Diagnostic Strategy for Detection of Typical and Atypical BCR-ABL Fusion Gene Transcripts in Chronic Myeloid Leukemia

OV Nikulina1,2, GA Tsaur1,2,3, TO Riger1,2, YuA Yakovleva1,2, AS Demina1,2, ER Semenikhina1, TV Spilnik3, LI Savelev1,2,3, LG Fechina1,2

1 Regional Children’s Hospital No. 1, 32 Serafimy Deryabinoy str., Yekaterinburg, Russian Federation, 620149

2 Research Institute of Medical Cell Technologies, 22a K. Marksa str., Yekaterinburg, Russian Federation, 620026

3 Ural State Medical University, 3 Repina str., Yekaterinburg, Russian Federation, 620219

For correspondence: Grigorii Anatol’evich Tsaur, PhD, 32 Serafimy Deryabinoy str., Yekaterinburg, Russian Federation, 620149; Tel.: +7(343)216-25-17; e-mail: tsaur@mail.ru

For citation: Nikulina O.V., Tsaur G.A., Riger T.O., Yakovleva Yu.A., Demina A.S., Semenikhina E.R., Spil’nik T.V., Savel’ev L.I., Fechina L.G. Diagnostic Strategy for Detection of Typical and Atypical BCR-ABL Fusion Gene Transcripts in Chronic Myeloid Leukemia. Klin. Onkogematol. 22015;8(2):161–8 (In Russ.).


ABSTRACT

Background & Aims. The diagnosis of chronic myeloid leukemia (CML) is confirmed when t(9;22)(q34;q11) translocation is found by the cytogenetic test method and/or chimeric BCR-ABL transcript is detected by the reverse transcription polymerase chain reaction (RT-PCR). It is known that two most common types of chimeric BCR-ABL transcript are determined in CML patients: e13a2 (b2a2) и e14a2 (b3a2). However, rare types of chimeric BCR-ABL transcript have been described and they may be overlooked. Moreover, timely diagnosing and detection of different types of the chimeric transcript are very important, because the clinical course of the disease and efficacy of the therapy with tyrosine kinases inhibitors depend on the structure of chimeric BCR-ABL gene. Since in some cases CML may be diagnosed without the standard cytogenetic test and be confirmed by RT-PCR alone, we consider it important to develop a diagnostic algorithm which might permit to determine almost any type of chimeric BCR-ABL transcript.

Methods. Over the period from January, 2004, till December, 2013, in the laboratory of molecular biology of the department of pediatric oncology and hematology in Regional Children’s Hospital No. 1 (Yekaterinburg), the diagnosis of CML was confirmed in 1082 patients: 531 (49 %) males and 551 (51 %) females. The median age was 50 years (range 5–88 years). All patients underwent standard cytogenetic and molecular genetic tests. Primers which are complementary to nucleotide ABL gene sequence are localized in 2 and 3 ABL exons and are used for detection of all transcript types. Primers which are complementary to nucleotide BCR gene sequence are localized either in 12 and 13 exons for detection of most typical e13a2 and e14a2 (M-bcr) transcripts or in exon 1 for detection of e12a (m-bcr) transcript. While detecting amplicons which size differs from that of e13a2, e14a2, and e1a2, their direct paired-end sequencing is performed using primers (applied during the second round of RT-PCR) and a Big Dye Terminator 3.1 kit.

Results. After having analyzed 1082 patients with confirmed CML, we have developed a diagnostic algorithm for detecting common and rare types of chimeric BCR-ABL transcript in CML using RT-PCR. We detected common chimeric BCR-ABL transcripts, e14a2 and e13a2, in 62.53 % and 35.89 % of cases, respectively, using this algorithm. Rare transcripts, e13a3, e14a3, e19a2, e1a2, e3a2, e6a2, and e8a2, were detected in 1.57 % of cases.

Conclusion. Therefore, the proposed diagnostic algorithm proved to be effective for detection of common and rare types of chimeric BCR-ABL transcripts in CML patients.


Keywords: chronic myeloid leukemia, molecular diagnostics, chimeric BCR-ABL transcript.

Received: December 31, 2014

Accepted: February 4, 2015

Read in PDF (RUS) pdficon


REFERENCES

  1. Nowell P.C., Hungerford D.A. Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. 1960; 25: 85–109.
  2. Rowley J.D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973; 243: 290–3.
  3. Телегеев Г.Д., Дубровская А.Н., Дыбков М.В. и др. Роль белка BCR-ABL в лейкогенезе. Экспериментальная онкология. 1999; 21: 182–94. [Telegeev G.D., Dubrovskaya A.N., Dybkov M.V. et al. The role of BCR-ABL protein in leukomogenesis. Eksperimental’naya onkologiya. 1999; 21: 182–94. (In Russ.)]
  4. Туркина А.Г., Челышева Е.Ю. Стратегия терапии хронического ми- елолейкоза: возможности и перспективы. Терапевтический архив. 2013; 85(7): 4–9. [Turkina A.G., Chelysheva E.Yu. Therapeutic strategy for chronic myeloid leukemia: potentials and prospects. Terapevticheskii arkhiv. 2013; 85(7): 4–9. (In Russ.)]
  5. Dongen van J.J.M., Macintyre E.A., Gabert J.A. et al. Standardized RTPCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia. 1999; 13(12): 1901–28.
  6. Verma D., Kantarjian H.M., Jones D. et al. Chronic myeloid leukemia (CML) with P190 BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood. 2009; 114: 2232–5.
  7. Beel K.A., Lemmens J., Vranckx H. et al. CML with e6a2 BCR-ABL1 transcript: an aggressive entity? Ann. Hematol. 2011; 90: 1241–3.
  8. Demehri S., Paschka P., Schultheis B. et al. e8a2 BCR–ABL: more frequent than other atypical BCR–ABL variants? Leukemia. 2005; 19: 681–4.
  9. Martin S.E., Sausen M., Joseph A., Kingham B.F. Chronic myeloid leukemia with e19a2 atypical transcript: early Imatinib resistance and complete response to dasatinib. Cancer Gen. Cytogen. 2010; 201(2): 133–4.
  10. Langabeer S.E., McCarron S.L., Carrol P. et al. Molecular response to first line nilotinib in a patient with e19a2 BCR-ABL 1 chronic myeloid leukemia. Leuk. Res. 2011; 35: 169–70.
  11. Baccarani M., Deininger M., Rosti G. et al. European Leukemia Net Recommendations for the Management of Chronic Myeloid Leukemia: 2013. Blood. 2013; 122(6): 872–84.
  12. Цаур Г.А., Друй А.Е., Попов А.М. и др. Возможность использования микроструйных биочипов для оценки качества и количества РНК у па- циентов с онкологическими и онкогематологическими заболеваниями. Вестник Уральской медицинской академической науки. 2011; 4(37): 107–11. [Tsaur G.A., Drui А.Е., Popov А.М. et al. Microfluidic biochips for RNA quantity and quality evaluation in patients with oncological and oncohematological disorders. Vestnik Ural’skoi meditsinskoi akademicheskoi nauki. 2011; 4(37): 107–11. (In Russ.)]
  13. Tabassum N., Saboor M., Moinuddin M. et al. Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan. Pakist. J. Med. Sci. 2014; 30(4): 850–3.
  14. Yaghmaie M., Seyed H., Ghaffari H. et al. Frequency of BCR-ABL fusion transcripts in Iranian patients with chronic myeloid leukemia. Arch. Iran. Med. 2008; 11(3): 247–51.
  15. Goh H.-G., Hwang J.-Y., Kim S.-H. et al. Comprehensive analysis of BCRABL transcript types in Korean CML patients using a newly developed multiplex RT-PCR. Transl. Res. 2006; 148(5): 249–56.
  16. Ito T., Tanaka H., Tanaka K. et al. Insertion of a genomic fragment of chromosome 19 between BCR intron 19 and ABL intron 1a in a chronic myeloid leukaemia patient with BCR-ABL (e19a2) transcript. Br. J. Hematol. 2004; 126: 750–5.
  17. Bennour A., Ouahchi I., Achour B. et al. Analysis of the clinico-hematological relevance of the breakpoint location within M-BCR in chronic myeloid leukemia. Med. Oncol. 2013; 30: 348.
  18. Pane F., Frigeri F., Sindona M. et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR-ABL with C3/A2 Junction). Blood 1996; 88 (7): 2410-2414.
  19. Vefring H.K., Gruber F.X.E., Wee L. et al. Chronic myelogenous leukemia with the e6a2 BCR-ABL and lacking Imatinib response: presentation of two cases. Acta Haematol. 2009; 122: 11–6.
  20. Schnittger S., Bacher U., Kern W. et al. A new case with rare e6a2 BCR– ABL fusion transcript developing two new resistance mutations during imatinib mesylate, which were replaced by T315I after subsequent dasatinib treatment. Leukemia. 2008; 22: 856–88.
  21. Breccia M., Cannella L., Diverio D. et al. Isolated thrombocytosis as first sign of chronic myeloid leukemia with e6a2 BCR/ABL fusion transcript, JAK2 negativity and complete response to Imatinib. Leuk. Res. 2008; 32: 177–80.
  22. Schultheis B., Wang L., Clark R.E. et al. BCR-ABL with an e6a2 fusion in a CML patient diagnosed in blast crisis. Leukemia. 2003; 17: 2054–5.
  23. Popovici C., Cailleres S., David M. et al. e6a2 BCR-ABL fusion with BCR exon 5-deleted transcript in a Philadelphia positive CML responsive to Imatinib. Leuk. Lymphoma. 2005; 46(9): 1375–7.
  24. Roti G., Starza R., Gorello P. et al. e6a2 BCR/ABL1 fusion with cryptic der(9)t(9;22) deletions in a patient with chronic myeloid leukemia. Haematologica. 2005; 90: 1139–41.
  25. Branford S., Rudzki Z., Hughes T.P. A novel BCR-ABL transcript (e8a2) with the insertion of an inverted sequence of ABL intron I b in a patient with Philadelphia-positive chronic myeloid leukaemia. Br. J. Hematol. 2000; 109: 635–7.
  26. Cayuela J.-M., Rousselot P., Nicolini F. et al. Identification of a rare e8a2 BCR-ABL fusion gene in three novel chronic myeloid leukemia patients treated with Imatinib. Leukemia. 2005; 19: 2234–6.
  27. Tchirkov A., Couderc J.-L., Perissel B. et al. Major molecular response to imatinib in a patient with chronic myeloid leukemia expressing a novel form of e8a2 BCR-ABL transcript. Leukemia. 2006; 20: 167–8.
  28. Sugimoto T., Ijima K., Hisatomi H. et al. Second case of CML with aberrant BCR-ABL fusion transcript (e8/a2) with insertion of an inverted ABL intron 1b sequence. Am. J. Hematol. 2004; 77: 164–6.
  29. Martinelli G., Terragna C., Amabile M. et al. Alu and translisin recognition site sequences flank translocation sites in a novel type of chimeric BCR-ABL transcript and suggest a possible general mechanism for BCR-ABL breakpoints. Haematologica. 2000; 85: 40–6.
  30. How G., Lim L., Kulkarni S. et al. Two patients with novel BCR/ABL fusion transcripts (e8/a2 and e13/a2) resulting from translocation breakpoints within BCR exons. Br. J. Haematol. 1999; 105: 434–6.
  31. Qin Y.Z., Jiang B., Jiang Q. et al. Imatinib mesylate resistance in a chronic myeloid leukemia patient with a novel e8a2 BCR-ABL transcript variant. Acta Haematol. 2008; 120: 146–9.
  32. Park I.J., Lim Y.A., Lee W.G. et al. A case of chronic myelogenous leukemia with e8a2 fusion transcript. Cancer Gen. Cytogen. 2008; 185: 106–8.
  33. Burmeister T., Reinhardt R. A multiplex PCR for improved detection of typical and atypical BCR-ABL fusion transcripts. Leuk. Res. 2008; 32: 579–85.
  34. Дубина М.В., Куевда Д.А., Хомякова Т.Е. и др. Молекулярный мони- торинг эффективности терапии больных хроническим миелолейкозом в России (по материалам Всероссийской научно-практической конфе- ренции, Иркутск, 3–4 сентября 2010 г.). Современная онкология. 2010; 4: 9–15. [Dubina M.V., Kuevda D.A., Khomyakova T.E. et al. Molecular monitoring of the treatment efficacy in patients with chronic myeloid leukemia in Russia (Materials of Russian Theoretical and Practical Conference, Irkutsk, September 3–4, 2010). Sovremennaya onkologiya. 2010; 4: 9–15. (In Russ.)]
  35. Hughes T., Deininger M., Hochhaus A. et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors — review and recommendations for ‘harmonizing’ current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006; 108: 28–37.
  36. Schliben S., Borkhardt A., Reinisch J. et al. Incidence and clinical outcome of children with BCR-ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-FM-90 and CoALL-05-92. Leukemia. 1996; 10: 957–63.