Evaluation of Minimal Residual Disease in B-Lineage Acute Lymphoblastic Leukemia Using EuroFlow Approaches

OA Beznos, LYu Grivtsova, AV Popa, MA Shervashidze, IN Serebryakova, OYu Baranova, EA Osmanov, NN Tupitsyn

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Ol’ga Alekseevna Beznos, junior researcher, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel: 8(916)480-03-35; e-mail: beznos.olga@gmail.com

For citation: Beznos OA, Grivtsova LYu, Popa AV, et al. Evaluation of Minimal Residual Disease in B-Lineage Acute Lymphoblastic Leukemia Using EuroFlow Approaches. Clinical oncohematology. 2017;10(2):158–68 (In Russ).

DOI: 10.21320/2500-2139-2017-10-2-158-168


ABSTRACT

Background & Aims. Evaluation of the minimal residual disease (MRD) at different stages of chemotherapy is one of key prognostic factors and a factor of stratification of patients into risk groups in acute lymphoblastic leukemia (ALL). The MRD detection on Day 15 and at later stages is based on identifying blast cells with a leukemia-associated immune phenotype. The aim is to assess the potential of 8-color standardized EuroFlow panels and to detect individual criteria for MRD monitoring during primary diagnosis.

Materials & Methods. The analysis included data on the primary immune phenotype and MRD assessment during chemotherapy in 10 adults and 35 children with a confirmed diagnosis of B-cell precursors ALL.

Results. The ALL phenotype characteristics at the stage of primary diagnosis permit to make the most complete description of the of 8-color standardized EuroFlow panels. This gives an opportunity to select the most informative antigen combinations for further MRD monitoring. Combinations with CD58/CD38, CD81/СD9 antigen expression, as well as assessment of pan-myeloid CD13, CD33 antigen co-expression may be recommended as the most frequent aberrant immune phenotypes of blast cells in ALL. As for B-lineage progenitor cells in children on Day 15 of the induction therapy, a detection of TdT+ сyCD22+ cell population is necessary in addition to the quantification of CD10+ and/or CD34+ В-lineage progenitor cells.

Conclusion. Therefore, the 8-color standardized EuroFlow panels permit not only to characterize the primary ALL immune phenotype in details, but may also be widely used for MRD evaluation at all stages of chemotherapy.

Keywords: B-lineage acute lymphoblastic leukemia, multicolor flow cytometry, minimal residual disease.

Received: January 14, 2017

Accepted: January 29, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in children acute lymphoblastic leukemia and its relationship to the prognostic factors: a Children’s Oncology Group study. Blood. 2008;111(12):5477–85. doi: 10.1182/blood-2008-01-132837.
  2. Dworzak MN, Froschl G, Printz D, et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood. 2002;99(6):1952–8. doi: 10.1182/blood.V99.6.1952.
  3. Basso G, Veltroni M, Valsecchi MG, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168–74. doi: 10.1200/jco.2008.20.8934.
  4. Coustan-Smith E, Sancho J, Behm FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood. 2002;100(1);52–8. doi: 10.1182/blood-2002-01-0006.
  5. Coustan-Smith E, Ribeiro RC, Stow P, et al. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood. 2006;108(1):97–102. doi: 10.1182/blood-2006-01-0066.
  6. Schrappe M, Reiter A, Ludwig WD, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of antracyclines and cranial radiotherapy: results of trial ALL-BFM 90. Blood. 2000;95(11):3310–22.
  7. Гривцова Л.Ю., Попа А.В., Купрышина Н.А. и др. Оценка минимальной резидуальной болезни при острых лимфобластных лейкозах из В-линейных предшественников у детей методом трехцветной проточной цитометрии. Иммунология гемопоэза. 2008;5(2):8–33.
    [Grivtsova LYu, Popa AV, Kupryshina NA, et al. Detection of minimal residual disease in children with B-cell precursor acute lymphoblastic leukemia with simplified protocols. Immunologiya gemopoeza. 2008;5(2):8–33. (In Russ)]
  8. Гривцова Л.Ю., Попа А.В., Серебрякова И.Н., Тупицын Н.Н. К дальнейшей стандартизации определения остаточных бластных клеток в костном мозге детей с В-линейными острыми лимфобластными лейкозами на 15-й день индукционной терапии. Иммунология гемопоэза. 2011;8(1):35–54.
    [Grivtsova LYu, Popa AV, Serebryakova IN, Tupitsyn NN. To further standardization in detection of residual blasts in bone marrow of children with B-cell acute lymphoblastic leukemia on Day 15 of induction therapy. Immunologiya gemopoeza. 2011;8(1):35–54. (In Russ)]
  9. van Dongen JJM, van der Velden VHJ, Bruggemann M, et al. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125(26):3996–4009. doi: 10.1182/blood-2015-03-580027.
  10. van Dongen JJM, Lhermitte L, Bottcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908–75. doi: 10.1038/leu.2012.120.
  11. Локен М.Р., Уэлс Д.А. Определение клеток предшественников. Иммунология гемопоэза. 2010;7(1):8–22.
    [Loken MR, Wells DA. Enumeration of progenitor cells. Immunologiya gemopoeza. 2010;7(1):8–22 (In Russ)]
  12. Гривцова Л.Ю., Тупицын Н.Н. Иммунологическая оценка гемодилюции костного мозга при лабораторных исследованиях (на основании теста М. Локен). Медицинский алфавит. 2015;4(18):67–70.
    [Grivtsova LYu, Tupitsyn NN. Immunological evaluation of bone marrow hemodilution in laboratory test (based on M. Loken’s test). Meditsinskii alfavit. 2015;4(18):67–70. (In Russ)]
  13. Тупицын Н.Н., Гривцова Л.Ю., Купрышина Н.А. Иммунодиагностика опухолей крови на основании многоцветных (8-цветных панелей) Европейского консорциума по проточной цитометрии (Euroflow). Иммунология гемопоэза. 2015;13(1):31–62.
    [Tupitsyn NN, Grivtsova LYu, Kupryshina NA. Haematopoietic malignancies immune diagnostics based on Euroflow Consortium proposals: 8-color flow cytometry. Immunologiya gemopoeza. 2015;13(1):31–62. (In Russ)]
  14. Veltroni M, de Zen L, Sanzari MC, et al.; I-BFM-ALL-FCM-MRD-Study Group. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. J Hematol. 2003;88(11):1245–52.
  15. Romero-Ramırez H, Morales-Guadarrama MT, Pelayo R, et al. CD38 expression in early B-cell precursors contributes to extracellular signal-regulated kinase-mediated apoptosis. Immunology. 2014;144(2):271–81. doi: 10.1111/imm.12370.
  16. Tajima F, Deguchi T, Laver JH, et al. Reciprocal expression of CD38 and CD34 by adult murine hematopoietic stem cells. Blood. 2001;97(9):2618–24. doi: 10.1182/blood.V97.9.2618.
  17. Higuchi Y, Zeng H, Ogawa M. CD38 expression by hematopoietic stem cells of newborn and juvenile mice. Leukemia. 2003;17(1):171–4. doi: 10.1038/sj.leu.2402785.
  18. Carsetti R, Rosado MM, Wardmann H. Peripheral development of B cells in mouse and man. Immunol Rev. 2004;197(1):179–91. doi: 10.1111/j.0105-2896.2004.0109.x.
  19. Lamkin T, Brooks J, Annett G, et al. Immunophenotypic differences between putative hematopoietic stem cells and childhood B cell precursor acute lymphoblastic leukemia cells. Leukemia. 1994;8(11):1871–8.
  20. Chen JS, Coustan-Smith E, Suzuki T, et al. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood. 2001;97(7):2115–20. doi: 10.1182/blood.V97.7.2115.
  21. De Waele M, Renmans W, Jochmans K, et al. Different expression of adhesion molecules on CD34+ cells in AML and B-lineage ALL and their normal bone marrow counterparts. Eur J Haematol. 1999;63(3):192–201. doi: 10.1111/j.1600-0609.1999.tb01767.x.
  22. Dworzak MN, Fritsch G, Froschl G, et al. Four-Color Flow Cytometric Investigation of Terminal Deoxynucleotidyl Transferase–Positive Lymphoid Precursors in Pediatric Bone Marrow: CD79a Expression Precedes CD19 in Early B-Cell Ontogeny. Blood. 1998;92(9):3203–9.
  23. Coustan-Smith E, Song G, Clark C, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2011;117(23):6267–76. doi: 10.1182/blood-2010-12-324004.
  24. Barrena S, Almeida J, Yunta M, et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia. 2005;19(8):1376–83. doi: 10.1038/sj.leu.2403822.
  25. Тупицын Н.Н., Гривцова Л.Ю., Купрышина Н.А. Проточная цитометрия в онкогематологии. Часть I. Основы и нововведения в диагностике острых лейкозов. Клиническая онкогематология. 2012;5(1):42–7.
    [Tupitsyn NN, Grivtsova LYu, Kupryshina NA. Flow cytometry in hematology malignancies. Part I. ABC and news in acute leukemia diagnostics. Klinicheskaya onkogematologiya. 2012;5(1):42–7. (In Russ)]
  26. Shoham T, Rajapaksa R, Boucheix C, et al. The Tetraspanin CD81 Regulates the Expression of CD19 During B Cell Development in a Postendoplasmic Reticulum Compartment. J Immunol. 2003;171(8):4062–72. doi: 10.4049/jimmunol.171.8.4062.