Aureobasidium pullulans-Associated Invasive Mycosis in a Child with Acute Myeloblastic Leukemia: A Case Report

NS Bagirova1, AV Popa1, ТS Bogomolova2, NA Batmanova1, NV Dmitrieva1, IN Petukhova1, EN Sokolova1

1 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 II Mechnikov North-Western State Medical University, 41 Kirochnaya str., Saint Petersburg, Russian Federation, 191015

For correspondence: Nataliya Sergeevna Bagirova, MD, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: 8(499)324-18-60; e-mail:

For citation: Bagirova NS, Popa AV, Bogomolova ТS, et al. Aureobasidium pullulans-Associated Invasive Mycosis in a Child with Acute Myeloblastic Leukemia: A Case Report. Clinical oncohematology. 2018;11(3):259–64.

DOI: 10.21320/2500-2139-2018-11-3-259-264


Severe mycotic infection occurring mainly in immunocompromised patients often exacerbates the progression of the primary oncohematological disease. It is the first attempt in Russian literature to present clinical and microbiological characteristics of invasive mycosis caused by Aureobasidium pullulans in a child with acute myeloblastic leukemia after receiving cytoreductive and antifungal treatment with favourable outcome.

Keywords: Aureobasidium pullulans, acute myeloblastic leukemia, invasive mycosis.

Received: January 15, 2018

Accepted: April 8, 2018

Read in PDF 


  1. Revankar SG, Sutton DA. Melanized Fungi in Human Disease. Clin Microbiol Rev. 2010;23(4):884–928. doi: 10.1128/CMR.00019-10.
  2. Hussain N, Revankar SG. Black Mold Infections: What We Know and What We Need to Know. Curr Clin Microbiol Rpt. 2017;4(2):106–11. doi: 10.1007/s40588-017-0062-x.
  3. Salkin IF, Martinez JA, Kemna ME. Opportunistic infection of the spleen caused by Aureobasidium pullulans. J Clin Microbiol. 1986;23(5):828–31.
  4. Najafzadeh MJ, Sutton DA, Keisari MS, et al. In Vitro Activities of Eight Antifungal Drugs against 104 Environmental and Clinical Isolates of Aureobasidium pullulans. Agents Chemother. 2014;58(9):5629–31. doi: 10.1128/AAC.03095-14.

Invasive Zygomycosis: Epidemiology and Clinical Features (Review)

NS Bagirova

N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Nataliya Sergeevna Bagirova, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-18-60; e-mail:

For citation: Bagirova NS. Invasive Zygomycosis: Epidemiology and Clinical Features (Review). Clinical oncohematology. 2016;9(1):84–9 (In Russ).

DOI: 10.21320/2500-2139-2016-9-1-84-89


The invasive zygomycosis is the third most common mycosis following invasive candidiasis and aspergillosis. Patients with hematological malignancies and patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) are two main risk groups for the disease. In addition, zygomycosis is important for patients with diabetes. The review presents detailed description of epidemiology, risk factors, clinical types of zygomycosis, and features of therapy.

Keywords: zygomycosis, invasive zygomycosis, Zygomycetes.

Received: October 9, 2015

Accepted: November 1, 2015

Read in PDF (RUS) pdficon


  1. Petrikkos G, Skiada A, Lortholary O, et al. Epidemiology and Clinical Manifestations of Mucormycosis. Clin Infect Dis. 2012;54(S1):S23–34. doi: 10.1093/cid/cir866.
  2. Skiada A, Pagano L, Groll A, et al. European Confederation of Medical Mycology Working Group on Zygomycosis. Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin Microbiol Infect. 2011;17:1859–67. doi: 10.1111/j.1469-0691.2010.03456.x.
  3. Katragkou A, Walsh TJ, Roilides E. Why is mucormycosis more difficult to cure than more common mycoses? Clin Microbiol Infect. 2014;20(Suppl. 6):74–81. doi: 10.1111/1469-0691.12466.
  4. Zilberberg MD, Shorr AF, Huang H, et al. Hospital days, hospitalization costs, and inpatient mortality among patients with mucormycosis: a retrospective analysis of US hospital discharge data. BMC Infect Dis. 2014;14:310. doi: 10.1186/1471-2334-14-310.
  5. Blandine R, Lanternier F, Zahar J-R, et al. Healthcare-associated mucormycosis. Clin Infect Dis. 2012;54(Suppl. 1):S44–54. doi: 10.1093/cid/cir867.
  6. Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev. 2000;13:236–301. doi: 10.1128/cmr.13.2.236-301.2000.
  7. Shenoi S, Emery HM. Successful treatment of invasive gastric mucormycosis in a child with systemic lupus erythematosus. Lupus. 2010;19:646–9. doi: 10.1177/0961203309349117.
  8. Wingard JR, Carter SL, Walsh TJ, et al. Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation. Blood. 2010;116:5111–8. doi: 10.1182/blood-2010-02-268151.
  9. Marks DI, Pagliuca A, Kibbler CC, et al. Voriconazole versus itraconazole for antifungal prophylaxis following allogeneic haematopoietic stem-cell transplantation. Br J Haematol. 2011;155:318–27. doi: 10.1111/j.1365-2141.2011.08838.x.
  10. Zaoutis TE, Roilides E, Chiou CC, et al. Zygomycosis in children: a systematic review and analysis of reported cases. Pediatr Infect Dis J. 2007;26:723–7. doi: 10.1097/inf.0b013e318062115c.
  11. Chamilos G, Marom EM, Lewis RE, et al. Predictors of pulmonary mucormycosis versus invasive pulmonary aspergillosis in patients with cancer. Clin Infect Dis. 2005;41:60–6. doi: 10.1086/430710.
  12. Wahba H, Truong MT, Lei X, et al. Reversed halo sign in invasive pulmonary fungal infections. Clin Infect Dis. 2008;46:1733–7. doi: 10.1086/587991.
  13. Roden MM, Zaoutis TE, Buchanan WL, et al. Epidemiology and outcome of mucormycosis: a review of 929 reported cases. Clin Infect Dis. 2005;41:634–53. doi: 10.1086/432579.
  14. Ibrahim AS, Gebremariam T, Husseiny MI, et al. Comparison of lipid amphotericin B preparations in treating murine zygomycosis. Antimicrob Agents Chemother. 2008;52:1573–6. doi: 10.1128/aac.01488-07.
  15. Lewis RE, Liao G, Hou J, et al. Comparative analysis of amphotericin B lipid complex and liposomal amphotericin B kinetics of lung accumulation and fungal clearance in a murine model of acute invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2007;51:1253–8. doi: 10.1128/aac.01449-06.
  16. Lewis RE, Albert ND, Liao G, et al. Comparative pharmacodynamics of amphotericin B lipid complex and liposomal amphotericin B in a murine model of pulmonary mucormycosis. Antimicrob Agents Chemother. 2010;54:1298–304. doi: 10.1128/aac.01222-09.
  17. Chamilos G, Lewis RE, Kontoyiannis DP. Delaying amphotericin B-based frontline therapy significantly increases mortality among patients with hematologic malignancy who have zygomycosis. Clin Infect Dis. 2008;47:503–9. doi: 10.1086/590004.
  18. Walsh TJ, Gamaletsou MN, McGinnis MR, et al. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis (zygomycosis). Clin Infect Dis. 2012;54(Suppl. 1):S55–60. doi: 10.1093/cid/cir868.
  19. Lewis RE, Lortholary O, Spellberg B, et al. How does antifungal pharmacology differ for mucormycosis versus aspergillosis? Clin Infect Dis. 2012;54(Suppl. 1):S67–72. doi: 10.1093/cid/cir884.

Diagnostic Value of C-Reactive Protein as Marker of Infections in Patients with De Novo Acute Myeloid Leukemias

L.N. Tarasova1, S.G. Vladimirova1, V.V. Cherepanova2

1 Kirov Scientific Research Institute for Hematology and Blood Transfusion under the Federal Medico-Biological Agency of Russia, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

2 Municipal Hospital No. 33, 54 pr-t Lenina, Nizhny Novgorod, Russian Federation, 603122

For correspondence: Lyudmila Nikolaevna Tarasova, DSci, Professor, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; Tel.: +7(8332)67-57-00; e-mail:

For citation: Tarasova LN, Vladimirova SG, Cherepanova VV. Diagnostic Value of C-Reactive Protein as Marker of Infections in Patients with De Novo Acute Myeloid Leukemias. Clinical oncohematology. 2015;8(4):442–446 (In Russ).

DOI: 10.21320/2500-2139-2015-8-4-442-446


Aim. To determine diagnostically relevant C-protein levels (CRP) as an early infection marker in patients with de novo acute myeloid leukemias (AML), to evaluate the dependence of CRP concentrations on the WBC count and leukemic blast cells in the peripheral blood.

Methods. CRP was tested in 39 patients with de novo AML (17 males and 22 females) at the age of 20 to 76 years (median age is 49). AML types according to the FAB grading were as follows: М0 — 2, М1 — 4, М2 — 23, М4 — 8, and М5 — 2 patients.

Results. CRP concentrations in patients without symptoms of an infection (n = 16) were within the range from 0 to 43 mg/l (median 5.5 mg/l). The Spearman’s rank correlation coefficients between the CRP level and WBC and blast cell counts were 0.664 (= 0.006) and 0.473 (= 0.062), respectively. The obtained data confirm activation of CRP synthesis in case of leukemia. In patients with an infection and/or fever (n = 23), CRP levels were significantly higher than those in patients without an infection: 8–383 mg/l (median 81 mg/l). No correlation between the CRP level and WBC and blast cell counts was found. Therefore, the CRP synthesis during the onset of AML is significantly increased as a response to the infection. In groups of patients with and without infections, 95% CI were equal to 0–40 mg/l and 12–315 mg/l, respectively. Since they overlap within the range from 12 to 40 mg/l, they may be considered a «grey zone». The CRP concentrations within this range suggest infection. CRP levels lower than 12 mg/l or higher than 40 mg/l with a high degree of probability confirm either absence or presence of infectious complications, respectively.

Conclusion. Therefore, CRP is an accessible and informative marker of infection in patients with AML during the onset of the disease. Monitoring of its levels permits to start a timely antimicrobial therapy; at that, the efficacy of the therapy can be assessed based on the dynamics of this parameter.

Keywords: acute myeloid leukemias, infectious complications, acute-phase proteins, C-reactive protein, blast cells, white blood cells.

Received: April 20, 2015

Accepted: October 22, 2015

Read in PDF (RUS)pdficon


  1. Абдулкадыров К.М., Чуданова Т.В. Диагностика и лечение бактериальных и микотических инфекций у больных гемобластозами. Вестник гематологии. 2005;1(3):5–13.
    [Abdulkadyrov KM, Chudanova TV. Diagnosis and treatment of bacterial and mycotic infections in patients with hemoblastoses. Vestnik gematologii. 2005;1(3):5–13. (In Russ)]
  2. Галстян Г.М., Городецкий В.М., Шулутко Е.М. и др. Полиорганная патология при септическом шоке у больных с гемобластозами. Анестезиология и реаниматология. 2000;2:36–40.
    [Galstyan GM, Gorodetskii VM, Shulutko EM, et al. Multiple organ impairment associated with septic shock in patients with hemoblastoses. Anesteziologiya i reanimatologiya. 2000;2:36–40. (In Russ)]
  3. Черепанова В.В., Перевалова Н.Н., Тарасова Л.Н. и др. Нарушения гемостаза у больных острым миелобластным лейкозом в процессе полихимиотерапии. Гематология и трансфузиология. 2004;49(5):27–33.
    [Cherepanova VV, Perevalova NN, Tarasova LN, et al. Impairment of hemostasis in patients with acute myeloblastic leukemia during polychemotherapy. Gematologiya i transfuziologiya. 2004;49(5):27–33. (In Russ)]
  4. Паровичникова Е.Н., Савченко В.Г., Исаев В.Г. и др. Итоги многоцентрового рандомизированного исследования по лечению острых миелоидных лейкозов взрослых. Терапевтический архив. 2007;79(7):14–9.
    [Parovichnikova EN, Savchenko VG, Isaev VG, et al. Results of multicenter, randomized study to treat acute myeloid leukemia in adults. Terapevticheskii arkhiv. 2007;79(7):14–9. (In Russ)]
  5. Птушкин В.В., Багирова Н.С. Инфекционные осложнения у больных с онкогематологическими заболеваниями. В кн.: Клиническая онкогематология: руководство для врачей. Под ред. М.А. Волковой. М.: Медицина, 2001. С. 507–28.
    [Ptushkin VV, Bagirova NS. Infectious complications in patients with oncohematological malignancies. In: Volkova MA, ed. Klinicheskaya onkogematologiya: rukovodstvo dlya vrachei. (Clinical oncohematology: manual for physicians.) Moscow: Meditsina Publ.; 2001. p. 507–28. (In Russ)]
  6. Альес В.Ф., Миронов П.И., Шадчнев А.П. Этиология, эпидемиология и классификация сепсиса у детей. Анестезиология и реаниматология. 2002;1:63–6.
    [Al’es VF, Mironov PI, Shadchnev AP. Etiology, epidemiology, and classification of sepsis in children. Anesteziologiya i reanimatologiya. 2002;1:63–6. (In Russ)]
  7. Levy MN, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31(4):1250–6. doi: 10.1097/01.ccm.0000050454.01978.3b.
  8. Белобородова Н.В., Попов Д.А. Диагностическая ценность некоторых маркеров инфекции в раннем послеоперационном периоде у кардиохирургических больных. Анестезиология и реаниматология. 2005;3:45–9.
    [Beloborodova NV, Popov DA. Diagnostic value of several infection markers during early postoperation period in cardiosurgical patients. Anesteziologiya i reanimatologiya. 2005;3:45–9. (In Russ)]
  9. Миронов И.П., Цыденжапов Е.Ц., Михельсон В.А. Эволюция терминологии сепсиса у детей в последнее десятилетие. Анестезиология и реаниматология. 2006;1:69–73.
    [Mironov IP, Tsydenzhapov ETs, Mikhel’son VA. Evolution of sepsis terminology in children over last decade. Anesteziologiya i reanimatologiya. 2006;1:69–73. (In Russ)]
  10. Abraham E, Matthay MF, Dinarello CA. Consensus Conference Definitions For Sepsis, Septic Shock, Acute Lung Injury And Acute Respiratory Distress Syndrome: Time For A Reevaluation. Crit Care Med. 2000;28(1):232–5. doi: 10.1097/00003246-200001000-00039.
  11. Титов В.Н., Близнюков О.П. С-реактивный белок: физико-химические свойства, методы определения и диагностическое значение. Клиническая лабораторная диагностика. 2004;4:3–9.
    [Titov VN, Bliznyukov OP. C-reactive protein: physico-chemical properties, test methods and diagnostic value. Klinicheskaya laboratornaya diagnostika. 2004;4:3–9. (In Russ)]
  12. Шепеленко А.Ф., Хацкевич В.Л., Лищенюк О.А. и др. Роль гуморальных маркеров активности воспаления в оценке адекватности стартовой антибактериальной химиотерапии внебольничной пневмонии. Военно-медицинский журнал. 2005;1:25–30.
    [Shepelenko AF, Khatskevich VL, Lishchenyuk OA, et al. Role of humoral markers of activity of inflammation in assessment of starting antibacterial chemotherapy of community-acquired pneumonia. Voenno-meditsinskii zhurnal. 2005;1:25–30. (In Russ)]
  13. Lopez JV, Rojo JM, Rodriguez OM, et al. Fever In Emergency Department: Screening For Severe Disease. Rev Clin Esp. 2008;208(3):130–4. doi: 10.1157/13115820.
  14. Тарасова Л.Н., Черепанова В.В., Мустафина Г.Н., Владимирова С.Г. С-реактивный белок как маркер инфекции у больных острым миелобластным лейкозом. Гематология и трансфузиология. 2009;54(5):27–31.
    [Tarasova LN, Cherepanova VV, Mustafina GN, Vladimirova SG. C-reactive protein as marker of infection in patients with acute myeloblast leukemia. Gematologiya i transfuziologiya. 2009;54(5):27–31. (In Russ)]
  15. Simon L, Gauvin F, Amre DK, et al. Serum procalcitinin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Bacter Dis. 2004;39:206–17. doi: 10.1086/421997.
  16. Владимирова С.Г., Тарасова Л.М., Скольская О.Ю., Черепанова В.В. С-реактивный белок как маркер тяжести инфекционного процесса у больных острым миелоидным лейкозом при нейтропении. Терапевтический архив. 2013;85(11):34–40.
    [Vladimirova SG, Tarasova LM, Skol’skaya OYu, Cherepanova VV. C-reactive protein as marker of severity of infection in patients with acute myeloid leukemia in neutropenia. Terapevticheskii arkhiv. 2013;85(11):34–40. (In Russ)]
  17. Владимирова С.Г., Тарасова Л.М., Докшина И.А., Черепанова В.В. Оценка чувствительности и специфичности метода определения С-реактивного белка при диагностике инфекционных осложнений у больных острым лимфобластным лейкозом, получающих химиотерапию. Клиническая лабораторная диагностика. 2014;59(11):17–21.
    [Vladimirova SG, Tarasova LM, Dokshina IA, Cherepanova VV. Evaluation of sensitivity and specificity of test method for C-reactive protein in diagnosis of infectious complications in patients with acute lymphoblast leukemia on chemotherapy. Klinicheskaya laboratornaya diagnostika. 2014;59(11):17–21. (In Russ)]
  18. Антонов В.Г., Козлов В.К. Патогенез онкологических заболеваний: иммунные и биохимические феномены и механизмы. Внеклеточные и клеточные механизмы общей иммунодепрессии и иммунной резистентности. Цитокины и воспаление. 2004;3(1):8–19.
    [Antonov VG, Kozlov VK. Pathogenesis on oncological diseases: immune and biological phenomena and mechanisms. Extracellular and cellular mechanisms of general immunosuppression and immune resistance. Tsitokiny i vospalenie. 2004;3(1):8–19. (In Russ)]
  19. Kwaan HC. Double hazard of thrombophilia and bleeding in leukemia. Hematol ASH Educ Book. 2007;1:151–7. doi: 10.1182/asheducation-2007.1.151.
  20. Галстян Г.М., Берковский А.Л., Зуева А.В. и др. Фактор некроза опухоли, интерлейкин-6, эндотоксин и прокальцитонин при септическом шоке у больных с опухолевыми заболеваниями системы крови. Терапевтический архив. 2002;74(7):56–61.
    [Galstyan GM, Berkovskii AL, Zueva AV, et al. Tumor necrosis factor, interleukin-6, endotoxin, and procalcitonin in septic shock in patients with hematological malignancies. Terapevticheskii arkhiv. 2002;74(7):56–61. (In Russ)]
  21. Carrigan SD, Scott G, Tabrizian M. Toward resolving the challenges of sepsis diagnosis. Clin Chem. 2004;50(8):1301–14. doi: 10.1373/clinchem.2004.032144.
  22. Косякова Н.И., Прохоренко С.В., Прохоренко И.Р. Дисбаланс продукции цитокинов у больных тяжелым хирургическим сепсисом. Иммунология. 2005;5:319–21.
    [Kosyakova NI, Prokhorenko SV, Prokhorenko IR. Disbalance of cytokine production in patients with severe surgical sepsis. Immunologiya. 2005;5:319–21. (In Russ)]
  23. Козлов В.К. Дисфункция иммунной системы в патогенезе сепсиса: возможности диагностики. Цитокины и воспаление. 2006;5(2):15–28.
    [Kozlov VK. Immune system dysfunction in pathogenesis of sepsis: possibilities of diagnosis. Tsitokiny i vospalenie. 2006;5(2):15–28. (In Russ)]
  24. ГОСТ Р 53022. Технологии лабораторные клинические. Требования к качеству клинических лабораторных исследований. Часть 3. Правила оценки клинической информативности лабораторных тестов. М., 2008.
    [GOST Р 53022. Clinical laboratory technologies. Requirements to quality of clinical laboratory investigations. Part 3. Guidelines for evaluation of clinical information value of lab tests. Moscow; 2008. (In Russ)]
  25. Клясова Г.А. Антимикробная терапия. В кн.: Программное лечение заболеваний системы крови: сборник алгоритмов диагностики и протоколов лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2012. С. 829–53.
    [Klyasova GA. Antimicrobial therapy. In: Savchenko VG, ed. Programmnoe lechenie zabolevanii sistemy krovi: sbornik algoritmov diagnostiki i protokolov lecheniya zabolevanii sistemy krovi. (Program treatment of hematological diseases: collection of algorithms of diagnosing and treatment protocols of hematological diseases.) Moscow: Praktika Publ.; 2012. p. 829–53. (In Russ)]

Local Immunity in Hematological Patients with Oropharyngeal Candidiasis

E.Yu. Danilovа, N.V. Shabashova, E.V. Frolova, A.E. Uchevatkina, L.V. Filippova

I.I. Mechnikov North-West State Medical University under the Ministry of Health of Russia, 41 Kirochnaya str., Saint Petersburg, Russian Federation, 191015

For correspondence: Evgeniya Yur’evna Danilova, graduate student in the Department of Clinical Mycology, 41 Kirochnaya str., Saint Petersburg, Russian Federation, 191015; Tel.: +7(812)303-51-41; e-mail:

For citation: Danilova EYu, Shabashova NV, Frolova EV, et al. Local Immunity in Hematological Patients with Oropharyngeal Candidiasis. Clinical oncohematology. 2015;8(4):436–441 (In Russ).

DOI: 10.21320/2500-2139-2015-8-4-436-441


Aim. To evaluate the incidence of oropharyngeal candidiasis (OFC) among oncohematological patients depending on the type of the malignancy and anti-tumor treatment, as well as to assess key cytokine levels in saliva samples.

Methods. 430 patients were enrolled in the study, and 85 samples of saliva were collected from patients with OFC (n = 38) and without it. The control group consisted of 19 healthy volunteers.

Results. The OFC incidence was 9 % and it did not depend on the immunomorphological type of the malignancy and the type of chemotherapy. Before the anti-tumor treatment, TNF-a, IL-17 and G-CSF levels in saliva samples were elevated in all patients. The TNF-a (< 0.05) synthesis was decreased after the anti-tumor treatment. Besides, a tendency to reduced G-CSF and IL-17 production was found. In patients with OFC, MCP-1, IL-17, IFN-g levels were decreased.

Conclusion. In OFC patients with hematopoietic and lymphoid tissue malignancies, impairment of basic types of local antifungal protection was found.

Keywords: oropharyngeal candidiasis, hematopoietic and lymphoid tissue malignancies, local immunity, Candida spp.

Received: July 1, 2015

Accepted: November 9, 2015

Read in PDF (RUS)pdficon


  1. Новик А.А., Иванов Р.А. Клеточная терапия. М.: МИА, 2008. 240 с.
    [Novik AA, Ivanov RA. Kletochnaya terapiya. (Cytotherapy.) Moscow: MIA Publ.; 2008. 240 p. (In Russ)]
  2. Шабашова Н.В. Грибы и иммунитет: Учебное пособие. СПб.: СПбМАПО, 2008. 82 с.
    [Shabashova NV. Griby i immunitet: Uchebnoe posobie. (Fungi and immunity: Textbook.) Saint Petersburg: SPbMAPO Publ.; 2008. 82 p. (In Russ)]
  3. Шабашова Н.В. Особенности локального иммунного ответа и его дефекты при орофарингеальном кандидозе (обзор). Проблемы медицинской микологии. 2010;12(4):3–9.
    [Shabashova NV. Characteristics of local immune response and its defects in oropharyngeal candidiasis (review). Problemy meditsinskoi mikologii. 2010;12(4):3–9. (In Russ)]
  4. Leigh JE, Shetty K, Fidel PL. Oral opportunistic infections in HIV-Positive individuals: review and role of mucosal immunity. AIDS Patient Care STDs. 2004;18(8):443–56. doi: 10.1089/1087291041703665.
  5. Данилова Е.Ю., Шабашова Н.В. Частота орофарингеального кандидоза у онкогематологических больных. Вестник гематологии. 2012;18(1):90.
    [Danilova EYu, Shabashova NV. Incidence of oropharyngeal candidiasis in oncohematological patients. Vestnik gematologii. 2012;18(1):90. (In Russ)]
  6. Данилова Е.Ю., Шабашова Н.В., Фролова Е.В. и др. Некоторые особенности локального иммунитета у онкогематологических больных с орофарингеальным кандидозом (тезисы). Цитокины и воспаление. 2014;13(1):92.
    [Danilova EYu, Shabashova NV, Frolova EV, et al. Some feature of local immunity in oncohematological patients with oropharyngeal candidais (abstract). Tsitokiny i vospalenie. 2014;13(1):92. (In Russ)]
  7. Данилова Е.Ю., Шабашова Н.В., Фролова Е.В. и др. Candida spp. в микробиоцинозе полости рта у онкогематологических больных (тезисы). Проблемы медицинской микологии. 2014;16(2):60.
    [Danilova EYu, Shabashova NV, Frolova EV, et al. Candida spp. in microbiocenosis of the oral cavity in oncohematological patients (abstract). Problemy meditsinskoi mikologii. 2014;16(2):60. (In Russ)]
  8. Климко Н.Н., Козлова Я.И., Хостелиди С.Н. Распространенность тяжелых и хронических микотических заболеваний в Российской Федерации по модели Life Program. Проблемы медицинской микологии. 2014;16(1):5.
    [Klimko NN, Kozlova Ya.I, Khostelidi SN. Prevalence of severe and chronic mycotic diseases in the Russian Federation in accordance with the Life Program model. Problemy meditsinskoi mikologii. 2014;16(1):5. (In Russ)]
  9. Conti HR, Baker О, Freeman AF. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucos Immunol. 2011;4(4):448–55. doi: 10.1038/mi.2011.5.
  10. Villar CC, Dongari-Bagtzoglou A. Immune defense mechanisms and immunoenhancement strategies in oropharyngeal candidiasis. Exp Rev Mol Med. 2008;10:29. doi: 10.1017/s1462399408000835.
  11. Conti HR, Shen F, Nayyar N, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exper Med. 2009;206(2):299–311. doi: 10.1084/jem.20081463.
  12. Данилова Е.Ю., Шабашова Н.В., Фролова Е.В. и др. Локальный синтез цитокинов и микробная нагрузка при орофарингеальном кандидозе у больных гемобластозами. Проблемы медицинской микологии. 2015;17(1):8–13.
    [Danilova EYu, Shabashova NV, Frolova EV, et al. Local synthesis of cytokines and microbial load in oropharyngeal candidiasis in patients with hemoblastoses. Problemy meditsinskoi mikologii. 2015;17(1):8–13. (In Russ)]
  13. Baggiolini M, Walz A, Kunkel SL. Neutrophil-activating peptide-1/interleukin-8, a novel cytokine that activates neutrophils. J Clin Invest. 1989;84(4):1045–9. doi: 10.1172/jci114265.
  14. Dongari-Bagtzoglou A, Villar CC, Kashleva H. Candida albicans-infected oral epithelial cells augment the anti-fungal activity of human neutrophils in vitro. Med Mycol. 2005;43:545–9. doi: 10.1080/13693780500064557.
  15. Chattopadhyay A. Salivary secretory leukocyte protease inhibitor and oral candidiasis in human immunodeficiency virus type 1-infected persons. Infect Immun. 2004;72(4):956–63. doi: 10.1128/iai.72.4.1956-1963.2004.
  16. Edgerton ML, Koshlukova SE, Araujo MW. Salivary histatin 5 and human neutrophil defensin 1 kill Candida albicans via shared pathways. Antimicrob Agents Chemother. 2000;44(12):3310–6. doi: 10.1128/aac.44.12.3310-3316.2000.

Taxonomic Structure and Antibiotic Resistance of Bloodstream Infection Pathogens in Oncohematological Patients

NS Bagirova

N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Natal’ya Sergeevna Bagirova, DSci, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-18-60; e-mail:

For citation: Bagirova NS. Taxonomic Structure and Antibiotic Resistance of Bloodstream Infection Pathogens in Oncohematological Patients. Clinical oncohematology. 2015;8(2):191–200 (In Russ).


Background & Aims. In oncohematology, infections are one of main causes of morbidity and mortality in patients with hematological malignancies. Changing epidemiological patterns of infections in patients with hematological malignancies are characterized not only by the appearance of new pathogens of bloodstream infections, but also by the growth of pathogens resistant to antimicrobial drugs. It is important to conduct constant monitoring of taxonomic structure of bloodstream infections pathogens and their antimicrobial resistance in order to ensure adequate and timely treatment of severe infections. The aim of the study is the following: analysis of the taxonomic structure of pathogens isolated while diagnosing bacteremia in adult cancer patients using modern devices taking into account efficacy of the therapy of severe infections.

Methods. A microbiological study of blood samples of adult patients with hematological malignancies was carried out over the period from 2005 till 2013, if sepsis and other severe infections were suspected. Bacteremia was diagnosed using hematological analyzer/incubator Bactec FX400 (Becton Dickinson, USA) and Bact/Alert (BioMerieux, France), identification of strains was done using mass-spectrometer MALDI-TOF Microflex LT (Biotyper, Bruker Daltonics, Germany). Antimicrobial susceptibility was determined using automatic analyzers Microscan Walk Away 40/96+ (Siemens, Germany) and Vitek 2 (BioMerieux, France). Comparative data of foreign researchers are presented.

Results. 3794 blood cultures were obtained, 600 of which (15.8 %) demonstrated growth. Of 392 strains, only 210 (53.6 %) strains were considered true causative agents of bacteremia. No statistically significant differences in the frequency of isolation of Gram-positive cocci (47.6 %) and Gram-negative rods (39.5 %) were found. Fungi were significantly less common than Gram-positive cocci and Gram-negative rods (9 %; < 0.0001). Other microorganisms constituted 3.8 %.

Conclusion. Therapy and prevention of infectious complications in adult patients with hematological malignancies are accompanied by development of growing antibiotic resistance of pathogens. Changes in taxonomic structure of pathogens of bloodstream infections should be taken into account when prescribing the empirical and etiotropic treatment.

Keywords: infections, cancer, bloodstream infections, bacteriemia, antimicrobial resistance, oncohematological disorders, antimicrobial therapy.

Received: January 12, 2015

Accepted: January 30, 2015

Read in PDF (RUS)pdficon


  1. European Centre for Disease Prevention and Control (ECDC). Annual epidemiological report on communicable diseases in Europe 2008. Stockholm: ECDC; 2008.
  2. Pien BC, Sundaram P, Raoof N, et al. The clinical and prognostic importance of positive blood cultures in adults. Am J Med. 2010;123(9):819–28. doi: 10.1016/j.amjmed.2010.03.021.
  3. Dreyer AW. Blood Culture Systems: From Patient to Result. In: Azevedo L, ed. Sepsis – An Ongoing and Significant Challenge. InTech; 2012. pp. 287–310. doi: 10.5772/2958.
  4. Dellinger RP, Carlet JM, Masur H, et al. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32(3):858–73. doi: 10.1097/01.ccm.0000117317.18092.e4.
  5. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–96. doi: 10.1097/01.ccm.0000217961.75225.e9.
  6. Girmenia C, Menichetti F. Current Epidemiology and Prevention of Infectious Complications in Cancer Patients. Eur Oncol Haematol. 2011;7(4):270–7. doi: 10.17925/eoh.2011.07.04.270.
  7. Baron EJ, Miller JM, Weinstein MP, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)a. Clin Infect Dis. 2013;57(4): e22–e121. doi: 10.1093/cid/cit278.
  8. Багирова Н.С. Микробиологическая диагностика и рациональные подходы к терапии сепсиса у онкогематологических больных: Автореф. ¼ д-ра мед. наук. М., 2003. 274 с.
    [Bagirova NS. Mikrobiologicheskaya diagnostika i ratsional’nye podkhody k terapii sepsisa u onkogematologicheskikh bol’nykh. (Microbiological diagnosing and rational approaches to therapy of sepsis in oncohematological patients.) [dissertation] Moscow; 2003. 274 p. (In Russ)]
  9. Багирова Н.С., Дмитриева Н.В. Микробиологическая диагностика бактериемии. Пособие для врачей. М.: Министерство здравоохранения Российской Федерации, 2004. 35 с.
    [Bagirova NS, Dmitrieva NV. Mikrobiologicheskaya diagnostika bakteriemii. Posobie dlya vrachei. (Microbiological diagnosing of bacteriemia. Manual for physicians.) Moscow: Ministerstvo zdravookhraneniya Rossiiskoi Federatsii Publ.; 2004. 35 p. (In Russ)]
  10. Багирова Н.С. Современное состояние диагностики бактериемии. Сопроводительная терапия в онкологии. 2006;3:23–38.
    [Bagirova NS. State-of-the-art diagnostics of bacteriemia. Soprovoditel’naya terapiya v onkologii. 2006;3:23–38. (In Russ)]
  11. Laupland KB, Deirdre CL. Population-Based Epidemiology and Microbiology of сommunity-Onset Bloodstream Infections. Clin Microbiol Rev. 2014;27(4):647–64. doi: 10.1128/cmr.00002-14.
  12. Molnar Z, Fogas J. Timing IgM treatment in sepsis: is procalcitonin the answer? In: Vincent J-L, ed. Annual update in intensive care and emergency medicine 2012. Springer; 2012. pp. 109–15.
  13. Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical Practice Guideline for the Use of Antimicrobial Agents in Neutropenic Patients with Cancer: 2010 Update by the Infectious Diseases Society of America (IDSA Guidelines). Clin Infect Dis. 2011;52(4):e56–e93. doi: 10.1093/cid/cir073.
  14. European Centre for Disease Prevention and Control (ECDC). Annual epidemiological report on communicable diseases in Europe 2009. Stockholm, European Centre for Disease Prevention and Control (Surveillance Report – 2.6 Antimicrobial resistance and healthcare-associated infections); 2010. рр. 167–78.
  15. Bagirova N, Dmitrieva N. Bacteriemia in patients with hematological malignancies. J Clin Microbiol Infect Dis. 2005;11(Suppl 2):678.
  16. Bal AM, Garau J, Gould IM, et al. Vancomycin in the treatment of meticillin-resistant Staphylococcus auseus (MRSA) infection: End or an era? J Glob Antimic Resist. 2013;1(1):23–30. doi: 10.1016/j.jgar.2013.01.002.
  17. Peel T, Cheng AC, Spelman T, et al. Differing risk factor for vancomycin-resistant and vancomycin-sensitive enterococcal bacteraemia. J Clin Microbiol Infect Dis. 2011;18(4):388–94. doi: 10.1111/j.1469-0691.2011.03591.x.
  18. Kim YJ, Kim SI, Hong KW, et al. Carbapenem-resistant Acinetobacter baumannii: diversity of resistant mechanism and risk factor for infection. Epidemiol Infect. 2012;140(1):137–45. doi: 10.1017/s0950268811000744.
  19. Vila J, Pachon J. Acinetobacter baumannii resistant to everything: what should we do? J Clin Microbiol Infect Dis. 2011;17(7):955–6. doi: 10.1111/j.1469-0691.2011.03566.x.
  20. Villa-Fares X, Garcia de La Maria C, Lopez-Rojas R, et al. In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii. J Clin Microbiol Infect Dis. 2011;18(4):383–7. doi: 10.1111/j.1469-0691.2011.03581.x.
  21. Bagirova NS, Dmitrieva NV, Blokhin NN. Yeasts in patients (PTS) with hematologic malignancies (HM). Intern J Infect Dis. 2002;6(Suppl 2):S45. doi: 10.1016/s1201-9712(02)90273-0.
  22. Pfaller MA, Diekema DJ. Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J Clin Microbiol. 2012;50(9):2846–56. doi: 10.1128/jcm.00937-12.
  23. Ranque S, Lachaud L, Gari-Toussaint M, et al. Interlaboratory reproducibility of Etest amphotericin B and caspofungin yeast susceptibility testing and comparison with the CLSI method. J Clin Microbiol. 2012;50(7):2305–9. doi: 10.1128/jcm.00490-12.
  24. Rangaraj G, Granwehr BP, Jiang Y, et al. Perils of quinolone exposure in cancer patients: breakthrough bacteremia with multidrug-resistant organisms. Cancer. 2010;116(4):967–73. doi: 10.1002/cncr.24812.

Case of Pneumocystis Pneumonia after High-Dose Chemotherapy with Autologous Hematopoietic Transplantation

V.O. Sarzhevskii1, V.Ya. Melnichenk1, D.S. Kolesnikova1, O.Yu. Bronov1, V.M. Sotnikov2, N.N. Smoltsova2

1 N.I. Pirogov National Medical and Surgical Centre under the Ministry of Health of the Russian Federation, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203

2 Russian Scientific Center of Roentgenoradiology under the Ministry of Health of the Russian Federation, 86 Profsoyuznaya str., Moscow, Russian Federation, 117997

For correspondence: V.O. Sarzhevskii, PhD, Associate Professor, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203; Tel: +7(495)603-72-18; e-mail:

For citation: Sarzhevskii V.O., Mel’nichenko V.Ya., Kolesnikova D.S., Bronov O.Yu., Sotnikov V.M., Smol’tsova N.N. Case of Pneumocystis Pneumonia after High-Dose Chemotherapy with Autologous Hematopoietic Stem Cell Transplantation. Klin. Onkogematol. 2014; 7(4): 583–586 (In Russ.).


Pneumocystis pneumonia is a rare complication of a high-dose chemotherapy and autologous bone marrow/peripheral hematopoietic stem cells transplantation in patients with hematological malignances. The absence of typical clinical symptoms and the probability of a lethal outcome require a special approach to this problem. A brief review of literature and presented clinical case give an idea of clinical manifestations, course, diagnostic approaches, prevention, and treatment of pneumocystis pneumonia in this category of patients.

Keywords: autologous bone marrow transplantation, high-dose chemotherapy, pneumocystis pneumonia

Accepted: September 19, 2014

Read in PDF (RUS)pdficon


  1. Walzer P.D., Perl D.P., Krogstad D.J. et al. Pneumocystis carinii pneumonia in the United States: epidemiologic, diagnostic, and clinical features. Natl. Cancer Inst. Monogr. 1976; 43: 55–63.
  2. Green H., Paul M., Vidal L. et al. Prophylaxis of Pneumocystis pneumonia in immunocompromised non-HIV-infected patients: systematic review and metaanalysis of randomized controlled trials. Mayo Clin. Proc. 2007; 82(9): 1052–9.
  3. Colby C., McAfee S., Sackstein R. et al. A prospective randomized trial comparing the toxicity and safety of atovaquone with trimethoprim/ sulfamethoxazole as Pneumocystis carinii pneumonia prophylaxis following autologous peripheral blood stem cell transplantation. Bone Marrow Transplant. 1999; 24(8): 897–902.
  4. Sattler F.R., Cowan R., Nielsen D.M. et al. Trimethoprim-sulfamethoxazole compared with pentamidine for treatment of Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. A prospective, noncrossover study. Ann. Intern. Med. 1988; 109(4): 280–7.
  5. Hughes W., Leoung G., Kramer F. et al. Comparison of atovaquone (566C80) with trimethoprim-sulfamethoxazole to treat Pneumocystis carinii pneumonia in patients with AIDS. N. Engl. J. Med. 1993; 328(21): 1521–7.
  6. Metzner B., Gruneisl R., Gebauer W. et al. Late infectious complications after high-dose therapy and autologous blood stem cell transplantation. Med. Klin. (Munich) 2002; 97(11): 650–8.
  7. Decaudin D., Brousse N., Brice P. et al. Efficacy of autologous stem cell transplantation in mantle cell lymphoma: a 3-year follow-up study. Bone Marrow Transplant. 2000; 25(3): 251–6.
  8. Chen C.S., Boeckh M., Seidel K. Incidence, risk factors, and mortality from pneumonia developing late after hematopoietic stem cell transplantation. Bone Marrow Transplant. 2003; 32(5): 515–22.
  9. Chuu W.M., Catlett J.P., Perry D.J. Concurrent Pneumocystis carinii and cytomegalovirus pneumonia after autologous peripheral blood stem cell transplantation. Bone Marrow Transplant. 1999; 23(10): 1087–9.
  10. Kato H., Yamamoto K., Taji H. et al. Interstitial pneumonia after autologous hematopoietic stem cell transplantation in B-cell non-Hodgkin lymphoma. Clin. Lymphoma Myeloma Leuk. 2011; 11(6): 483–9.
  11. Munker R., Lazarus H.M., Atkinson K. The BMT Data Book, 2nd ed. Cambridge University Press, 2009: 245.

Clinico-immunological features of invasive aspergillosis in patients with Hodgkin’s disease

O.V. Shadrivova1, Ye.V. Frolova1, L.V. Filippova1, A.Ye. Uchevatkina1, S.N. Khostelidi1, R.M. Chernopyatova1, Ye.A. Desyatik1, A.G. Volkova2, Ye.V. Shagdileyeva1, L.S. Zubarovskaya2, A.V.Rysev1, S.M. Ignatyeva1, T.S. Bogomolova1, Yu.N. Vinogradova3, N.V. Vasilyeva1, and N.N. Klimko1

1 I.I. Metchnikov Northwest State Medical University, Saint Petersburg, Russian Federation

2 R.M. Gorbacheva Institute of Pediatric Oncology, Hematology and Transplantology, I.P. Pavlov Saint Petersburg State Medical University, Saint Petersburg, Russian Federation

3 Russian Research Centre for Radiology and Surgical Technologies, RF Ministry of Health, Saint Petersburg, Russian Federation


Invasive aspergillosis is a serious mycotic infection with high mortality that mostly occurs in patients with hematological malignancies and severe immunodeficiency. Immunological defects in the various groups of hematological patients with invasive aspergillosis are not well understood. We are the first to present the results of studying clinico-immunological features of invasive aspergillosis in the patients with Hodgkin’s lymphoma.

Keywords: invasive aspergillosis, Hodgkin’s lymphoma, immune response.

Read in PDF (RUS) pdficon


  1. Kousha M., Tadi R., Soubani A.O. Pulmonary aspergillosis: a clinical review. Eur. Respir. Rev. 2011; 20(21): 156–72.
  2. Попова М.О., Зубаровская Л.С., Климко Н.Н., Афанасьев Б.В. Инва- зивные микозы при трансплантации гемопоэтических стволовых клеток. Тер. арх. 2012; 7: 50–7. [Popova M.O., Zubarovskaya L.S., Klimko N.N., Afanasyev B.V. Invasive mycoses in hematopoietic stem cell transplantation. Ter. arkh. 2012; 7: 50–7. (In Russ.)].
  3. Klimko N.N., Shadrivova O.V., Khostelidi S.N. et al. Invasive aspergillosis in Saint Petersburg, Russia: analysis of 445 proven and probable cases. Mycos. Diagn. Ther. Prophyl. Fungal Dis. 2013; 56(3): 113.
  4. Chaudhary N., Staab J.F., Marr K.A. Healthy Human T-Cell Responses to Aspergillus fumigatus Antigens. PLoS One 2010; 5(2): e9036.
  5. Carvalho A., Cunha C., Bistoni F., Romani L. Immunotherapy of aspergillosis. Microbiol. Infect. 2012; 18(2): 120–5.
  6. De Pauw B., Walsh T.J., Donnelly J.P. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/ Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. Infect. Dis. 2008; 46(12): 1813–21.
  7. Drgona L., Colita A., Klimko N. et al. Triggers for driving treatment of at-risk patients with invasive fungal disease. J. Antimicrob. Chemother. 2013; 68(3): 17–24.
  8. Landgren O., Pfeiffer R.M., Kristinsson S.Y., Bjorkholm M. Survival patterns in patients with Hodgkin’s Lymphoma with a pre-existing hospital discharge diagnosis of autoimmune disease. J. Clin. Oncol. 2010; 28(34): 5081–7.
  9. Landgren O., Engels E.A., Pfeiffer R.M. et al. Autoimmunity and Susceptibility to Hodgkin Lymphoma: A Population-Based Case–Control Study in Scandinavia. J. Nat. Cancer Inst. 2006; 98(18): 1321–30.
  10. Brusamolino E., Carella A.M. Treatment of refractory and relapsed Hodgkin’s lymphoma: facts and perspectives. Hematol. J. Open Access Publ. 2007; 92(1): 6–10.
  11. Лимфомы: научно-практическое издание. Под ред. А.М. Гранова, Н.В. Ильина. СПб., 2010: 272. [Limfomy: nauchno-prakticheskoe izdanie. Pod red. A.M. Granova, N.V. Ilina (Lymphomas: scientific-and-practical publication. Ed. by: A.M. Granov, N.V. Ilin). SPb., 2010: 272 .]
  12. Chai L.Y., Vonk A.G., Kullberg B.-J., Netea M.G. Immune Response to Aspergillus fumigatus in Compromised Hosts: From Bedside to Bench. Fut. Microbiol. 2011; 6(1): 73–83.
  13. Zitvogel L., Apetoh L., Ghiringhelli F., Kroemer G. Immunological aspects of cancer chemotherapy. Immunology 2008; 8: 59–73.
  14. Motoyoshi Y., Kaminoda K., Saitoh O. et al. Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide. Oncol. Rep. 2006; 16(1): 141–6.
  15. Segal B.H. Role of macrophages in host defense against aspergillosis and strategies for immune augmentation. Oncologist 2007; 12(2): 7–13.
  16. Stevens D.A. Th1/Th2 in aspergillosis. Med. Mycol. 2006; 44(1): 229–35.
  17. Chai L.Y., Netea M.G., Teerenstra S. et al. Early Proinflammatory Cytokines and C-Reactive Protein Trends as Predictors of Outcome in Invasive Aspergillosis. J. Infect. Dis. 2010; 202(9): 1454–62.
  18. Фролова Е.В., Шадривова О.В., Филиппова Л.В. и др. Состояние иммунного статуса у гематологических пациентов с инвазивным аспергил- лезом. Журн. инфектол. 2012; 4(4): 59–64. [Frolova Ye.V., Shadrivova O.V., Filippova L.V., et al. Immune status in hematological patients with invasive aspergillosis. Zhurn. infektol. 2012; 4(4): 59–64. (In Russ.)].
  19. Park S.J., Mehrad B. Innate Immunity to Aspergillus Species. Clin. Microbiol. Rev. 2009; 22(4): 535–51.
  20. Hebart H., Bollinger C., Fisch P. et al. Analysis of T-cell responses to Aspergillus fumigatus antigens in healthy individuals and patients with hematologic malignancies. Blood 2002; 100(13): 4521–8.
  21. Chai L.Y., van de Veerdonk F., Marijnissen R.J. et al. Anti-Aspergillus human host defense relies on type 1 T helper (Th1), rather than type 17 T helper (Th17), cellular immunity. Immunology 2010; 130(1): 646–54.
  22. Van de Veerdonk F., Netea M.G. T-cell Subsets and Antifungal Host Defenses. Curr. Fung. Infect. Rep. 2010; 4(4): 238–43.

Unknown bacteria in oral flora of children with hematological malignancies

M.F. Vecherkovskaya, G.V. Tetz, and V.V. Tetz

I.P. Pavlov Saint Petersburg State Medical University, Saint Petersburg, Russian Federation


The objective of this study was to investigate the oral flora of children with hematological malignancies. The variance in the oral microflora of healthy children and children with hematological malignancies are shown. An unknown bacterium was isolated from the mixed biofilms obtained from the saliva of children with hematological malignancies that was absent in the saliva of healthy children of the same age. The microbiological data combined with the proteome assessment and genome sequence analysis indicate that the isolated microorganism belongs to the previously undescribed Streptococcus species.

Keywords: uncultured bacteria, biofilms, microbiota, children

Read in PDF (RUS)pdficon


  1. Sommer F., Backhed F. The gut microbiota — masters of host development and physiology. Nat. Publ. Group 2013; 11: 227–38.
  2. Lewis K., Epstein S.S. Persisters, biofilms, and the problem of culturability in incultivated microorganisms. In Series: Microbiology Monographs. Ed. by A. Steinbuchel. Berlin, Heidelberg: Springer, 2009: 181–94.
  3. Epstein S.S. General model of microbial uncultivability in uncultivated microorganisms. In Series: Microbiology Monographs. Ed. by A. Steinbuchel. Berlin, Heidelberg: Springer, 2009: 131–50.
  4. Тец В.В., Вечерковская М.Ф., Доморад А.А. и др. Микробы, неизвестные как представители нормальной микрофлоры ротовой полости человека. Ученые записки СПбГМУ им. И.П. Павлова 2012; 3: 5–9. 5. [Tets V.V., Vecherkovskaya M.F., Domorad A.A., et al. Microbes unknown as members of normal human oral microflora. Uchenyye zapiski SPbGMU im. I.P. Pavlova 2012; 3: 5–9. (In Russ.)].
  5. Тец Г.В., Викина Д.С., Вечерковская М.Ф., Доморад А.А. и др. Новые подходы к изучению условно патогенных бактерий микрофлоры ротовой полости человека. Стоматология 2013; 1: 14–6. [Tets G.V., Vikina D.S., Vecherkovskaya M.F., Domorad A.A., et al. New approaches to studying opportunistic bacteria of human oral microflora. Stomatologiya 2013; 1: 14–6. (In Russ.)].
  6. Crielaard W., Zaura E., Schuller A.A. et al. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med. Genom. 2011; 4: 22.
  7. Johansson M.A., Sjogren Y.M., Persson J.O. et al. Early Colonization with a Group of Lactobacilli Decreases the Risk for Allergy at Five Years of Age Despite Allergic Heredity. PLoS One 2011; 29(35): 5860–8.
  8. Candela M., Rampelli S., Turroni S. et al. Unbalance of intestinal microbiota in atopic children. BMC Microbiol. 2012; 12: 95.
  9. Tanner A.C., Kent R.L. Jr., Holgerson P.L. et al. Microbiota of severe early childhood caries before and after therapy. J. Dent. Res. 2011; 90: 1298–305.
  10. Payne A.N., Chassard C., Zimmermann M. et al. The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutr. Diab. 2011; 1(7): e12.
  11. Javed F., Utrija A., Bello Correa F.O. et al. Oral health status in children with acute lymphoblastic leukemia. Crit. Rev. Oncol. Hematol. 2012; 83: 303–9.
  12. Lanzos I., Herrera D., Santos S. et al. Microbiological effects of an antiseptic mouth-rinse in irradiated cancer patients. Med. Oral Patol. Oral Cir. Bucal. 2011; 16(7): e1036–42.
  13. Wilson K. Preparation of Genomic DNA from Bacteria. Curr. Prot. Mol. Biol. John Wiley and Sons, Inc., 2003.
  14. Wright E.S., Yilmaz L.S., Noguera D.R. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 2012; 78: 717–25.
  15. Ludwig W., Strunk O., Westram R. et al. ARB: a software environment for sequence data. Nucl. Acids Res. 2004; 32: 1363–71.
  16. Tetz V.V. Colony-like communities of bacteria. Microbios. 1994; 80: 63–5.
  17. Tetz V.V. Formation and structure of mixed bacterial communities. APMIS 1999; 107: 645–54.
  18. Тец В.В. Роль микрофлоры полости рта в развитии заболеваний человека. Стоматология 2008; 3: 76–80. [Tets G.V. Role of oral microflora in development of human diseases. Stomatologiya 2008; 3: 76–80. (In Russ.)].