu TH, et al. Induction of the heme oxygenase-1 gene by metalloporphyrins. Arch Biochem Biophys. 2000;380(2):219–27.

  32. Yang G, Nguyen X, Ou J, et al. Unique effects of zinc protoporphyrin on HO-1 induction and apoptosis. Blood. 2001;97(5):1306–13. doi: 10.1182/blood.v97.5.1306.

  33. Hou W, Shan Y, Zheng J, et al. Zinc mesoporphyrin induces rapid and marked degradation of the transcription factor Bach1 and up-regulates HO-1. Biochim Biophys Acta. 2008;1779(3):195–203. doi: 10.1016/j.bbagrm.2008.01.006.

  34. Davudian S, Mansoori B, Shajari N, et al. BACH1, the master regulator gene: A novel candidate target for cancer therapy. Gene. 2016;588(1):30–7. doi: 10.1016/j.gene.2016.04.040.

  35. Zhang X, Guo J, Wei X, et al. Bach1: Function, Regulation, and Involvement in Disease. Oxid Med Cell Longev. 2018;2018:1–8. doi: 10.1155/2018/1347969.

  36. Sun J, Hoshino H, Takaku K, et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J. 2002;21(19):5216–24. doi: 10.1093/emboj/cdf516.

  37. Ogawa K, Sun J, Taketani S, et al. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J. 2001;20(11):2835–43. doi: 10.1093/emboj/20.11.2835.

  38. Suzuki H, Tashiro S, Hira S, et al. Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1. EMBO J. 2004;23(13):2544–53. doi: 10.1038/sj.emboj.7600248.

  39. Shan Y, Lambrecht RW, Donohue SE, Bonkovsky HL. Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. FASEB J. 2006;20(14):2651–3. doi: 10.1096/fj.06-6346fje.

  40. Suzuki H, Tashiro S, Sun J, et al. Cadmium induces nuclear export of Bach1, a transcriptional repressor of heme oxygenase-1 gene. J Biol Chem. 2003;278(49):49246–53. doi: 10.1074/jbc.m306764200.

  41. Heck D, Vetrano A, Mariano T, et al. UVB light stimulates production of reactive oxygen species. J Biol Chem. 2003;278(25):22432–6. doi: 10.1074/jbc.c300048200.

  42. Grasso S, Scifo C, Cardile V, et al. Adaptive responses to the stress induced by hyperthermia or hydrogen peroxide in human fibroblasts. Exp Biol Med (Maywood). 2003;228(5):491–8. doi: 10.1177/15353702-0322805-12.

  43. Ji K, Fang L, Zhao H, et al. Ginger Oleoresin Alleviated γ-Ray Irradiation-Induced Reactive Oxygen Species via the Nrf2 Protective Response in Human Mesenchymal Stem Cells. Oxid Med Cell Longev. 2017;2017:1–12. doi: 10.1155/2017/1480294.

  44. Chow JM, Shen SC, Huan SK, et al. Quercetin, but not rutin and quercitrin, prevention of H2O2-induced apoptosis via anti-oxidant activity and heme oxygenase 1 gene expression in macrophages. Biochem Pharmacol. 2005;69(12):1839–51. doi: 10.1016/j.bcp.2005.03.017.

  45. Cao H, Wang Y, Wang Q, et al. Taxol prevents myocardial ischemia-reperfusion injury by inducing JNK-mediated HO-1 expression. Pharm Biol. 2016;54(3):555–60. doi: 10.3109/13880209.2015.1060507.

  46. Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221–47. doi: 10.1007/s00018-016-2223-0.

  47. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116. doi: 10.1146/annurev.pharmtox.46.120604.141046.

  48. Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22. doi: 10.1006/bbrc.1997.6943.

  49. Reichard JF, Motz GT, Puga A. Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucl Acids Res. 2007;35(21):7074–86. doi: 10.1093/nar/gkm638.

  50. Sun J, Brand M, Zenke Y, et al. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc Natl Acad Sci USA. 2004;101(6):1461–6. doi: 10.1073/pnas.0308083100.

  51. Eisenstein RS, Garcia-Mayol D, Pettingell W, Munro HN. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc Natl Acad Sci USA. 1991;88(3):688–92. doi: 10.1073/pnas.88.3.688.

  52. Lin JJ, Daniels-McQueen S, Gaffield L, et al. Specificity of the induction of ferritin synthesis by hemin. Biochim Biophys Acta. 1990;1050(1–3):146–50. doi: 10.1016/0167-4781(90)90156-v.

  53. Sheftel AD, Kim SF, Ponka P. Non-heme induction of heme oxygenase-1 does not alter cellular iron metabolism. J Biol Chem. 2007;282(14):10480–6. doi: 10.1074/jbc.m700240200.

  54. Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood. 2002;99(10):3505–16. doi: 10.1182/blood.v99.10.3505.

  55. Tsuji Y, Ayaki H, Whitman SP, et al. Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol Cell Biol. 2000;20(16):5818–27. doi: 10.1128/mcb.20.16.5818-5827.2000.

  56. Pietsch EC, Chan JY, Torti FM, Torti SV. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. J Biol Chem. 2003;278(4):2361–9. doi: 10.1074/jbc.m210664200.

  57. Munro HN. Iron regulation of ferritin gene expression. J Cell Biochem. 1990;44(2):107–15. doi: 10.1002/jcb.240440205.

  58. Kato J, Kobune M, Ohkubo S, et al. Iron/IRP-1-dependent regulation of mRNA expression for transferrin receptor, DMT1 and ferritin during human erythroid differentiation. Exp Hematol. 2007;35(6):879–87. doi: 10.1016/j.exphem.2007.03.005.

  59. Cermak J, Balla J, Jacob HS, et al. Tumor cell heme uptake induces ferritin synthesis resulting in altered oxidant sensitivity: possible role in chemotherapy efficacy. Cancer Res. 1993;53(21):5308–13.

  60. Regan RF, Kumar N, Gao F, Guo Y. Ferritin induction protects cortical astrocytes from heme-mediated oxidative injury. Neuroscience. 2002;113(4):985–94. doi: 10.1016/s0306-4522(02)00243-9.

  61. Lanceta L, Mattingly JM, Li C, Eaton JW. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death. PLoS One. 2015;10(8):e0134144. doi: 10.1371/journal.pone.0134144.

  62. Lin F, Girotti AW. Hemin-enhanced resistance of human leukemia cells to oxidative killing: antisense determination of ferritin involvement. Arch Biochem Biophys. 1998;352(1):51–8. doi: 10.1006/abbi.1998.0588.

  63. Gozzelino R, Soares MP. Coupling heme and iron metabolism via ferritin H chain. Antioxid Redox Signal. 2014;20(11):1754–69. doi: 10.1089/ars.2013.5666.

  64. Петрова Е.Г., Борисенкова С.А., Калия О.Л. Окисление аскорбиновой кислоты в присутствии фталоцианиновых комплексов металлов и химические аспекты каталитической терапии рака: научное издание. Сообщение 2. Катализ октакарбоксифталоцианином кобальта. Продукты реакции. Известия РАН. Серия химическая. 2004;10:2224–7.

    [Petrova EG, Borisenkova SA, Kaliya OL. Oxidation of ascorbic acid in the presence of phthalocyanine metal complexes and chemical aspects of catalytic therapy of cancer. 2. Catalysis by cobalt octacarboxyphthalocyanine. Reaction products. Izvestiya RAN. Seriya khimicheskaya. 2004;10:2224–7. (In Russ)]

  65. Сидорова Т.А., Вагида М.С., Калия О.Л., Герасимова Г.К. Роль каталазы в защите опухолевых клеток от окислительного стресса, индуцированного бинарной каталитической системой «терафтал + аскорбиновая кислота». Клиническая онкогематология. 2014;7(3):282–9.

    [Sidorova ТА, Vagida MS, Kaliya OL, Gerasimova GK. Role of Catalase in Protection of Cancer Cells from Oxidative Stress Induced by Binary Catalytic System “Teraphtal + Ascorbic Acid”. Klinicheskaya onkogematologiya. 2014;7(3):282–9. (In Russ)]

  66. Bradford M.M. A rapid and sensitive for the quentitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analyt Biochem. 1976;72:248–54.

  67. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5.

  68. Alves LR, Costa ES, Sorgine MH, et al Heme-oxygenases during erythropoiesis in K562 and human bone marrow cells. PLoS One. 2011;6(7):e21358. doi: 10.1371/journal.pone.0021358.

  69. Ding Y, Zhang YZ, Furuyama K, et al. Down-regulation of heme oxygenase-2 is associated with the increased expression of heme oxygenase-1 in human cell lines. FEBS J. 2006;273(23):5333–46.

  70. Miyazaki T, Kirino Y, Takeno M, et al. Expression of heme oxygenase-1 in human leukemic cells and its regulation by transcriptional repressor Bach1. Cancer Sci. 2010;101(6):1409–16. doi: 10.1111/j.1349-7006.2010.01550.x.

  71. Kweon MH, Adhami VM, Lee JS, Mukhtar H. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J Biol Chem. 2006;281(44):33761–72. doi: 10.1074/jbc.m604748200.

  72. Ma J, Yu KN, Cheng C et al. Targeting Nrf2-mediated heme oxygenase-1 enhances non-thermal plasma-induced cell death in non-small-cell lung cancer A549 cells. Arch Biochem Biophys. 2018;658:54–65. doi: 10.1016/j.abb.2018.09.015.

  73. Okabe-Kado J, Hayashi M, Honma Y, Hozumi M. Enhancement by hemin of the sensitivity of K562 human leukemic cells to 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1986;46(3):1239–43.

  74. Honma Y, Onozuka Y, Okabe-Kado J, et al. Hemin enhances the sensitivity of erythroleukemia cells to 1-beta-D-arabinofuranosylcytosine by both activation of deoxycytidine kinase and reduction of cytidine deaminase activity. Cancer Res. 1991;51(17):4535–8.

  75. Cheong JW, Kim Y, Eom JI, et al. Enhanced autophagy in cytarabine arabinoside-resistant U937 leukemia cells and its potential as a target for overcoming resistance. Mol Med Rep. 2016;13(4):3433–40. doi: 10.3892/mmr.2016.4949.

  76. Mucha O, Podkalicka P, Czarnek M, et al. Pharmacological versus genetic inhibition of heme oxygenase-1 – the comparison of metalloporphyrins, shRNA and CRISPR/Cas9 system. Acta Biochim Pol. 2018;65(2):277–86. doi: 10.18388/abp.2017_2542.

  77. De Domenico I, Ward DM, Kaplan J. Specific iron chelators determine the route of ferritin degradation. Blood. 2009;114(20):4546–51. doi: 10.1182/blood-2009-05-224188.