KIR-генетические факторы и ответ на терапию ингибиторами тирозинкиназ при хроническом миелоидном лейкозе

Е.В. Кузьмич1, И.Е. Павлова1, Л.Н. Бубнова1,2, С.С. Бессмельцев1

1 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

2 ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Елена Витальевна Кузьмич, канд. биол. наук, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(921)912-52-07; e-mail: yelenakuzmich@gmail.com

Для цитирования: Кузьмич Е.В., Павлова И.Е., Бубнова Л.Н., Бессмельцев С.С. KIR-генетические факторы и ответ на терапию ингибиторами тирозинкиназ при хроническом миелоидном лейкозе. Клиническая онкогематология. 2023;16(2):119–27.

DOI: 10.21320/2500-2139-2023-16-2-119-127


РЕФЕРАТ

Разработка и внедрение в клиническую практику ингибиторов тирозинкиназ (ИТК) значительно улучшили прогноз у пациентов с хроническим миелоидным лейкозом (ХМЛ). Примерно 50 % пациентов, достигающих глубокого молекулярного ответа, могут быть кандидатами на безопасное прекращение приема ИТК. Несмотря на достигнутые результаты, до настоящего времени не существует надежных биомаркеров для прогнозирования ответа и сохранения ремиссии без лечения после прекращения приема ИТК. Поскольку ИТК не уничтожают лейкозные стволовые клетки, остающиеся потенциальным источником рецидива, важную роль при ХМЛ играют естественные киллеры (NK-клетки), обладающие противоопухолевой активностью. Функциональная активность NK-клеток определяется уровнем экспрессии и репертуаром иммуноглобулиноподобных рецепторов киллерных клеток (KIR). Современные исследования свидетельствуют о том, что KIR-генотип пациента оказывает влияние на возможность достижения раннего и глубокого молекулярных ответов на ИТК первого и второго поколений, выживаемость без прогрессирования и общую выживаемость больных, а также сохранение ремиссии без лечения. На этом основании KIR-генетические факторы могут рассматриваться в качестве перспективных предикторов ответа на терапию ИТК у пациентов с ХМЛ. Ранние клинические исследования моноклональных антител, блокирующих ингибирующие KIR с целью повысить активность NK-клеток, показали приемлемые профиль безопасности и эффективность при некоторых гематологических заболеваниях (таких, как острый миелоидный лейкоз, множественная миелома, Т-клеточная лимфома) при использовании в комбинации с цитостатическими препаратами или противоопухолевыми моноклональными антителами. Определение KIR-генотипа при ХМЛ может способствовать разработке эффективных средств иммунотерапии этой злокачественной опухоли системы крови.

Ключевые слова: гены иммуноглобулиноподобных рецепторов киллерных клеток, ингибиторы тирозинкиназ, ремиссия без лечения, хронический миелоидный лейкоз.

Получено: 8 ноября 2022 г.

Принято в печать: 1 марта 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Афанасьев Б.В., Абдуллаев А.О., Аль-Ради Л.С. и др. Хронический миелолейкоз. Клинические рекомендации, возрастная группа взрослые. М.: Ассоциация онкологов России, 2020. 87 с.
    [Afanasyev BV, Abdullaev AO, Al-Radi LS, et al. Khronicheskii mieloleikoz. Klinicheskie rekomendatsii, vozrastnaya gruppa vzroslye. (Chronic myeloid leukemia. Clinical guidelines for adult patients.) Moscow: Assotsiatsiya onkologov Rossii Publ.; 2020. 87 p. (In Russ)]
  2. Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36(7):1703–19. doi: 10.1038/s41375-022-01613-1.
  3. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. Am J Hematol. 2022;97(9):1236–56. doi: 10.1002/ajh.26642.
  4. Абдулкадыров К.М., Бессмельцев С.С., Рукавицын О.А. Лечение хронического миелолейкоза. СПб.: ЛЕКА, 1999. 152 с.
    [Abdulkadyrov KM, Bessmeltsev SS, Rukavitsyn OA. Lechenie khronicheskogo mieloleikoza. (Treatment of chronic myeloid ) Saint Petersburg: LEKA Publ.; 1999. 152 p. (In Russ)]
  5. Chopade P, Akard LP. Improving Outcomes in Chronic Myeloid Leukemia Over Time in the Era of Tyrosine Kinase Inhibitors. Clin Lymphoma Myeloma Leuk. 2018;18(11):710–23. doi: 1016/j.clml.2018.06.029.
  6. Морозова Е.В., Власова Ю.Ю., БарабанщиковаМ.В. и др. Хронический миелоидный лейкоз: роль трансплантации аллогенных гемопоэтических стволовых клеток в эру ингибиторов тирозинкиназ. Клиническая онкогематология. 2020;13(2):193–8. doi: 10.21320/2500-2139-2020-13-2-193-198.
    [Morozova EV, Vlasova YuYu, Barabanshchikova MV, et al. Chronic Myeloid Leukemia: Role of Allogeneic Hematopoietic Stem Cell Transplantation in the Era of Tyrosine Kinase Inhibitors. Clinical oncohematology. 2020;13(2):193–8. doi: 10.21320/2500-2139-2020-13-2-193-198. (In Russ)]
  7. Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35. doi: 10.1016/S1470-2045(10)70233-3.
  8. Saussele S, Richter J, Guilhot J, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018;19(6):747–57. doi: 10.1016/S1470-2045(18)30192-X.
  9. Closa L, Xicoy B, Zamora L, et al. Natural killer cell receptors and ligand variants modulate response to tyrosine kinase inhibitors in patients with chronic myeloid leukemia. HLA. 2022;99(2):93–104. doi: 10.1111/tan.14515.
  10. Абакушина Е.В., Кузьмина Е.Г., Коваленко Е.И. Основные свойства и функции NK-клеток человека. Иммунология. 2012;33(4):220–5.
    [Abakushina EV, Kuzmina EG, Kovalenko EI. The main characteristics and functions of human NK-cells. Immunologiya. 2012;33(4):220–5. (In Russ)]
  11. Falco M, Moretta L, Moretta A, Bottino C. KIR and KIR ligand polymorphism: a new area for clinical applications? Tissue Antigens. 2013;82(6):363–73. doi: 10.1111/tan.12262.
  12. Chiorean EG, Dylla SJ, Olsen K, et al. BCR/ABL alters the function of NK cells and the acquisition of killer immunoglobulin-like receptors (KIRs). Blood. 2003;101(9):3527–33. doi: 10.1182/blood-2002-04-1172.
  13. Соколова Ю.В., Бубнова Л.Н., Бессмельцев С.С. Строение и функции иммуноглобулиноподобных рецепторов киллерных клеток в норме и патологии. 2010;11:635–57.
    [Sokolova YuV, Bubnova LN, Bessmeltsev SS. Structure and functions of killer cell immunoglobulin-like receptors in normality and pathology. Medline. 2010;11:635–57. (In Russ)]
  14. Trowsdale J. Genetic and functional relationships between MHC and NK receptor genes. Immunity. 2001;15(3):363–74. doi: 10.1016/s1074-7613(01)00197-2.
  15. Marsh SGE, Parham P, Dupont B, et al. Killer-cell immunoglobulin-like receptors (KIR) nomenclature report, 2002. Immunogenetics. 2003;55(4):220–6. doi: 10.1007/s00251-003-0571-z.
  16. IPD-KIR Database. (Internet) Available from: https://www.ebi.ac.uk/ipd/kir/about/ (accessed 22.12.2022).
  17. Lanier LL. NK cell receptors. Annu Rev Immunol. 1998;16(1):359–93. doi: 10.1146/annurev.immunol.16.1.359.
  18. Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol. 2002;20:217–51. doi: 10.1146/annurev.immunol.20.092501.134942.
  19. Stern M, Ruggeri L, Capanni M, et al. Human leukocyte antigens A23, A24, and A32 but not A25 are ligands for KIR3DL1. Blood. 2008;112(3):708–10. doi: 10.1182/blood-2008-02-137521.
  20. Rajagopalan S, Long EO. KIR2DL4 (CD158d): an activation receptor for HLA-G. Front Immunol. 2012;3:258. doi: 10.3389/fimmu.2012.00258.
  21. Garcia-Beltran WF, Holzemer A, Martrus G, et al. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol. 2016;17(9):1067–74. doi: 10.1038/ni.3513.
  22. Pierson BA, Miller JS. CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood. 1996;88(6):2279–87.
  23. Nakajima H, Zhao R, Lund TC, et al. The BCR/ABL transgene causes abnormal NK cell differentiation and can be found in circulating NK cells of advanced phase chronic myelogenous leukemia patients. J Immunol. 2002;168(2):643–50. doi: 10.4049/jimmunol.168.2.643.
  24. Mizoguchi I, Yoshimoto T, Katagiri S, et al. Sustained upregulation of effector natural killer cells in chronic myeloid leukemia after discontinuation of imatinib. Cancer Sci. 2013;104(9):1146–53. doi: 10.1111/cas.12216.
  25. Imagawa J, Tanaka H, Okada M, et al. DADI Trial Group. Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): A multicentre phase 2 Lancet Haematol. 2015;2(12):528–35. doi: 10.1016/S2352-3026(15)00196-9.
  26. Marin D, Gabriel IH, Ahmad S, et al. KIR2DS1 genotype predicts for complete cytogenetic response and survival in newly diagnosed chronic myeloid leukemia patients treated with imatinib. Leukemia. 2012;26(2):296–302. doi: 10.1038/leu.2011.180.
  27. Kreutzman A, Juvonen V, Kairisto V, et al. Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood. 2010;116(5):772–82. doi: 10.1182/blood-2009-12-256800.
  28. Ali S, Sergeant R, O’Brien SG, et al. Dasatinib may overcome the negative prognostic impact of KIR2DS1 in newly diagnosed patients with chronic myeloid leukemia. Blood. 2012;120(3):697–8. doi: 10.1182/blood-2012-04-421016.
  29. Kreutzman A, Jaatinen T, Greco D, et al. Killer-cell immunoglobulin-like receptor gene profile predicts good molecular response to dasatinib therapy in chronic myeloid leukemia. Exp Hematol. 2012;40(11):906–13. doi: 10.1016/j.exphem.2012.07.007.
  30. Ghio M, Contini P, Negrini S, et al. Soluble HLA-I-mediated secretion of TGF-beta1 by human NK cells and consequent down-regulation of anti-tumor cytolytic activity. Eur J Immunol. 2009;39(12):3459–68. doi: 10.1002/eji.200939728.
  31. Yeung DT, Tang C, Vidovic L, et al. KIR2DL5B genotype predicts outcomes in CML patients treated with response‐directed sequential imatinib/nilotinib strategy. Blood. 2015;126(25):2720–23. doi: 10.1182/blood-2015-07-655589.
  32. Dumas PY, Berard E, Breal K, et al. Killer immunoglobulin‐like receptor genotypes and chronic myeloid leukemia outcomes after imatinib cessation for treatment‐free remission. Cancer Med. 2019;8(11):4976–85. doi: 10.1002/cam4.2371.
  33. La Nasa G, Caocci G, Littera R, et al. Homozygosity for killer immunoglobin-like receptor haplotype A predicts complete molecular response to treatment with tyrosine kinase inhibitors in chronic myeloid leukemia patients. Exp Hematol. 2013;41(5):424– doi: 10.1016/j.exphem.2013.01.008.
  34. Caocci G, Martino B, Greco M, et al. Killer immunoglobulin-like receptors can predict TKI treatment-free remission in chronic myeloid leukemia patients. Exp Hematol. 2015;43(12):1015–8. doi: 10.1016/j.exphem.2015.08.004.
  35. Ureshino H, Shindo T, Kojima H, et al. Allelic Polymorphisms of KIRs and HLAs Predict Favorable Responses to Tyrosine Kinase Inhibitors in CML. Cancer Immunol Res. 2018;6(6):745– doi: 10.1158/2326-6066.CIR-17-0462.
  36. Verheyden S, Bernier M, Demanet C. Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia. 2004;18(12):2002–7. doi: 10.1038/sj.leu.2403525.
  37. Middleton D, Diler AS, Meenagh A, et al. Killer immunoglobulin-like receptors (KIR2DL2 and/or KIR2DS2) in presence of their ligand (HLA-C1 group) protect against chronic myeloid leukemia. Tissue Antigens. 2009;73(6):553–60. doi: 10.1111/j.1399-0039.2009.01235x.
  38. Naugler C, Liwski R. Human leukocyte antigen class I alleles and the risk of chronic myelogenous leukemia: a meta-analysis. Leuk Lymphoma. 2010;51(7):1288–92. doi: 10.3109/10428191003802340.
  39. Michor F, Hughes TP, Iwasa Y, et al. Dynamics of chronic myeloid leukaemia. Nature. 2005;435(7046):1267–70. doi: 10.1038/nature03669.
  40. Zhang B, Li M, McDonald T, et al. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-Cadherin and Wnt-b-catenin signaling. Blood. 2013;121(10):1824– doi: 10.1182/blood-2012-02-412890.
  41. Li Y, Sun R. Tumor immunotherapy: New aspects of natural killer cells. Chin J Cancer Res. 2018;30(2):173–96. doi: 10.21147/j.issn.1000-9604.2018.02.02.
  42. Khan M, Arooj S, Wang H. NK Cell-Based Immune Checkpoint Inhibition. Front Immunol. 2020;11: doi: 10.3389/fimmu.2020.00167.
  43. Campiotti L, Suter MB, Guasti L, et al. Imatinib discontinuation in chronic myeloid leukaemia patients with undetectable BCR-ABL transcript level: a systematic review and a meta-analysis. Eur J Cancer. 2017;77:48– doi: 10.1016/j.ejca.2017.02.028.

 

 

Морфо-иммуногистохимические особенности различных стадий грибовидного микоза: обзор литературы

А.А. Шерстнев, А.М. Ковригина

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Андрей Алексеевич Шерстнев, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; e-mail: sherstnevandrejj@mail.ru

Для цитирования: Шерстнев А.А., Ковригина А.М. Морфо-иммуногистохимические особенности различных стадий грибовидного микоза: обзор литературы. Клиническая онкогематология. 2023;16(2):109–18.

DOI: 10.21320/2500-2139-2023-16-2-109-118


РЕФЕРАТ

Грибовидный микоз (ГМ) — наиболее распространенный вариант Т-клеточной лимфомы кожи. Патогенез ГМ до настоящего времени полностью не изучен. Дифференциальная диагностика заболевания, в особенности на ранних стадиях, сложна и представляет серьезную задачу. В настоящем обзоре литературы освещаются современные представления о патогенезе ГМ и методах диагностики данного заболевания.

Ключевые слова: грибовидный микоз, наивные Т-клетки, Т-хелперы, реактивное микроокружение.

Получено: 21 сентября 2022 г.

Принято в печать: 3 марта 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Кохан М.М. Т-клеточные злокачественные лимфомы кожи: клинические и иммунологические аспекты диагностики, стадийного течения и терапии: Автореф. … д-ра мед. наук. М., 2002.
    [Kokhan MM. T-kletochnye zlokachestvennye limfomy kozhi: klinicheskie i immunologicheskie aspekty diagnostiki, stadiinogo techeniya i terapii. (Cutaneous T-cell malignant lymphomas: clinical and immunological aspects of diagnosis, stage course, and therapy.) [dissertation] Moscow; 2002. (In Russ)]
  2. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85. doi: 10.1182/blood-2004-09-3502.
  3. Korgavkar K, Xiong M, Weinstock М. Changing incidence trends of cutaneous T-cell lymphoma. JAMA Dermatol. 2013;149(11):1295–9. doi: 10.1001/jamadermatol.2013.5526.
  4. Imam MH, Shenoy PJ, Flowers CR, et al. Incidence and survival patterns of cutaneous T-cell lymphomas in the United States. Leuk Lymphoma. 2013;54(4):752–9. doi: 10.3109/10428194.2012.729831.
  5. Tan RH, Butterworth CM, McLaughlin H, et al. Mycosis fungoides—a disease of antigen persistence. Br J Dermatol. 1974;91(6):607–16. doi: 1111/j.1365-2133.1974.tb12449.x.
  6. Campbell JJ, Clark RA, Watanabe R, Kupper TS. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116(5):767–71. doi: 10.1182/blood-2009-11-251926.
  7. Berger CL, Hanlon D, Kanada D, et al. The growth of cutaneous T-cell lymphoma is stimulated by immature dendritic cells. 2002;99(8):2929–39. doi: 10.1182/blood.V99.8.2929.
  8. Wang L, Ni X, Covington K, et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet. 2015;47(12):1426–34. doi: 10.1038/ng.3444.
  9. Krejsgaard T, Willerslev-Olsen A, Lindahl LM, et al. Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation. Blood. 2014;124(5):761–70. doi: 10.1182/blood-2014-01-551184.
  10. Gelfand JM, Shin DB, Neimann AL, et al. The risk of lymphoma in patients with psoriasis. J Invest Dermatol. 2006;126(10):2194–201. doi: 10.1038/sj.jid.5700410.
  11. Legendre L, Barnetche T, Mazereeuw-Hautier J, et al. Risk of lymphoma in patients with atopic dermatitis and the role of topical treatment: a systematic review and meta-analysis. J Am Acad Dermatol. 2015;72(6):992–1002. doi: 10.1016/j.jaad.2015.02.1116.
  12. Mirvish JJ, Pomerantz RG, Falo Jr LD, et al. Role of infectious agents in cutaneous T-cell lymphoma: facts and controversies. Clin Dermatol. 2013;31(4):423–31. doi: 10.1016/j.clindermatol.2013.01.009.
  13. Mirvish ED, Pomerantz RG, Geskin LJ. Infectious agents in cutaneous T-cell lymphoma. J Am Acad Dermatol. 2011;64(2):423–31. doi: 10.1016/j.jaad.2009.11.692.
  14. Белоусова И.Э., Самцов А.В. Федеральные клинические рекомендации по ведению больных лимфомами кожи. М., 2015. С. 13–25.
    [Belousova IE, Samtsov AV. Federalnye klinicheskie rekomendatsii po vedeniyu bolnykh limfomami kozhi. (Federal clinical guidelines for management of patients with cutaneous lymphomas.) Moscow; 2015. pp. 13–25. (In Russ)]
  15. Larocca C, Kupper T. Mycosis fungoides and sezary syndrome: an update. Hematol Oncol Clin. 2019;33(1):103–20. doi: 10.1016/j.hoc.2018.09.001.
  16. Agar NS, Wedgeworth E, Crichton S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol. 2010;28(31):4730–9. doi: 10.1200/jco.2009.27.7665.
  17. Sun G, Berthelot C, Li Y, Glass DA. Poor prognosis in non-Caucasian patients with early-onset mycosis fungoides. J Am Acad Dermatol. 2009;60(2):231–5. doi: 10.1016/j.jaad.2008.09.063.
  18. Talpur R, Singh L, Daulat S, et al. Long-term outcomes of 1,263 patients with mycosis fungoides and Sezary syndrome from 1982 to 2009. Clin Cancer Res. 2012;18(18):5051–60. doi: 10.1158/1078-0432.ccr-12-0604.
  19. Молочков А.В., Ковригина А.М., Кильдюшевский А.В., Караулов А.В. Лимфома кожи. М.: БИНОМ, 2012. 183 с.
    [Molochkov AV, Kovrigina AM, Kildyushevskii AV, Karaulov AV. Limfoma kozhi. (Cutaneous lymphoma.) Moscow: BINOM Publ.; 2012. 183 p. (In Russ)]
  20. Братцева Е.В., Ротанов С.В. Современные подходы к диагностике грибовидного микоза. Вестник дерматологии и венерологии. 2010;6:16–22.
    [Brattseva EV, Rotanov SV. Current approaches to the diagnosis of mycosis fungoides. Vestnik dermatologii i venerologii. 2010;6:16–22. (In Russ)]
  21. Guitart J, Kennedy J, Ronan S, et al. Histologic criteria for the diagnosis of mycosis fungoides: proposal for a grading system to standardize pathology reporting. J Cutan Pathol. 2001;28(4):174–83. doi: 10.1034/j.1600-0560.2001.028004174.x.
  22. Goteri G, Filosa A, Mannello B, et al. Density of neoplastic lymphoid infiltrate, CD8+ T cells, and CD1a+ dendritic cells in mycosis fungoides. J Clin Pathol. 2003;56(6):453–8. doi: 10.1136/jcp.56.6.453.
  23. Willemze R, Cerroni L, Kempf W, et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood. 2019:133(16):1703–14. doi: 10.1182/blood.2019002852.
  24. Белоусова И.Э., Казаков Д.В., Криволапов Ю.А. Современные подходы к диагностике и лечению первичных лимфом кожи на основе новой ВОЗ-EORTC классификации. Т-клеточные лимфомы кожи. Архив патологии. 2007;69(5):11–7.
    [Belousova IE, Kazakov DV, Krivolapov YuA. Current approaches to the diagnosis and treatment of primary cutaneous lymphomas based on the new WHO-EORTC classification. Cutaneous T-cell lymphomas. Arkhiv patologii. 2007;69(5):11–7. (In Russ)]
  25. Поддубная И.В., Птушкин В.В., Белоусова И.Э. и др. Новые возможности системной терапии CD30+ первичных кожных Т-клеточных лимфом: резолюция. Современная онкология. 2020;22(2):79–81.
    [Poddubnaya IV, Ptushkin VV, Belousova IE, et al. New prospects for systemic treatment of primary cutaneous CD30+ T-cell lymphomas: resolution. Sovremennaya onkologiya. 2020;22(2):79–81. (In Russ)]
  26. Clark RA, Chong B, Mirchandani N, et al. The vast majority of CLA+ T cells are resident in normal skin. J Immunol. 2006;176(7):4431–9. doi: 10.4049/jimmunol.176.7.4431.
  27. Clark RA. Skin-resident T cells: the ups and downs of on site immunity. J Invest Dermatol. 2010;130(2):362–70. doi: 10.1038/jid.2009.247.
  28. Clark RA. Resident memory T cells in human health and disease. Sci Transl Med. 2015;7(269):269rv1. doi: 10.1126/scitranslmed.3010641.
  29. Watanabe R, Gehad A, Yang C, et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med. 2015;7(279):279ra39. doi: 10.1126/scitranslmed.3010302.
  30. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers. 2016;8(3):36. doi: 10.3390/cancers8030036.
  31. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63. doi: 10.1146/annurev.immunol.22.012703.104702.
  32. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science. 1996;272(5258):60–7. doi: 10.1126/science.272.5260.
  33. Wherry EJ, Teichgraber V, Becker TC, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol. 2003;4(3):225–34. doi: 10.1038/ni889.
  34. Ma CS, Deenick EK, Batten M, Tangye SG. The origins, function, and regulation of T follicular helper cells. J Exp Med. 2012;209(7):1241–53. doi: 10.1084/jem.20120994.
  35. Deenick EK, Cindy SM, Brink R, et al. Regulation of T follicular helper cell formation and function by antigen presenting cells. Curr Opin Immunol. 2011;23(1):111–8. doi: 10.1016/j.coi.2010.10.007.
  36. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2009;28:445–89. doi: 10.1146/annurev-immunol-030409-101212.
  37. Finotto S, Neurath MF, Glickman JN, et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science. 2002;295(5553):336–8. doi: 10.1126/science.1065544.
  38. Bettelli E, Sullivan B, Szabo SJ, et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med. 2004;200(1):79–87. doi: 10.1084/jem.20031819.
  39. Vowels BR, Lessin SR, Cassin M, et al. Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma. J Invest Dermatol. 1994;103(5):669–73. doi: 10.1111/1523-1747.ep12398454.
  40. Miyagaki T, Sugaya M. Immunological milieu in mycosis fungoides and Sezary syndrome. J Dermatol. 2014;41(1):11–8. doi: 10.1111/1346-8138.12305.
  41. Hsi AC, Lee SJ, Rosman IS, et al. Expression of helper T cell master regulators in inflammatory dermatoses and primary cutaneous T-cell lymphomas: diagnostic implications. J Am Acad Dermatol. 2015;72(1):159–67. doi: 10.1016/j.jaad.2014.09.022.
  42. Sugaya M, Tokura Y, Hamada T, et al. Phase II study of iv interferon‐gamma in Japanese patients with mycosis fungoides. J Dermatol. 2014;41(1):50–6. doi: 10.1111/1346-8138.12341.
  43. Gu X, Wang Y, Zhang G, Li W, Tu P. Aberrant expression of BCL11B in mycosis fungoides and its potential role in interferon‐induced apoptosis. J Dermatol. 2013;40(8):596–605. doi: 10.1111/1346-8138.12160.
  44. Kataoka Y. Thymus and activation‐regulated chemokine as a clinical biomarker in atopic dermatitis. J Dermatol. 2014;41(3):221–9. doi: 10.1111/1346-8138.12440.
  45. Sugaya M, Morimura S, Suga H, Kawaguchi M. CCR 4 is expressed on infiltrating cells in lesional skin of early mycosis fungoides and atopic dermatitis. J Dermatol. 2015;42(6):613–5. doi: 10.1111/1346-8138.12852.
  46. Breitfeld D, Ohl L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192(11):1545–52. doi: 10.1084/jem.192.11.1545.
  47. Hardtke S, Ohl L, Forster R. Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood. 2005;106(6):1924–31. doi: 10.1182/blood-2004-11-4494.
  48. Krejsgaard T, Odum N, Geisler C, et al. Regulatory T cells and immunodeficiency in mycosis fungoides and Sezary syndrome. Leukemia. 2012;26(3):424–32. doi: 10.1038/leu.2011.237.
  49. Vonderheid EC, Pavlov I, Delgado JC, et al. Prognostic factors and risk stratification in early mycosis fungoides. Leuk Lymphoma. 2014;55(1):44–50. doi: 10.3109/10428194.2013.790541.
  50. Ungewickell A, Bhaduri A, Rios E, et al. Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat Genet. 2015;47(9):1056–60. doi: 10.1038/ng.3370.
  51. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4. doi: 10.1126/scitranslmed.aad7118.
  52. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61. doi: 10.1016/j.ccell.2015.03.001.
  53. Cetinozman F, Jansen PM, Vermeer MH, Willemze R. Differential expression of programmed death-1 (PD-1) in Sezary syndrome and mycosis fungoides. Arch Dermatol. 2012;148(12):1379–85. doi: 10.1001/archdermatol.2012.2089.
  54. Kantekure K, Yang Y, Raghunath P, et al. Expression patterns of the immunosuppressive proteins PD-1/CD279 and PD-L1/CD274 at different stages of cutaneous T-cell lymphoma (CTCL)/mycosis fungoides (MF). Am J Dermatopathol. 2012;34(1):126. doi: 10.1097/dad.0b013e31821c35cb.
  55. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16(6):356–71. doi: 10.1038/s41571-019-0175-7.
  56. Clark RA. Regulation gone wrong: a subset of Sezary patients have malignant regulatory T cells. J Invest Dermatol. 2009;129(12):2747–50. doi: 10.1038/jid.2009.290.
  57. Gholami MD, Kardar GA, Saeedi Y, et al. Exhaustion of T lymphocytes in the tumor microenvironment: significance and effective mechanisms. Cell Immunol. 2017;322:1–14. doi: 10.1016/j.cellimm.2017.10.002.
  58. Murray D, McMurray JL, Eldershaw S, et al. Progression of mycosis fungoides occurs through divergence of tumor immunophenotype by differential expression of HLA-DR. Blood Adv. 2019:3(4):519–30. doi: 10.1182/bloodadvances.2018025114.
  59. Vermeer MH, van Doorn R, Dukers D, et al. CD8+ T cells in cutaneous T-cell lymphoma: expression of cytotoxic proteins, Fas ligand, and killing inhibitory receptors and their relationship with clinical behavior. J Clin Oncol. 2001;19(23):4322–9. doi: 10.1200/jco.2001.19.23.4322.
  60. Goteri G, Filosa A, Mannello B, et al. Density of neoplastic lymphoid infiltrate, CD8+ T cells, and CD1a+ dendritic cells in mycosis fungoides. J Clin Pathol. 2003;56(6):453–8. doi: 10.1136/jcp.56.6.453.
  61. Hoppe RT, Medeiros LJ, Warnke RA, Wood GS. CD8-positive tumor-infiltrating lymphocytes influence the long-term survival of patients with mycosis fungoides. J Am Acad Dermatol. 1995;32(3):448–53. doi: 10.1016/0190-9622(95)90067-5.
  62. Gjerdrum LM, Woetmann A, Odum N, et al. FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia. 2007;21(12):2512–8. doi: 10.1038/sj.leu.2404913.
  63. Berger CL, Hanlon D, Kanada D, et al. The growth of cutaneous T-cell lymphoma is stimulated by immature dendritic cells. Blood. 2002;99(8):2929–39. doi: 10.1182/blood.v99.8.2929.
  64. Wong HK, Wilson AJ, Gibson HM, et al. Increased expression of CTLA-4 in malignant T cells from patients with mycosis fungoides–cutaneous T-cell lymphoma. J Invest Dermatol. 2006;126(1):212–9. doi: 10.1038/sj.jid.5700029.
  65. Querfeld C, Curran SA, Leung S, et al. T cells in CTCL have an exhausted phenotype while cutaneous dendritic cells display a normally activated mature phenotype. Blood. 2014;124(21):1695. doi: 10.1182/blood.v124.21.1695.1695.
  66. Sugaya M, Miyagaki T, Ohmatsu H, et al. Association of the numbers of CD163+ cells in lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma. J Dermatol Sci. 2012;68(1):45–51. doi: 10.1016/j.jdermsci.2012.07.007.
  67. Wu X, Schulte BC, Zhou Y, et al. Depletion of M2-like tumor-associated macrophages delays cutaneous T-cell lymphoma development in vivo. J Invest Dermatol. 2014;134(11):2814–22. doi: 10.1038/jid.2014.206.
  68. Jullie ML, Carlotti M, Vivot A Jr, et al. CD20 antigen may be expressed by reactive or lymphomatous cells of transformed mycosis fungoides: diagnostic and prognostic impact Am J Surg Pathol. 2013;37(12):1845–54. doi: 10.1097/pas.0000000000000091.
  69. Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol. 2010;185(9):4977–82. doi: 10.4049/jimmunol.1001323.
  70. Theurich S, Schlaak M, Steguweit H, et al. Targeting tumor-infiltrating B cells in cutaneous T-cell lymphoma. J Clin Oncol. 2016;34(12):e110–e116. doi: 10.1200/jco.2013.50.9471.
  71. Choi J, Goh G, Walradt T, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47(9):1011–9. doi: 10.1038/ng.3356.
  72. Park J, Yang J, Wenzel AT, et al. Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p. Q575E). Blood. 2017;130(12):1430–40. doi: 10.1182/blood-2017-02-768234.
  73. Gonzalez BR, Zain J, Rosen ST, Querfeld C. Tumor microenvironment in mycosis fungoides and Sezary syndrome. Curr Opin Oncol. 2016;28(1):88–96. doi: 10.1097/CCO.0000000000000243
  74. Axelrod PI, Lorber B, Vonderheid EC. Infections complicating mycosis fungoides and Sezary syndrome. 1992;267(10):1354–8. doi: 10.1001/jama.267.10.1354.
  75. Netchiporouk E, Litvinov IV, Moreau L, et al. Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle. 2014;13(21):3331–5. doi: 10.4161/15384101.2014.965061.
  76. Kirsch IR, Watanabe R, O’Malley JT, et al. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL. Science Transl Med. 2015;7(308):308ra158. doi: 10.1126/scitranslmed.aaa9122.
  77. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2016. С. 85–91.
    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders.) Moscow: Buki Vedi Publ.; 2016. 85–91. (In Russ)]
  78. Сидорова Ю.В. Т-клеточная клональность в диагностике лимфопролиферативных заболеваний: Дис.… канд. мед. наук. М., 2004.
    [Sidorova YuV. T-kletochnaya klonalnost v diagnostike limfoproliferativnykh zabolevanii. (T-cell clonality in the diagnosis of lymphoproliferative) [dissertation] Moscow; 2004. (In Russ)]
  79. Olsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(6):1713–22. doi: 10.1182/blood-2008-02-142653.
  80. Scarisbrick JJ, Prince HM, Vermeer MH, et al. Cutaneous Lymphoma International Consortium study of outcome in advanced stages of mycosis fungoides and Sezary syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J Clin Oncol. 2015;33(32):3766. doi: 10.1200/JCO.2015.61.7142.
  81. de Masson A, O’Malley JT, Elco CP, et al. High-throughput sequencing of the T cell receptor β gene identifies aggressive early-stage mycosis fungoides. Sci Transl Med. 2018;10(440):eaar5894. doi: 10.1126/scitranslmed.aar5894.
  82. Trautinger F, Eder J, Assaf C, et al. European Organisation for Research and Treatment of Cancer consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome–Update 2017. Eur J Cancer. 2017;77:57–74. doi: 10.1016/j.ejca.2017.02.027.
  83. Олисова О.Ю., Сыдиков А.А., Чупров И.Н. и др. Эритродермическая форма грибовидного микоза: алгоритм диагностики и лечения. Клиническая онкогематология. 2018;11(4):295–302. doi: 10.21320/2500-2139-2018-11-4-295-302.
    [Olisova OYu, Sydikov AA, Chuprov IN, et al. Erythrodermic Mycosis Fungoides: The Algorithm of Diagnosis and Treatment. Clinical oncohematology. 2018;11(4):295–302. doi: 10.21320/2500-2139-2018-11-4-295-302. (In Russ)]
  84. Zinzani PL, Venturini F, Stefoni V, et al. Gemcitabine as single agent in pretreated T-cell lymphoma patients: evaluation of the long-term outcome. Ann Oncol. 2010;21(4):860–3. doi: 10.1093/annonc/mdp508.
  85. Hanel W, Briski R, Ross CW, et al. A retrospective comparative outcome analysis following systemic therapy in mycosis fungoides and Sezary syndrome. Am J Hematol. 2016;91(12):E491–E495. doi: 10.1002/ajh.24564.
  86. Damsky WE, Choi J. Genetics of cutaneous T cell lymphoma: from bench to bedside. Curr Treat Options Oncol. 2016;17(7):1–14. doi: 10.1007/s11864-016-0410-8.
  87. Weng WK, Armstrong R, Arai S, et al. Non-myeloablative allogeneic transplantation resulting in clinical and molecular remission with low Non-Relapse Mortality (NRM) in patients with advanced stage Mycosis Fungoides (MF) and Sezary Syndrome (SS). Blood. 2014;124(21):2544. doi: 10.1182/blood.v124.21.2544.2544.

 

Хронический гепатит С и онкогематологические заболевания

Т.В. Антонова1, М.С. Ножкин1, Д.А. Лиознов1,2

1 ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

2 ФГБУ «НИИ гриппа им. А.А. Смородинцева» Минздрава России, ул. Профессора Попова, д. 15/17, Санкт-Петербург, Российская Федерация, 197376

Для переписки: Тамара Васильевна Антонова, д-р мед. наук, профессор, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; e-mail: antonovatv28@yandex.ru

Для цитирования: Антонова Т.В., Ножкин М.С., Лиознов Д.А. Хронический гепатит С и онкогематологические заболевания. Клиническая онкогематология. 2023;16(1):46–53.

DOI: 10.21320/2500-2139-2023-16-1-46-53


РЕФЕРАТ

В обзоре обсуждается HCV-инфекция у онкогематологических больных. Высокий риск инфицирования вирусом гепатита С (HCV) при онкогематологических заболеваниях доказан значимо большей частотой HCV-инфекции (в 2–2,5 раза) у пациентов с неходжкинскими лимфомами в сравнении с популяционными данными. Кроме того, установлено значение HCV в развитии и прогрессировании В-клеточных неходжкинских лимфом, что подтверждает его онкогенный потенциал. Рассмотрен вариант серонегативного (оккультного) гепатита С, при котором РНК HCV определяется в ткани печени и в мононуклеарах периферической крови высокочувствительным методом ПЦР с обратной транскрипцией при отсутствии антител к HCV и РНК HCV в сыворотке. При этом пациенты могут быть источниками инфекции. Серонегативный гепатит С выявляется у доноров крови в 2,2–3,4 % случаев. Этот вариант инфекции встречается у 20–85 % онкогематологических пациентов, что требует дальнейшего изучения. Сопутствующая HCV-инфекция является потенциальным фактором, влияющим на прогноз онкогематологических заболеваний. У онкогематологических пациентов с сопутствующим хроническим гепатитом С (ХГС) доказана значимо худшая выживаемость в сравнении с больными без него. Установлена связь HCV-инфекции с увеличением частоты осложнений как противоопухолевой терапии, так и трансплантации гемопоэтических стволовых клеток (ТГСК). Иммунохимиотерапия, в свою очередь, влияет на обострение и прогрессирование ХГС. Высокая эффективность и удовлетворительная переносимость препаратов прямого противовирусного действия (ППД) для лечения ХГС открыли перспективы для широкого их использования при наличии сопутствующих заболеваний. Остается сложным вопрос о лечении инфекции у пациентов после ТГСК. Рекомендации по лечению ХГС преимущественно ориентированы на проведение противовирусного лечения до ТГСК. В реальной клинической практике это не всегда возможно. Имеются примеры эффективного применения препаратов ППД до или после ТГСК, описано клиническое наблюдение противовирусного лечения одновременно с ТГСК.

Ключевые слова: вирус гепатита С, HCV-инфекция, онкогематология, трансплантация гемопоэтических стволовых клеток, иммунохимиотерапия, препараты прямого противовирусного действия.

Получено: 17 июня 2022 г.

Принято в печать: 10 декабря 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Choo QL, Kuo G, Weiner AJ, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989;244(4902):359–62. doi: 10.1126/science.2523562.
  2. Houghton M. Discovery of the hepatitis C virus. Liver Int. 2009;29(Suppl 1):82–8. doi: 10.1111/j.1478-3231.2008.01925.x.
  3. Жебрун А.Б., Калинина О.В. Вирусный гепатит С: эволюция эпидемиологического процесса, эволюция вируса. Журнал микробиологии, эпидемиологии и иммунобиологии. 2016;1:102–12. doi: 10.36233/0372-9311-2016-1-102-112.
    [Zhebrun AB, Kalinina OV. Viral hepatitis C: evolution of the epidemiologic process, evolution of the virus. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii. 2016;1:102–12. doi: 10.36233/0372-9311-2016-1-102-112. (In Russ)]
  4. Simmonds P, Bukh J, Combet C, et al. Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. 2005;42(4):962–73. doi: 10.1002/hep.20819.
  5. Smith DB, Bukh J, Kuiken C, et al. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. 2014;59(1):318–27. doi: 10.1002/hep.26744.
  6. Petruzziello A, Marigliano S, Loquercio G, et al. Global epidemiology of hepatitis C virus infection: updated information on the distribution and circulation of hepatitis C virus genotypes. World J Gastroenterol. 2016;22(34):7824–40. doi: 10.3748/wjg.v22.i34.7824.
  7. Чуланов В.П., Исаков В.А., Жданов К.В. и др. Промежуточные результаты международного многоцентрового проспективного наблюдательного исследования «MOSAIC» по оценке эпидемиологии, субъективных и экономических исходов лечения хронического вирусного гепатита С. Инфекционные болезни. 2018;16(1):5–14. doi: 20953/1729-9225-2018-1-5-14.
    [Chulanov VP, Isakov VA, Zhdanov KV, et al. Interim results of the international multicenter prospective observational study to evaluate the epidemiology, humanistic and economic outcomes of treatment for chronic hepatitis C virus (HCV) (MOSAIC). Infektsionnye bolezni. 2018;16(1):5–14. doi: 10.20953/1729-9225-2018-1-5-14. (In Russ)]
  8. Чуланов В.П., Пименов Н.Н., Мамонова Н.А. и др. Хронический гепатит С как проблема здравоохранения России сегодня и завтра. Терапевтический архив. 2015;87(11):5–10. doi: 10.17116/terarkh201587115-10.
    [Chulanov VP, Pimenov NN, Mamonova NA, et al. Chronic hepatitis C In Russia: current challenges and prospects. Terapevticheskii arkhiv. 2015;87(11):5–10. doi: 10.17116/terarkh201587115-10. (In Russ)]
  9. Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2019 г.: Государственный доклад. М.: 2020. 299 с.
    [Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2019: State report. Moscow; 2020. 299 p. (In Russ)]
  10. Дземова А.А., Ганченко Р.А., Трифонова Г.Ф. и др. Хронический гепатит С в Российской Федерации после начала программы элиминации HCV-инфекции. Гепатология и гастроэнтерология. 2020;4(2):165–70. doi: 25298/2616-5546-2020-4-2-165-170.
    [Dzemova AA, Ganchenko RA, Trifonova GF, et al. Chronic hepatitis C in the Russian Federation after starting the HCV elimination program. Gepatologiya i gastroenterologiya. 2020;4(2):165–70. doi: 10.25298/2616-5546-2020-4-2-165-170. (In Russ)]
  11. Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 252 с.
    [Kaprin AD, Starinskii VV, Shakhzadova AO, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2020 godu (zabolevaemost’ i smertnost’). (Malignant neoplasms In Russia in 2019 (incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMITs radiologii” Publ.; 2021. 252 p. (In Russ)]
  12. Kawamura Y, Ikeda K, Arase Y, et al. Viral elimination reduces incidence of malignant lymphoma in patients with hepatitis. J Am Med Assoc. 2007;120(12):1034–41. doi: 10.1016/j.amjmed.2007.06.022.
  13. Su TH, Liu CJ, Tseng TC, et al. Hepatitis C viral infection increases the risk of lymphoid-neoplasms: A population-based cohort study. Hepatology. 2016;63(3):721–30. doi: 10.1002/hep.28387.
  14. Pozzato G, Mazzaro C, Maso L, et al. Hepatitis C virus and non-Hodgkin’s lymphomas: meta-analysis of epidemiology data and therapy options. World J Hepatol. 2016;8(2):107–16. doi: 10.4254/wjh.v8.i2.107.
  15. Милованова С.Ю., Лысенко Л.В., Милованова Л.Ю. и др. HCV-ассоциированная смешанная криоглобулинемия и В-клеточная неходжкинская лимфома — патогенетически связанные проблемы. Терапевтический архив. 2018;90(6):112–20. doi: 10.26442/terarkh2018906112-120.
    [Milovanova SYu, Lysenko LV, Milovanova LYu, et al. HCV-associated mixed cryoglobulinemia and B-cell non-Hodgkin’s lymphoma are pathogenetically related problems. Terapevticheskii arkhiv. 2018;90(6):112–20. doi: 10.26442/terarkh2018906112-120. (In Russ)]
  16. Minafo YA, Del Padre M, Cristofoletti C, et al. A stereotyped light chain may shape virus-specific B-cell receptors in HCV-dependent lymphoproliferative disorders. Genes Immun. 2020;21(2):131–5. doi: 10.1038/s41435-020-0093-9.
  17. Lotfi AA, Mohamed AE, Shalaby NA, et al. Occult hepatitis C virus infection in patients with malignant lymphoproliferative disorders. Int J Immunopathol Pharmacol. 2020;34:2058738420961202. doi: 10.1177/2058738420961202.
  18. Hirose S, Yamaji Y, Tsuruya K, et al. Rapid regression of B-cell non-Hodgkin’s lymphoma after eradication of hepatitis C virus by direct antiviral agents. Case Rep Gastroenterol. 2019;13(2):336–41. doi: 10.1159/000501546.
  19. Defrancesco I, Zerbi C, Rattotti S, et al. HCV infection and non-Hodgkin lymphomas: an evolving story. Clin Exp Med. 2020;20(3):321–8. doi: 10.1007/s10238-020-00615-6.
  20. Pozzato G, Mazzaro C, Gattei V. Hepatitis C virus-associated non-Hodgkin lymphomas: the endless history. Minerva Medica. 2021;112(2):215–27. doi: 10.23736/S0026-4806.20.07184-0.
  21. Сaсoub P, Comarmond C, Vieira M, et al. HCV-related lymphoproliferative disorders in the direct-acting antiviral era: From mixed cryoglobulinaemia to B-cell lymphoma. J Hepatol. 2021;76(1):174–85. doi: 10.1016/j.jhep.2021.09.023.
  22. Zhang M, Gao F, Peng L, et al. Distinct clinical features and prognostic factors in Hepatitis C virus-associated Non-Hodgkin’s lymphoma: a systematic review and meta-analysis. Cancer Cell Int. 2021;21(1):524. doi: 10.1186/s12935-021-02230-1.
  23. Ножкин М.С. Клинико-лабораторная характеристика течения хронического гепатита С у онкогематологических больных: Автореф. дис.… канд. мед. наук. СПб., 2021. 17 с.
    [Nozhkin MS. Kliniko-laboratornaya kharakteristika techeniya khronicheskogo gepatita C u onkogematologicheskikh bolnykh. (Clinical and laboratory characteristics of the course of chronic hepatitis C in oncohematological ) [dissertation] Saint Petersburg; 2021. 17 р. (In Russ)]
  24. Arico M, Maggiore G, Silini E, et al. Hepatitis C virus infection in children treated for acute lymphoblastic leukemia. Blood. 1994;84(9):2919–22.
  25. Meir H, Balawi I, Nayel H, et al. Hepatitis dysfunction in children with acute lymphoblastic leukemia remission: relation to hepatitis infection. Med Pediatr Oncol. 2001;36(4):469–73. doi: 10.1002/mpo.1111.
  26. Шардаков В.И., Назарова Е.Л., Сухорукова Э.Е. и др. Характеристика иммунного ответа у онкогематологических больных, имеющих хронический гепатит С. Вятский медицинский вестник. 2020;65(1):62–7.
    [Shardakov VI, Nazarova EL, Sukhorukova EE, et al. Characterization of the immune response in oncohematological patients with chronic hepatitis C. Vyatskii meditsinskii vestnik. 2020;65(1):62–7. (In Russ)]
  27. Torres HA, Davila M. Reactivation of hepatitis B virus and hepatitis C virus in patients with cancer. Nat Rev Clin Oncol. 2012;9(3):156–66. doi: 10.1038/nrclinonc.2012.1.
  28. Шаницына С.Е., Бурневич Э.З., Никулкина Е.Н. и др. Факторы риска неблагоприятного прогноза хронического гепатита С. Терапевтический архив. 2019;91(2):59–66. doi: 10.26442/00403660.2019.02.000082.
    [Shchanitcyna SE, Burnevich EZ, Nikulkina EN, et al. Risk factors of unfavorable prognosis of chronic hepatitis C. Terapevticheskii arkhiv. 2019;91(2):59–66. doi: 10.26442/00403660.2019.02.000082. (In Russ)]
  29. Mahale P, Kontoyiannis DP, Chemaly RF, et al. Acute exacerbation and reactivation of chronic hepatitis C virus infection in cancer patients. J Hepatol. 2021;57(6):1177–85. doi: 10.1016/j.jhep.2012.07.031.
  30. Nosotti L, D’Andrea M, Pitidis A, et al. Hepatitis C virus infection prevalence and liver dysfunction in a cohort of B-cell non-Hodgkin’s lymphoma patients treated with immunochemotherapy. Scand J Infect Dis. 2012;44(1):70–3. doi: 10.3109/00365548.2011.611819.
  31. Новик А.А. Возможности трансплантации костного мозга и стволовых кроветворных клеток в терапии гематологических и онкологических заболеваний. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2006;1(1):58–63.
    [Novik AA. Possibilities for bone marrow and hematopoietic stem cell transplantation in the treatment of hematological and oncological diseases. Vestnik Natsionalnogo mediko-khirurgicheskogo tsentra im. N.I. Pirogova. 2006;1(1):58–63. (In Russ)]
  32. Mahmoud HK, Fathy GM, Elhaddad A, et al. Hematopoietic Stem Cell Transplantation in Egypt: Challenges and Opportunities. Mediterr J Hematol Infect Dis. 2020;12(1):e2020023. doi: 10.4084/MJHID.2020.023.
  33. Levitsky D, Sorrell MF. Hepatic complications of hematopoietic cell transplantation. Curr Gastroenterol Rep. 2007;9(1):60–5. doi: 10.1007/s11894-008-0022-y.
  34. Abdelbary H, Magdy R, Moussa M, et al. Liver disease during and after hematopoietic stem cell transplantation in adults: a single-center Egyptian experience. J Egypt Natl Canc Inst. 2020;32(1):11. doi: 10.1186/s43046-020-0020-1.
  35. Kaito S, Doki N, Hishima T, et al. Progressive hepatic cirrhosis early after allogeneic hematopoietic stem cell transplantation in a patient with chronic hepatitis C infection. Turk J Hematol. 2019;36(2):130–3. doi: 10.4274/tjh.galenos.2019.2018.0224.
  36. Castillo I, Rodriguez-Inigo E, Bartolome J, et al. Hepatitis C virus replicates in peripheral blood mononuclear cells of patients with occult hepatitis C virus infection. 2005;54(5):682–5. doi: 10.1136/gut.2004.057281.
  37. Castillo I, Bartolome J, Quiroga JA, et al. Long-term virological follow up of patients with occult hepatitis C virus infection. Liver Int. 2011;31(10):1519–24. doi: 10.1111/j.1478-3231.2011.02613.x.
  38. Вишневская Т.В., Масалова О.В., Альховский С.В. и др. Выявление маркеров репликации вируса гепатита С в мононуклеарных клетках периферической крови больных хроническим гепатитом С. Медицинская иммунология. 2008;10(4–5):397–404. doi: 10.15789/1563-0625-2008-4-5-397-404.
    [Vishnevskaya TV, Massalova OV, Alkhovsky SV, et al. Detection of hepatitis C virus-specific replication markers in peripheral blood mononuclears from the patients with chronic hepatitis C. Medical immunology. 2008;10(4–5):397–404. doi: 10.15789/1563-0625-2008-4-5-397-404. (In Russ)]
  39. Quiroga JA, Castillo I, Llorente S, et al. Identification of serologically silent latent hepatitis C viral infection by detecting an immunoglobulin G antibody to the dominant epitope of the HCV core peptide. J Hepatol. 2009;50(2):256–63. doi: 10.1016/j.jhep.2008.08.021.
  40. Carreno V, Bartolome J, Castillo I, et al. New perspectives in occult hepatitis C virus infection. World J Gastroenterol. 2012;18(23):2887–94. doi: 10.3748/wjg.v18.i23.2887.
  41. De Marco L, Gillio-Tos A, Fiano V, et al. Occult HCV infection: an unexpected finding in a population unselected for hepatic disease. PLoS One. 2009;4(12):e8128. doi: 10.1371/journal.pone.0008128.
  42. Lin H, Chen X, Zhu S, et al. Prevalence of Occult Hepatitis C Virus Infection among Blood Donors in Jiangsu, China. Intervirology. 2016;59(4):204–10. doi: 10.1159/000455854.
  43. Martinez-Rodriguez ML, Uribe-Noguez LA, Arroyo-Anduiza CI, et al. Prevalence and risk factors of Occult Hepatitis C infections in blood donors from Mexico City. PLoS One. 2018;13(10):e0205659. doi: 10.1371/journal.pone.0205659.
  44. Austria A, Wu GY. Occult Hepatitis C Virus Infection: A Review. J Clin Transl Hepatol. 2018;6(2):155–60. doi: 10.14218/JCTH.2017.00053.
  45. Helaly GF, Elsheredy AG, El Basset Mousa AA, et al. Seronegative and occult hepatitis C virus infections in patients with hematological disorders. Arch Virol. 2017;162(1):63–6. doi: 10.1007/s00705-016-3049-7.
  46. Mahrous S, Baraka A, Fathy М, Fayez М. Seronegative and latent hepatitis C viral infections in patients with acute and chronic myeloid leukemia. Egypt J Hosp Med. 2022;86(1):470–6. doi: 10.21608/ejhm.2022.213795.
  47. Yousif MM, Elsadek Fakhr A, Morad EA, et al. Prevalence of occult hepatitis C virus infection in patients who achieved sustained virologic response to direct-acting antiviral agents. Infez Med. 2018;26(3):237–43.
  48. Mazzaro C, Quartuccio L, Adinolfi LE. Review of extrahepatic manifestations of chronic hepatitis C viral infection and the effects of direct-acting antiviral therapy. Viruses. 2021;13(11):2249. doi: 10.3390/v13112249.
  49. Sarakko DM, Marzano A, Rizzetto M. Therapy of chronic viral hepatitis: light at the end of the tunnel? 2022;10(3):534. doi: 10.3390/biomedicines10030534.
  50. Нурмухаметова Е.А., Блохина Н.П., Тихонова Н.Ю. Противовирусная терапия хронического гепатита С: многолетний опыт реальной клинической практики. Инфекционные болезни. 2021;19(3):43–57. doi: 10.20953/1729-9225-2021-3-43-57.
    [Nurmukhametova EA, Blokhina NP, Tikhonova NYu. Antiviral therapy for chronic hepatitis C: many years of real clinical experience. Infektsionnye bolezni. 2021;19(3):43–57. doi: 10.20953/1729-9225-2021-3-43-57. (In Russ)]
  51. Rabaan AA, Al-Ahmed SH, Bazzi AM, et al. Overview of hepatitis C infection, molecular biology and new treatment. J Infect Public Health. 2020;13(5):773–83. doi: 10.1016/j.jiph.2019.11.015.
  52. Fontana RJ, Brown RS, Moreno-Zamora A, et al. Daclatasvir in combination with sofosbuvir or simeprevir in liver transplant recipients with severe recurrent hepatitis C infection. Liver Transpl. 2016;22(4):446–58. doi: 10.1002/lt.24416.
  53. Michot JM, Canioni D, Driss H, et al. Antiviral therapy is associated with a better survival in patients with hepatitis C virus and B-cell non-Hodgkin lymphomas, ANRS HC-13 lympho-C study. Am J Hematol. 2015;90(3):197–203. doi: 10.1002/ajh.23889.
  54. Frigeni M, Besson C, Visco C, et al. Interferon-free compared to interferon-based antiviral regimens as first-line therapy B-cell lymphoproliferative disorders associated with hepatitis C virus infection. Leukemia. 2020;34(5):1462–6. doi: 10.1038/s41375-019-0687-2.
  55. Pinana JL, Serra MА, Hernandez-Boluda JC, et al. Successful treatment of hepatitis C virus infection with sofosbuvir and simeprevir in the early phase of an allogeneic stem cell transplant. Transpl Infect Dis. 2016;18(1):89–92. doi: 10.1111/tid.12474.
  56. Rauwolf K, Herbruggen H, Zollner S, et al. Durable control of hepatitis C through interferon-free antiviral combination therapy immediately prior to allogeneic haematopoietic stem cell transplantation. J Viral. 2019;26(4):454–8. doi: 10.1111/jvh.13046.
  57. Onodera K, Onishi Y, Inoue J, et al. Second direct-acting antiviral therapy for hepatitis C virus infection after umbilical cord blood transplantation: A case report. J Infect Chemother. 2021;27(8):1230–3. doi: 10.1016/j.jiac.2021.02.002.
  58. Iftikhar R, Ahmad P, de Latour R, et al. Special issues related to the diagnosis and management of acquired aplastic anemia in countries with restricted resources, a report on behalf of the Eastern Mediterranean blood and marrow transplantation (EMBMT) group and severe aplastic anemia working party of the European Society for blood and marrow transplantation (SAAWP of EBMT). Bone Marrow Transplant. 2021;56(10):2518–32. doi: 10.1038/s41409-021-01332-8.
  59. Cunningham HE, Shea TC, Grgic T, Lachiewicz AM. Successful treatment of hepatitis C virus infection with direct-acting antivirals during hematopoietic cell transplant. Transpl Infect Dis. 2019;21(3):е13091. doi: 10.1111/tid.13091.
  60. Кичатова В.С., Кюрегян К.К. Современный взгляд на резистентность к препаратам прямого противовирусного действия при лечении вирусного гепатита С. Инфекционные болезни: новости, мнения, обучение. 2019;8(2):64–71. doi: 10.24411/2305-3496-2019-12009.
    [Kichatova VS, Kuregyan KK. Modern view on resistance to direct antiviral drugs in the treatment of viral hepatitis C: analytical review. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2019;8(2):64–71. doi: 10.24411/2305-3496-2019-12009. (In Russ)]
  61. Глобальная стратегия сектора здравоохранения по вирусному гепатиту 2016–2021 гг. На пути к ликвидации вирусного гепатита. Женева: ВОЗ, 2016. 52 с.
    [Global health sector strategy on viral hepatitis 2016–2021. Towards ending viral hepatitis. Geneva: WHO Publ.; 52 p. (In Russ)]
  62. Михайлов М.И., Ющук Н.Д., Малинникова Е.Ю. и др. Проект программы по контролю и ликвидации вирусных гепатитов как проблемы общественного здоровья в Российской Федерации. Инфекционные болезни: новости, мнения, обучение. 2018;7(2):52–8. doi:24411/2305-3496-2018-12005.
    [Mikhaylov MI, Yushchuk ND, Malinnikova EYu, et al. The design of the program for control and elimination of viral hepatitis as public health problem in the Russian Federation. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2018;7(2):52–8. doi: 10.24411/2305-3496-2018-12005. (In Russ)]

Комбинация ибрутиниба и венетоклакса в терапии хронического лимфолейкоза: обзор последних данных клинических исследований

А.А. Петренко1,2, М.И. Кислова1, Е.А. Дмитриева1, Е.А. Никитин1,2, В.В. Птушкин1,2,3

1 ГБУЗ «Городская клиническая больница им. С.П. Боткина ДЗМ», 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284

2 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, ул. Баррикадная, д. 2/1, Москва, Российская Федерация, 125993

3 ФГАОУ ВО «РНИМУ им. Н.И. Пирогова» Минздрава России, ул. Островитянова, д. 1, Москва, Российская Федерация, 117997

Для переписки: Мария Игоревна Кислова, 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284; e-mail: xkislovamariax@gmail.com

Для цитирования: Петренко А.А., Кислова М.И., Дмитриева Е.А. и др. Комбинация ибрутиниба и венетоклакса в терапии хронического лимфолейкоза: обзор последних данных клинических исследований. Клиническая онкогематология. 2023;16(1):37–45.

DOI: 10.21320/2500-2139-2023-16-1-37-45


РЕФЕРАТ

Появление ингибиторов тирозинкиназы Брутона (BTK) изменило лечение пациентов с хроническим лимфолейкозом (ХЛЛ). Ибрутиниб, первый в своем классе ингибитор BTK, продемонстрировал высокую эффективность в многочисленных клинических исследованиях. Однако использование ингибиторов BTK в качестве монотерапии требует непрерывного лечения. Резистентность к ингибиторам BTK и тяжелые побочные эффекты неизбежно возникают при монотерапии ибрутинибом, что часто приводит к неэффективности лечения. Комбинация ингибитора BCL-2 венетоклакса с ингибитором BTK может улучшить эффективность терапии за счет синергизма действия препаратов на разные субпопуляции клеток ХЛЛ. Комбинированная терапия может привести к более глубоким ответам, обеспечивая потенциально фиксированную продолжительность лечения. В настоящем обзоре, сосредоточив внимание на комбинации ибрутиниба и венетоклакса, мы обобщаем последние данные клинических исследований, а также отвечаем на вопрос, касающийся обоснованности комбинированной терапии с точки зрения ее эффективности и профиля безопасности.

Ключевые слова: ибрутиниб, ингибиторы BTK, венетоклакс, ингибиторы BCL-2, таргетные препараты, хронический лимфолейкоз.

Получено: 17 октября 2022 г.

Принято в печать: 10 ноября 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Brown JR, Hallek MJ, Pagel JM. Chemoimmunotherapy Versus Targeted Treatment in Chronic Lymphocytic Leukemia: When, How Long, How Much, and in Which Combination? Am Soc Clin Oncol Educ Book. 2016;35:e387–е398. doi: 10.1200/EDBK_159018.
  2. Eichhorst B, Fink AM, Bahlo J, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016;17(7):928–42. doi: 10.1016/S1470-2045(16)30051-1.
  3. Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10. doi: 10.1056/NEJMoa1313984.
  4. Hallek M, Shanafelt TD, Eichhorst B. Chronic lymphocytic leukaemia. 2018;391(10129):1524–37. doi: 10.1016/S0140-6736(18)30422-7.
  5. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. doi: 10.1056/NEJMoa1215637.
  6. de Rooij MF, Kuil A, Geest CR, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. 2012;119(11):2590–4. doi: 10.1182/blood-2011-11-390989.
  7. Herman SE, Mustafa RZ, Jones J, et al. Treatment with Ibrutinib Inhibits BTK- and VLA-4-Dependent Adhesion of Chronic Lymphocytic Leukemia Cells In Vivo. Clin Cancer Res. 2015;21(20):4642–51. doi: 10.1158/1078-0432.CCR-15-0781.
  8. Barr PM, Owen C, Robak T, et al. Up to 8-year follow-up from RESONATE-2: first-line ibrutinib treatment for patients with chronic lymphocytic leukemia. Blood Adv. 2022;6(11):3440–50. doi: 10.1182/bloodadvances.2021006434.
  9. Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib-Rituximab or Chemoimmunotherapy for Chronic Lymphocytic Leukemia. N Engl J Med. 2019;381(5):432–43. doi: 10.1056/NEJMoa1817073.
  10. Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL. N Engl J Med. 2018;379(26):2517–28. doi: 10.1056/NEJMoa1812836.
  11. Moreno C, Greil R, Demirkan F, et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(1):43–56. doi: 10.1016/S1470-2045(18)30788-5.
  12. Munir T, Brown JR, O’Brien S, et al. Final analysis from RESONATE: Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019;94(12):1353–63. doi: 10.1002/ajh.25638.
  13. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23. doi: 10.1056/NEJMoa1400376.
  14. Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N Engl J Med. 2015;373(25):2425–37. doi: 10.1056/NEJMoa1509388.
  15. Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506. doi: 10.1182/blood-2014-10-606038.
  16. Davids MS, Brander DM, Kim HT, et al. Ibrutinib plus fludarabine, cyclophosphamide, and rituximab as initial treatment for younger patients with chronic lymphocytic leukaemia: a single-arm, multicentre, phase 2 trial. Lancet Haematol. 2019;6(8):e419–e428. doi: 10.1016/S2352-3026(19)30104-8.
  17. Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8. doi: 10.1038/nm.3048.
  18. Fischer K, Al-Sawaf O, Bahlo J, et al. Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions. N Engl J Med. 2019;380(23):2225–36. doi: 10.1056/NEJMoa1815281.
  19. Kater AP, Wu JQ, Kipps T, et al. Venetoclax Plus Rituximab in Relapsed Chronic Lymphocytic Leukemia: 4-Year Results and Evaluation of Impact of Genomic Complexity and Gene Mutations From the MURANO Phase III Study. J Clin Oncol. 2020;38(34):4042–54. doi: 10.1200/JCO.20.00948.
  20. Al-Sawaf O, Zhang C, Lu T, et al. Minimal Residual Disease Dynamics after Venetoclax-Obinutuzumab Treatment: Extended Off-Treatment Follow-up From the Randomized CLL14 Study. J Clin Oncol. 2021;39(36):4049–60. doi: 10.1200/JCO.21.01181.
  21. Kittai AS, Woyach JA. uMRD: “the” endpoint or “an” endpoint for CLL? Blood. 2022;140(8):797–8. doi: 10.1182/blood.2022016927.
  22. Chen SS, Chang BY, Chang S, et al. BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia. 2016;30(4):833–43. doi: 10.1038/leu.2015.316.
  23. Cervantes-Gomez F, Lamothe B, Woyach JA, et al. Pharmacological and Protein Profiling Suggests Venetoclax (ABT-199) as Optimal Partner with Ibrutinib in Chronic Lymphocytic Leukemia. Clin Cancer Res. 2015;21(16):3705–15. doi: 10.1158/1078-0432.CCR-14-2809.
  24. Kater AP, Slinger E, Cretenet G, et al. Combined ibrutinib and venetoclax treatment vs single agents in the TCL1 mouse model of chronic lymphocytic leukemia. Blood Adv. 2021;5(23):5410–4. doi: 10.1182/bloodadvances.2021004861.
  25. Slinger E, Thijssen R, Kater AP, Eldering E. Targeting antigen-independent proliferation in chronic lymphocytic leukemia through differential kinase inhibition. Leukemia. 2017;31(12):2601–7. doi: 10.1038/leu.2017.129.
  26. Haselager MV, Kater AP, Eldering E. Proliferative Signals in Chronic Lymphocytic Leukemia; What Are We Missing? Front Oncol. 2020;10:592205. doi: 10.3389/fonc.2020.592205.
  27. Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol. 2020;10:591577. doi: 10.3389/fonc.2020.591577.
  28. Haselager MV, Kielbassa K, Ter Burg J, et al. Changes in Bcl-2 members after ibrutinib or venetoclax uncover functional hierarchy in determining resistance to venetoclax in CLL. Blood. 2020;136(25):2918–26. doi: 10.1182/blood.2019004326.
  29. Deng J, Isik E, Fernandes SM, et al. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia. Leukemia. 2017;31(10):2075–84. doi: 10.1038/leu.2017.32.
  30. Gutierrez C, Wu CJ. Clonal dynamics in chronic lymphocytic leukemia. Blood Adv. 2019;3(22):3759–69. doi: 10.1182/bloodadvances.2019000367.
  31. Lu P, Wang S, Franzen CA, et al. Ibrutinib and venetoclax target distinct subpopulations of CLL cells: implication for residual disease eradication. Blood Cancer J. 2021;11(2):39. doi: 10.1038/s41408-021-00429-z.
  32. Zhang J, Lu X, Li J, Miao Y. Combining BTK inhibitors with BCL2 inhibitors for treating chronic lymphocytic leukemia and mantle cell lymphoma. Biomark Res. 2022;10(1):17. doi: 10.1186/s40364-022-00357-5.
  33. Wierda WG, Allan JN, Siddiqi T, et al. Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results From the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. J Clin Oncol. 2021;39(34):3853–65. doi: 10.1200/JCO.21.00807.
  34. Wierda WG, Tam CS, Allan JN, et al. Ibrutinib (Ibr) Plus Venetoclax (Ven) for First-Line Treatment of Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma (SLL): 1-Year Disease-Free Survival (DFS) Results From the MRD Cohort of the Phase 2 CAPTIVATE Study. Blood. 2020;136(Suppl 1):16–7. doi: 10.1182/blood-2020-134446.
  35. Ghia P, Allan JN, Siddiqi T, et al. First-Line Treatment with Ibrutinib (Ibr) Plus Venetoclax (Ven) for Chronic Lymphocytic Leukemia (CLL): 2-Year Post-Randomization Disease-Free Survival (DFS) Results from the Minimal Residual Disease (MRD) Cohort of the Phase 2 Captivate Study. Blood. 2021;138(Suppl 1):68. doi: 10.1182/blood-2021-144544.
  36. Tam CS, Allan JN, Siddiqi T, et al. Fixed-duration ibrutinib plus venetoclax for first-line treatment of CLL: primary analysis of the CAPTIVATE FD cohort. Blood. 2022;139(22):3278–89. doi: 10.1182/blood.2021014488.
  37. Allan JN, Wierda WG, Siddiqi T, et al. Primary analysis of the fixed-duration cohort from the phase 2 CAPTIVATE study of first-line ibrutinib+venetoclax for chronic lymphocytic leukemia/small lymphocytic lymphoma. EHA Library. 2021;324555:S147.
  38. Jain N, Keating M, Thompson P, et al. Ibrutinib and Venetoclax for First-Line Treatment of CLL. N Engl J Med. 2019;380(22):2095–103. doi: 10.1056/NEJMoa1900574.
  39. Jain N, Keating MJ, Thompson PA, et al. Combined Ibrutinib and Venetoclax for First-Line Treatment of Patients with Chronic Lymphocytic Leukemia (CLL): Focus on Long-Term MRD Results. Blood. 2021;138(Suppl 1):3720. doi: 10.1182/blood-2021-154454.
  40. Jain N, Keating M, Thompson P, et al. Ibrutinib Plus Venetoclax for First-line Treatment of Chronic Lymphocytic Leukemia: A Nonrandomized Phase 2 Trial. JAMA Oncol. 2021;7(8):1213–9. doi: 10.1001/jamaoncol.2021.1649.
  41. Kater A, Owen C, Moreno C, et al. Fixed-duration ibrutinib and venetoclax (I+V) versus chlorambucil plus obinutuzumab (CLB+O) for first-line (1L) chronic lymphocytic leukemia (CLL): primary analysis of the phase 3 GLOW study. EHA Library. 2021;330172:LB1902.
  42. Munir T, Moreno C, Owen C, et al. First prospective data on minimal residual disease (MRD) outcomes after fixed-duration ibrutinib plus venetoclax (Ibr+Ven) versus chlorambucil plus obinutuzumab (Clb+O) for first-line treatment of CLL in elderly or unfit patients: the Glow study. Blood. 2021;138(Suppl 1):70. doi: 10.1182/blood-2021-148666.
  43. Kater AP, Owen C, Moreno C, et al. Fixed-Duration Ibrutinib-Venetoclax in Patients with Chronic Lymphocytic Leukemia and Comorbidities. NEJM Evid. 2022;1(7). doi: 10.1056/EVIDoa2200006.
  44. Hillmen P, Rawstron AC, Brock K, et al. Ibrutinib Plus Venetoclax in Relapsed/Refractory Chronic Lymphocytic Leukemia: The CLARITY Study. J Clin Oncol. 2019;37(30):2722–9. doi: 10.1200/JCO.19.00894.
  45. Niemann CU, Levin M-D, Dubois J, et al. Venetoclax and ibrutinib for patients with relapsed/refractory chronic lymphocytic leukemia. Blood. 2021;137(8):1117–20. doi: 1182/blood.2020008608.
  46. Jain N, Keating MJ, Thompson PA, et al. Combined Ibrutinib and Venetoclax in Patients with Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL). Blood. 2019;134(Suppl_1):359. doi: 10.1182/blood-2019-131732.
  47. Scarfo L, Heltai S, Albi E, et al. Minimal residual disease-driven treatment intensification by sequential addition of ibrutinib to venetoclax in relapsed/refractory chronic lymphocytic leukemia: results of the monotherapy and combination phases of the IMPROVE study. Blood. 2020;136(Suppl 1):21–2.
  48. Thompson PA, Wang Y, Keating MJ, et al. Venetoclax Consolidation in Patients with High-Risk CLL Who Have Been on Ibrutinib More Than a Year Achieves a High Rate of Undetectable Minimal Residual Disease. Blood. 2021;138(Suppl 1):3723. doi: 1182/blood-2021-149919.
  49. Petrenko A, Kislova M, Dmitrieva E, et al. P654: Ibrutinib Plus Venetoclax in Patients With Complex Karyotype and Chronic Lymphocytic Leukemia. HemaSphere. 2022;6:552–3. doi: 10.1097/01.HS9.0000845500.06883.11.

Прогностические модели в медицине

А.С. Лучинин

ФГБУН «Кировский НИИ гематологии и переливания крови ФМБА», ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027

Для переписки: Александр Сергеевич Лучинин, канд. мед. наук, ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027; тел.: +7(919)506-87-86; e-mail: glivec@mail.ru

Для цитирования: Лучинин А.С. Прогностические модели в медицине. Клиническая онкогематология. 2023;16(1):27–36.

DOI: 10.21320/2500-2139-2023-16-1-27-36


РЕФЕРАТ

Медицинские прогностические (предиктивные) модели (МПМ) имеют важное значение в современном здравоохранении. Они определяют риски для здоровья и возникновения заболеваний. Целью их создания является улучшение результатов диагностики и лечения. Все МПМ можно разделить на две категории. Диагностические медицинские модели (ДММ) помогают рассчитать индивидуальный риск присутствия заболевания, в то время как прогностические медицинские модели (ПММ) — риск возникновения болезни или его осложнения в будущем. В обзоре обсуждаются характеристики ДММ и ПММ, условия их разработки, критерии применения в медицине, в частности в гематологии, а также проблемы, возникающие на этапе их создания и проверки качества.

Ключевые слова: прогностическая модель, искусственный интеллект.

Получено: 13 сентября 2022 г.

Принято в печать: 7 декабря 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. Br Med J. 2020;369:m1328. doi: 10.1136/bmj.m1328.
  2. Van Smeden M, Reitsma JB, Riley RD, et al. Clinical prediction models: diagnosis versus prognosis. J Clin Epidemiol. 2021;132:142–5. doi: 10.1016/j.jclinepi.2021.01.009.
  3. Schalling M, Gleiss A, Gisslinger B, et al. Essential thrombocythemia vs. pre-fibrotic/early primary myelofibrosis: discrimination by laboratory and clinical data. Blood Cancer J. 2017;7(12):643. doi: 10.1038/s41408-017-0006-y.
  4. Guncar G, Kukar M, Notar M, et al. An application of machine learning to haematological diagnosis. Sci Rep. 2018;8(1):411. doi: 10.1038/s41598-017-18564-8.
  5. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.
  6. Van de Schans SАM, Steyerberg EW, Nijziel MR, et al. Validation, revision and extension of the Follicular Lymphoma International Prognostic Index (FLIPI) in a population-based setting. Ann Oncol. 2009;20(10):1697–702. doi: 10.1093/annonc/mdp053.
  7. Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J Clin Oncol. 2015;33(26):2863–9. doi: 10.1200/JCO.2015.61.2267.
  8. Лучинин А.С. Искусственный интеллект в гематологии. Клиническая онкогематология. 2022;15(1):16–27. doi: 10.21320/2500-2139-2022-15-1-16-27.
    [Luchinin AS. Artificial Intelligence in Hematology. Clinical oncohematology. 2022;15(1):16–27. doi: 10.21320/2500-2139-2022-15-1-16-27. (In Russ)]
  9. Zhou L, Meng X, Huang Y, et al. An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors. Nat Mach Intell. 2022;4(5):494–503. doi: 10.1038/s42256-022-00483-7.
  10. Szumilas M. Explaining Odds Ratios. J Can Acad Child Adolesc Psychiatry. 2010;19(3):227–29.
  11. Barraclough H, Simms L, Govindan R. Biostatistics Primer: What a Clinician Ought to Know: Hazard Ratios. J Thorac Oncol. 2011;6(6):978–82. doi: 10.1097/JTO.0b013e31821b10ab.
  12. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31. doi: 10.1093/eurheartj/ehu207.
  13. Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17(1):230. doi: 10.1186/s12916-019-1466-7.
  14. Wolff RF, Moons KGM, Riley RD, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51–8. doi: 10.7326/M18-1376.
  15. Moons KGM, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. Br Med J. 2009;338:b606. doi: 10.1136/bmj.b606.
  16. Altman DG, Bland JM. Missing data. Br Med J. 2007;334(7590):424. doi: 10.1136/bmj.38977.682025.2C.
  17. Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. Br Med J. 2020;368:m441. doi: 10.1136/bmj.m441.
  18. Jenkins DG, Quintana-Ascencio PF. A solution to minimum sample size for regressions. PloS One. 2020;15(2):e0229345. doi: 10.1371/journal.pone.0229345.
  19. Van Voorhis WCR, Morgan BL. Understanding Power and Rules of Thumb for Determining Sample Sizes. Tutor Quant Meth Psychol. 2007;3(2):43–50. doi: 10.20982/tqmp.03.2.p043.
  20. Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9. doi: 10.1016/s0895-4356(96)00236-3.
  21. Bujang MA, Sa’at N, Sidik TMITAB, Joo LC. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays J Med Sci. 2018;25(4):122–30. doi: 10.21315/mjms2018.25.4.12.
  22. Zhou P-Y, Wong AKC. Explanation and prediction of clinical data with imbalanced class distribution based on pattern discovery and disentanglement. BMC Med Inform Decis Mak. 2021;21(1):16. doi: 10.1186/s12911-020-01356-y.
  23. Pauker SG, Kassirer JP. The Threshold Approach to Clinical Decision Making. N Engl J Med. 1980;302(20):1109–17. doi: 10.1056/NEJM198005153022003.
  24. Lee DK. Data transformation: a focus on the interpretation. Korean J Anesthesiol. 2020;73(6):503–8. doi: 10.4097/kja.20137.
  25. Zhang Z. Variable selection with stepwise and best subset approaches. Ann Transl Med. 2016;4(7):136. doi: 10.21037/atm.2016.03.35.
  26. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385395. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3.
  27. de Hond AAH, Leeuwenberg AM, Hooft L, et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. NPJ Digit Med. 2022;5(1):1–13. doi: 10.1038/s41746-021-00549-7.
  28. Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian J Intern Med. 2013;4(2):627–35.
  29. Agarwal A, Sharma P, Alshehri M, et al. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Comput Sci. 2021;7:e437. doi: 10.7717/peerj-cs.437.
  30. Hendriksen JMT, Geersing GJ, Moons KGM, de Groot JАH. Diagnostic and prognostic prediction models. J Thromb Haemost. 2013;11(Suppl 1):129–41. doi: 10.1111/jth.12262.
  31. Huang Y, Li W, Macheret F, et al. A tutorial on calibration measurements and calibration models for clinical prediction models. J Am Med Inform Assoc. 2020;27(4):621–33. doi: 10.1093/jamia/ocz228.
  32. Snell KIE, Archer L, Ensor J, et al. External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb. J Clin Epidemiol. 2021;135:79–89. doi: 10.1016/j.jclinepi.2021.02.011.
  33. Ramspek CL, Teece L, Snell KIE, et al. Lessons learnt when accounting for competing events in the external validation of time-to-event prognostic models. Int J Epidemiol. 2022;51(2):615–25. doi: 10.1093/ije/dyab256.
  34. Van Geloven N, Giardiello D, Bonneville EF, et al. Validation of prediction models in the presence of competing risks: a guide through modern methods. Br Med J. 2022;377:e069249. doi: 10.1136/bmj-2021-069249.
  35. Altman DG, Bland JM. Absence of evidence is not evidence of absence. Br Med J. 1995;311(7003):485. doi: 10.1136/bmj.311.7003.485.
  36. Smith GD, Ebrahim S. Data dredging, bias, or confounding. Br Med J. 2002;325(7378):1437–8. doi: 10.1136/bmj.325.7378.1437.
  37. Lakens D, Adolfi FG, Albers CJ, et al. Justify your alpha. Nat Hum Behav. 2018;2(3):168–71. doi: 10.1038/s41562-018-0311-x.
  38. Benjamin DJ, Berger JO, Johannesson M, et al. Redefine statistical significance. Nat Hum Behav. 2018;2(1):6–10. doi: 10.1038/s41562-017-0189-z.
  39. Van Smeden M, Lash TL, Groenwold RHH. Reflection on modern methods: five myths about measurement error in epidemiological research. Int J Epidemiol. 2020;49(1):338–47. doi: 10.1093/ije/dyz251.
  40. Altman DG, Royston P. The cost of dichotomising continuous variables. Br Med J. 2006;332(7549):1080. doi: 10.1136/bmj.332.7549.1080.
  41. Wynants L, van Smeden M, McLernon DJ, et al. Three myths about risk thresholds for prediction models. BMC Med. 2019;17(1):192. doi: 10.1186/s12916-019-1425-3.
  42. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–41. doi: 10.1002/sim.2331.
  43. Vargha A, Rudas T, Delaney HD, Maxwell SE. Dichotomization, Partial Correlation, and Conditional Independence. J Educ Behav Stat. 1996;21(3):264–82. doi: 10.3102/10769986021003264.
  44. Basagana X, Pedersen M, Barrera-Gomez J, et al. Analysis of multicentre epidemiological studies: contrasting fixed or random effects modelling and meta-analysis. Int J Epidemiol. 2018;47(4):1343–54. doi: 10.1093/ije/dyy
  45. Лучинин А.С. Лечение пациентов с впервые диагностированной диффузной В-крупноклеточной лимфомой: обзор литературы и метаанализ. Клиническая онкогематология. 2022;15(2):130–9. doi: 10.21320/2500-2139-2022-15-2-130-139.
    [Luchinin AS. Treatment of Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma: A Literature Review and Meta-Analysis. Clinical oncohematology. 2022;15(2):130–9. doi: 10.21320/2500-2139-2022-15-2-130-139. (In Russ)]
  46. Riley RD, Collins GS, Ensor J, et al. Minimum sample size calculations for external validation of a clinical prediction model with a time-to-event outcome. Stat Med. 2022;41(7):1280–95. doi: 10.1002/sim.9275.
  47. Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: Part I – continuous outcomes. Stat Med. 2019;38(7):1262–75. doi: 10.1002/sim.7993.
  48. Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: Part II – binary and time-to-event outcomes. Stat Med. 2019;38(7):1276–96. doi: 10.1002/sim.7992.
  49. Riley RD, Debray TPA, Collins GS, et al. Minimum sample size for external validation of a clinical prediction model with a binary outcome. Stat Med. 2021;40(19):4230–51. doi: 10.1002/sim.9025.
  50. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. Br Med J. 2009;338:b2393. doi: 10.1136/bmj.b2393.
  51. Petrazzini BO, Naya H, Lopez-Bello F, et al. Evaluation of different approaches for missing data imputation on features associated to genomic data. BioData Min. 2021;14(1):44. doi: 10.1186/s13040-021-00274-7.
  52. Sun GW, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol. 1996;49(8):907–16. doi: 10.1016/0895-4356(96)00025-x.
  53. Heinze G, Dunkler D. Five myths about variable selection. Transpl Int. 2017;30(1):6–10. doi: 10.1111/tri.12895.
  54. Chen R-C, Dewi C, Huang S-W, Caraka RE. Selecting critical features for data classification based on machine learning methods. J Big Data. 2020;7(1):52. doi: 10.1186/s40537-020-00327-4.
  55. Moons KGM, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart. 2012;98(9):691–8. doi: 10.1136/heartjnl-2011-301247.
  56. Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1-73. doi: 10.7326/M14-0698.
  57. Vasey B, Nagendran M, Campbell B, et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med. 2022;28(5):924–33. doi: 10.1038/s41591-022-01772-9.

Острые миелоидные лейкозы после лечения классической лимфомы Ходжкина: обзор литературы

А.А. Даниленко, С.В. Шахтарина, Н.А. Фалалеева

Медицинский радиологический научный центр им. А.Ф. Цыба — филиал ФГБУ «НМИЦ радиологии» Минздрава России, ул. Королева, д. 4, Обнинск, Калужская область, Российская Федерация, 249036

Для переписки: Анатолий Александрович Даниленко, д-р мед. наук, ул. Королева, д. 4, Обнинск, Калужская область, Российская Федерация, 249036; тел.: +7(909)250-18-10; e-mail: danilenkoanatol@mail.ru

Для цитирования: Даниленко А.А., Шахтарина С.В., Фалалеева Н.А. Острые миелоидные лейкозы после лечения классической лимфомы Ходжкина: обзор литературы. Клиническая онкогематология. 2022;15(4):414–23.

DOI: 10.21320/2500-2139-2022-15-4-414-423


РЕФЕРАТ

Вторые злокачественные опухоли, развивающиеся у больных классической лимфомой Ходжкина (кЛХ) после лечения, представлены преимущественно солидными новообразованиями и в значительно меньшей степени острыми миелоидными лейкозами (ОМЛ). Вместе с тем относительный риск развития вторичного ОМЛ существенно превышает риск развития вторых (солидных) опухолей, а эффективность лечения больных вторичным ОМЛ значительно уступает результатам лечения первичного ОМЛ, что делает проблему значимой и актуальной. Настоящий обзор литературы посвящен эпидемиологии развития вторичных ОМЛ у больных, получавших лечение по поводу кЛХ. Кроме того, уделяется внимание современным лекарственным препаратам и технологиям, эффективным в отношении вторичных ОМЛ.

Ключевые слова: классическая лимфома Ходжкина, вторичные острые миелоидные лейкозы.

Получено: 15 апреля 2022 г.

Принято в печать: 28 августа 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Kanzler H, Kuppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med. 1996;184(4):1495–505. doi: 10.1084/jem.184.4.1495.
  2. Devita VT, Serpick AA, Carbone PP. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Ann Intern Med. 1970;73(6):881–95. doi: 10.7326/0003-4819-73-6-881.
  3. Donaldson SS, Hancock SL, Hoppe RT. The Janeway lecture. Hodgkin’s disease—finding the balance between cure and late effects. Cancer J Sci Am. 1999;5:325–33.
  4. Borchmann P, Eichenauer DA, Engert A. State of the art in the treatment of Hodgkin lymphoma. Nat Rev Clin Oncol. 2012;9(8):450–9. doi: 10.1038/nrclinonc.2012.91.
  5. Federico M, Luminari S, Iannitto E, et al. ABVD compared with BEACOPP compared with CEC for the initial treatment of patients with advanced Hodgkin’s lymphoma: results from the HD2000 Gruppo Italiano per lo Studio dei Linfomi Trial. J Clin Oncol. 2009;27(5):805–11. doi: 10.1200/JCO.2008.17.0910.
  6. Sasse S, Brockelmann PJ, Georgen H, et al. Long-term follow-up of contemporary treatment in early-stage Hodgkin lymphoma: Updated analyses of the German Hodgkin Study Group HD7, HD8, HD10 and HD11 trials. J Clin Oncol. 2017;35(18):1999–2007. doi: 10.1200/JCO.2016.70.9410.
  7. Henry-Amar M, Joly F. Late complications after Hodgkin’s disease. Ann Oncol. 1996;7(Suppl 4):115–26. doi: 10.1093/annonc/7.suppl_4.s115.
  8. Hoppe RT. Hodgkin’s disease: complications of therapy and excess mortality. Ann Oncol. 1997;8(Suppl 1):115–8. doi: 10.1093/annonc/8.suppl_1.s115.
  9. Merli F, Luminari S, Gobbi PG, et al. Long-term results of the HD2000 Trial comparing ABVD versus BEACOPP versus COPP-EBV-CAD in untreated patients with advanced Hodgkin lymphoma: a study by Fondazione Italiana Linfomi. J Clin Oncol. 2016;34(11):1175–81. doi: 10.1200/jco.2015.62.4817.
  10. Hancock SL, Hoppe RT. Long-term complications of treatment and causes of mortality after Hodgkin’s disease. Semin Radiat 1996;6(3):225–42. doi: 10.1053/SRAO00600225.
  11. Dorr FA, Coltman CA Jr. Second cancers following antineoplastic therapy. Curr Probl Cancer. 1985;9(2):1–43. doi: 10.1016/s0147-0272(85)80033-7.
  12. Arseneau JC, Sponzo RW, Levin DL, et al. Nonlymphomatous malignant tumors complicating Hodgkin’s disease: possible association with intensive therapy. N Engl J Med. 1972;287(22):1119–22. doi: 10.1056/NEJM197211302872204.
  13. Brunning RD, Matutes E, Harris NL, et al. Acute myeloid leukemia. World Health Organization of Tumors Pathology and Genetics, Tumors of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001. рр. 75–108. doi: 10.1182/blood-2002-04-1199.
  14. Shulman LN. The biology of alkylating-agent cellular injury. Hematol Oncol Clin North Am. 1993;7(2):325–35. doi: 10.1016/s0889-8588(18)30243-0.
  15. Tucker MA, Coleman CN, Cox RS, et al. Risk of second cancers after treatment for Hodgkin’s disease. N Engl J Med. 1988;318(2):76–81. doi: 10.1056/nejm198801143180203.
  16. van Leeuwen FE, Chorus AM, van den Belt-Dusebout AW, et al. Leukemia risk following Hodgkin’s disease: relation to cumulative dose of alkylating agents, treatment with teniposide combinations, number of episodes of chemotherapy, and bone marrow damage. J Clin Oncol. 1994;12(5):1063–73. doi: 10.1200/jco.1994.12.5.1063.
  17. Cosset JM, Henry-Amar M, Meerwaldt JH. Long-term toxicity of early stages of Hodgkin’s disease therapy: the EORTC experience. EORTC Lymphoma Cooperative Group. Ann Oncol. 1991;2(Suppl 2):77–82. doi: 10.1007/978-1-4899-7305-4_13.
  18. Park DJ, Koeffler HP. Therapy-related myelodysplastic syndromes. Semin Hematol. 1996;33(3):256–73.
  19. Abrahamsen JF, Andersen A, Hannisdal E, et al. Second malignancies after treatment of Hodgkin’s disease: the influence of treatment, follow-up time, and age. J Clin Oncol. 1993;11(2):255–61. doi: 10.1200/jco.1993.11.2.255.
  20. Glicksman AS, Pajak TF, Gottlieb A, et al. Second malignant neoplasms in patients successfully treated for Hodgkin’s disease: a Cancer and Leukemia Group B study. Cancer Treat Rep. 1982;66(4):1035–44.
  21. Delwail V, Jais JP, Colonna P, Andrieu JM. Fifteen-year secondary leukaemia risk observed in 761 patients with Hodgkin’s disease prospectively treated by MOPP or ABVD chemotherapy plus high-dose irradiation. Br J Haematol. 2002;118(1):189–94. doi: 10.1046/j.1365-2141.2002.03564.x.
  22. Coltman C, Dixon D. Second malignancies complicating Hodgkin’s disease: a Southwest Oncology Group 10-year follow-up. Cancer Treat Rep. 1982;66(4):1023–33.
  23. Aisenberg AC. Acute nonlymphocytic leukemia after treatment for Hodgkin’s disease. Am J Med. 1983;75(3):449–54. doi: 10.1016/0002-9343(83)90348-0.
  24. Coleman CN, Williams CJ, Flint AS, et al. Hematologic neoplasia in patients treated for Hodgkin’s disease. N Engl J Med. 1977;97(23):1249–52. doi: 10.1056/NEJM197712082972303.
  25. Holtzman AL, Stahl JM, Zhu S, et al. Does the Incidence of Treatment-Related Toxicity Plateau After Radiatio Therapy: The Long-Term Impact of Integral Dose in Hodgkin’s Lymphoma Survivors. Adv Radiat Oncol. 2019;4(4):699–705. doi: 10.1016/j.adro.2019.07.010.
  26. Henry-Amar M. Second cancer after the treatment of Hodgkin’s disease: a report from the International Database on Hodgkin’s disease. Ann Oncol. 1992;3(Suppl 4):117–28. doi: 10.1093/annonc/3.suppl_4.s117.
  27. Kaldor JM, Day NE, Clarke EA, et al. Leukemia following Hodgkin’s disease. N Engl J Med. 1990;322(1):7–13. doi: 10.1056/NEJM199001043220102.
  28. Brusamolino E, Anselmo AP, Klersy C, et al. The risk of acute leukemia in patients treated for Hodgkin’s disease is significantly higher after combined modality programs than after chemotherapy alone and is correlated with the extent of radiotherapy and type and duration of chemotherapy: a case-control study. Haematologica. 1998;83(9):812–23.
  29. Swerdlow AJ, Douglas AJ, Vaughan-Hudson G, et al. Risk of second primary cancers after Hodgkin’s disease by type of treatment: analysis of 2846 patients in the British National Lymphoma Investigation. Br J Med. 1992;304(6835):1137–43. doi: 10.1136/bmj.304.6835.1137.
  30. Schonfeld SJ, Gilbert ES, Dores GM, et al. Acute myeloid leukemia following Hodgkin lymphoma: a population-based study of 35,511 patients. J Natl Cancer Inst. 2006;98(3):215–8. doi: 10.1093/jnci/djj017.
  31. Pedersen-Bjergaard J, Specht L, Larsen SO, et al. Risk of therapy-related leukemia and preleukemia after Hodgkin’s disease. Lancet. 1987;2(8550):83–8. doi: 10.1016/s0140-6736(87)92744-9.
  32. Leone G, Voso MT, Sica S, et al. Therapy related leukemias: susceptibility, prevention and treatment. Leuk Lymphoma. 2001;41(3–4):255–76. doi: 10.3109/10428190109057981.
  33. Koontz MZ, Horning SJ, Balise R, et al. Risk of therapy-related secondary leukemia in Hodgkin lymphoma: the Stanford University experience over three generations of clinical trials. J Clin Oncol. 2013;31(5):592–8. doi: 10.1200/JCO.2012.44.5791.
  34. Andre MPE, Carde P, Viviani S, et al. Long-term overall survival and toxicities of ABVD vs BEACOPP in advanced Hodgkin lymphoma: A pooled analysis of four randomized trials. Cancer Med. 2020;9(18):6565–75. doi: 10.1002/cam4.3298.
  35. Skoetz N, Will A, Monsef I, et al. Comparison of first-line chemotherapy including escalated BEACOPP versus chemotherapy including ABVD for people with early unfavourable or advanced stage Hodgkin lymphoma. Cohrane Database Syst Rev. 2017;5(5):CD007941. doi: 10.1002/14651858.CD007941.pub3.
  36. Schaapveld M, Aleman BMP, van Eggermond AM, et al. Second Cancer Risk Up to 40 Years after Treatment for Hodgkin’s Lymphoma. N Engl J Med. 2015;373(26):2499–511. doi: 10.1056/NEJMoa1505949.
  37. Eichenauer DA, Thielen I, Haverkamp H, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndromes in patients with Hodgkin lymphoma: a report from the German Hodgkin Study Group. Blood. 2014;123(11):1658–64. doi: 10.1182/blood-2013-07-512657.
  38. Eichenauer DA, Becker I, Monsef I, et al. Secondary malignant neoplasms, progression-free survival and overall survival in patients treated for Hodgkin lymphoma: a systematic review and meta-analysis of randomized clinical trials. Haematologica. 2017;102(10):1748–57. doi: 10.3324/haematol.2017.167478.
  39. Franklin J, Eichenauer DA, Becker I, et al. Optimisation of chemotherapy and radiotherapy for untreated Hodgkin lymphoma patients with respect to second malignant neoplasms, overall and progression-free survival: individual participant data analysis. Cohrane Database Syst Rev. 2017;9(9):CD008814. doi: 10.1002/14651858.CD008814.pub2.
  40. Scholz M, Engert A, Franklin J, et al. Impact of first- and second-line treatment for Hodgkin’s lymphoma on the incidence of AML/MDS and NHL – experience of the German Hodgkin’s Lymphoma Study Group analyzed by a parametric model of carcinogenesis. Ann Oncol. 2011;22(3):681–8. doi: 10.1093/annonc/mdq408.
  41. Leone G, Fianchi L, Voso MT. Therapy-related myeloid neoplasms. Curr Opin Oncol. 2011;23(6):672–80. doi: 10.1097/CCO.0b013e32834bcc2a.
  42. Kumar V, Garg M, Chandra AB, et al. Trends in the Risks of Secondary Cancers in Patients With Hodgkin Lymphoma. Clin Lymphoma Myeloma Leuk. 2018;18(9):576–89. doi: 10.1016/j.clml.2018.05.021.
  43. Baker KS, DeFor TE, Burns LJ, et al. New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors. J Clin Oncol. 2003;21(7):1352–8. doi: 10.1200/jco.2003.05.108.
  44. Bilmon IA, Ashton LJ, Le Marsney RE, et al. Second cancer risk in adults receiving autologous haematopoietic SCT for cancer: a population-based cohort study. Bone Marrow Transplant. 2014;49(5):691–8. doi: 10.1038/bmt.2014.13.
  45. Hodgson DC. Long-term toxicity of chemotherapy and radiotherapy in lymphoma survivors: optimizing treatment for individual patients. Clin Adv Hematol Oncol. 2015;13(2):103–12.
  46. Howe R, Micallef IN, Inwards DJ, et al. Secondary myelodysplastic syndrome and acute myelogenous leukemia are significant complications following autologous stem cell transplantation for lymphoma. Bone Marrow Transplant. 2003;32(3):317–24. doi: 10.1038/sj.bmt.1704124.
  47. Stone RM, Neuberg D, Soiffer R, et al. Myelodysplastic syndrome as a late complication following autologous bone marrow transplantation for non-Hodgkin’s lymphoma. J Clin Oncol. 1994;12(12):2535–42. doi: 10.1200/jco.1994.12.12.2535.
  48. Bhatia S. Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol. 2013;40(6):666–75. doi: 10.1053/j.seminoncol.2013.09.013.
  49. Morton LM, Dores GM, Tucker MA, et al. Evolving risk of therapy-related acute myeloid leukemia following cancer chemotherapy among adults in the United States, 1975–2008. Blood. 2013;121(15):2996–3004. doi: 10.1182/blood-2012-08-448068.
  50. Krishnan A, Bhatia S, Slovak ML, et al. Predictors of therapy-related leukemia and myelodysplasia following autologous transplantation for lymphoma: an assessment of risk factors. Blood. 2000;95(5):1588–93. doi: 10.1182/blood.v95.5.1588.005k38_1588_1593.
  51. Pedersen-Bjergaard J, Andersen MK, Christiansen DH. Therapy-related acute myeloid leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell transplantation. Blood. 2000;95(11):3273–9. doi: 10.1182/blood.v95.11.3273.011k15_3273_3279.
  52. Andre M, Henry-Amar M, Blaise D, et al. Treatment-related deaths and second cancer risk after autologous stem cell transplantation for Hodgkin’s disease. Blood. 1998;92(6):1933–40. doi: 10.1182/blood.V92.6.1933.
  53. Hosing C, Munsell M, Yazji S, et al. Risk of therapy-related myelodysplastic syndrome/acute leukemia following high-dose therapy and autologous bone marrow transplantation for non-Hodgkin’s lymphoma. Ann Oncol. 2002;13(3):450–9. doi: 10.1093/annonc/mdf109.
  54. Kalaycio M, Rybicki L, Pohlman B, et al. Risk factors before autologous stem-cell transplantation for lymphoma predict for secondary myelodysplasia and acute myelogenous leukemia. J Clin Oncol. 2006;24(22):3604–10. doi: 10.1200/jco.2006.06.0673.
  55. Metayer C, Curtis RE, Vose J, et al. Myelodysplastic syndrome and acute myeloid leukemia after autotransplantation for lymphoma: a multicenter case–control study. Blood. 2003;101(5):2015–23. doi: 10.1182/blood-2002-04-1261.
  56. Miller JS, Arthur DC, Litz CE, et al. Myelodysplastic syndrome after autologous bone marrow transplantation: an additional late complication of curative cancer therapy. Blood. 1994;83(12):3780–6. doi: 10.1182/blood.v83.12.3780.3780.
  57. Yamasaki S, Suzuki R, Hatano K, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndrome after hematopoietic cell transplantation for lymphoma. Bone Marrow Transplant. 2017;52(7):969–76. doi: 10.1038/bmt.2017.52.
  58. Ge I, Saliba RM, Maadani F. Age and number of apheresis days may predict for development of Secondary Myelodysplastic Syndrome and Acute Myelogenous Leukemia after transplantation for lymphomas. Transfusion. 2017;57(4):1052–7. doi: 10.1111/trf.14016.
  59. Josting A, Wiedenmann S, Franklin J, et al. Secondary myeloid leukemia and myelodysplastic syndromes in patients treated for Hodgkin’s disease: a report from the German Hodgkin’s Lymphoma Study Group. J Clin Oncol. 2003;21(18):3440–6. doi: 10.1200/JCO.2003.07.160.
  60. Hake CR, Graubert TA, Fenske TS. Does autologous transplantation directly increase the risk of secondary leukemia in lymphoma patients? Bone Marrow Transplant. 2007;39(2):59–70. doi: 10.1038/sj.bmt.1705547.
  61. Wong TN, Miller CA, Jotte MRM, et al. Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat Commun. 2018;9(1):455. doi: 10.1038/s41467-018-02858-0.
  62. Sharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest. 2004;113(2):160–8. doi: 10.1172/JCI200420761.
  63. Forrest DL, Hogge DE, Nevill TJ, et al. High-dose therapy and autologous hematopoietic stem-cell transplantation does not increase the risk of second neoplasms for patients with Hodgkin’s lymphoma: a comparison of conventional therapy alone versus conventional therapy followed by autologous hematopoietic stem-cell transplantation. J Clin Oncol. 2005;23(31):7994–8002. doi: 10.1200/JCO.2005.01.9083.
  64. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  65. Leone G, Fianchi L, Pagano L, Voso MT. Incidence and susceptibility to therapy-related myeloid neoplasms. Chem Biol Interact. 2010;184(1–2):39–45. doi: 10.1016/j.cbi.2009.12.013.
  66. Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2008;22(2):240–8. doi: 10.1038/sj.leu.2405078.
  67. Cowell IG, Austin CA. Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. Int J Environ Res Public Health. 2012;9(6):2075–91. doi: 10.3390/ijerph9062075.
  68. Kayser S, Dohner K, Krauter J, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;117(7):2137–45. doi: 10.1182/blood-2010-08-301713.
  69. Shea LK, Uy GL. Choosing induction chemotherapy in therapy-related acute myeloid leukemia. Best Pract Res Clin Haematol. 2019;32(1):89–97. doi: 10.1016/j.beha.2019.02.013.
  70. Ostgard BC, Medeiros H, Sengelov LS, et al Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J Clin Oncol. 2015;33(31):3641–9. doi: 10.1200/jco.2014.60.0890.
  71. Boddu P, Kantarjian HM, Garcia-Manero G, et al. Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Adv. 2017;1(17):1312–23. doi: 10.1182/bloodadvances.2017008227.
  72. Lowenberg B, Pabst T, Vellenga E, et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364(11):1027–36. doi: 10.1056/NEJMoa1010222.
  73. Lee J-H, Joo Y-D, Kim H, et al. A randomized trial comparing standard versus high-dose daunorubicin induction in patients with acute myeloid leukemia. Blood. 2011;118(14):3832–41. doi: 10.1182/blood-2011-06-361410.
  74. Lancet JE, Uy GL, Cortes JE. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J Clin Oncol. 2018;36(26):2684–92. doi: 10.1200/JCO.2017.77.6112.
  75. Walter RB, Othus M, Orlowski KF, et al. Unsatisfactory efficacy in randomized study of reduced-dose CPX-351 for medically less fit adults with newly diagnosed acute myeloid leukemia or other high-grade myeloid neoplasm. Haematologica. 2018;103(3):e106–e109. doi: 10.3324/haematol.2017.182642.
  76. Willemze R, Suciu S, Meloni G, et al. High-dose cytarabine in induction treatment improves the outcome of adult patients younger than age 46 years with acute myeloid leukemia: results of the EORTC-GIMEMA AML-12 trial. J Clin Oncol. 2014;32(3):219–28. doi: 10.1200/JCO.2013.51.8571.
  77. Theyab A, Algahtani M, Alsharif KF, et al. New insight into the mechanism of granulocyte colony-stimulating factor (G-CSF) that induces the mobilization of neutrophils. J Hematol. 2021;26(1):628–36. doi: 10.1080/16078454.2021.1965725.
  78. Leith CP, Kopecky KJ, Chen JM, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood. 1999;94(3):1086–99.
  79. Becker PS, Medeiros BC, Stein AS, et al. G-CSF priming, clofarabine, and high dose cytarabine (GCLAC) for upfront treatment of acute myeloid leukemia, advanced myelodysplastic syndrome or advanced myeloproliferative neoplasm. Am J Hematol. 2015;90(4):295–300. doi: 10.1002/ajh.23927.
  80. Vulaj V, Perissinotti AJ, Uebel JR, et al. The FOSSIL Study: FLAG or standard 7+3 induction therapy in secondary acute myeloid leukemia. Leuk Res. 2018;70:91–6. doi: 10.1016/j.leukres.2018.05.011.
  81. Richardson DR, Green SD, Foster MC, Zeidner JF. Secondary AML Emerging After Therapy with Hypomethylating Agents: Outcomes, Prognostic Factors, and Treatment Options. Curr Hematol Malig Rep. 2021;16(1):97–111. doi: 10.1007/s11899-021-00608-6.
  82. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17. doi: 10.1182/blood-2018-08-868752.
  83. Cortes JE, Heidel FH, Heuser M, et al. A Phase 2 Randomized Study of Low Dose Ara-C with or without Glasdegib (PF-04449913) in Untreated Patients with Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome. Blood. 2016;128(22):99. doi: 10.1182/blood.V128.22.99.99.
  84. Sengsayadeth S, Labopin M, Boumendil A. Transplant Outcomes for Secondary Acute Myeloid Leukemia: Acute Leukemia Working Party of the European Society for Blood and Bone Marrow Transplantation Study. Biol Blood Marrow Transplant. 2018l;24(7):1406–14. doi: 10.1016/j.bbmt.2018.04.008.
  85. Tang F-F, Huang X-J, Zhang X-H, et al. Allogeneic hematopoietic cell transplantation for adult patients with treatment-related acute myeloid leukemia during first remission: Comparable to de novo acute myeloid leukemia. Leuk Res. 2016;47:8–15. doi: 10.1016/j.leukres.2016.05.005.
  86. Michelis FV, Atenafu EG, Gupta V, et al. Comparable outcomes post allogeneic hematopoietic cell transplant for patients with de novo or secondary acute myeloid leukemia in first remission. Bone Marrow Transplant. 2015;50(7):907–13. doi: 10.1038/bmt.2015.59.
  87. Nilsson C, Hulegardh E, Garelius H, et al. Secondary Acute Myeloid Leukemia and the Role of Allogeneic Stem Cell Transplantation in a Population-Based Setting. Biol Blood Marrow Transplant. 2019;25(9):1770–8. doi: 10.1016/j.bbmt.2019.05.038.
  88. Oliai С, Schiller G. How to address second and therapy-related acute myelogenous leukaemia. Br J Haematol. 2020;188(1):116–28. doi: 10.1111/bjh.16354.

Стратификация пациентов cо множественной миеломой: современное состояние вопроса и дальнейшие перспективы

А.Ю. Аксенова1, А.С. Жук2, Е.И. Степченкова1,3, С.В. Грицаев4

1 ФГБОУ ВО «Санкт-Петербургский государственный университет», Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034

2 ФГАОУ ВО «Национальный исследовательский университет ИТМО», Кронверкский пр-т, д. 49, лит. А, Санкт-Петербург, Российская Федерация, 197101

3 ФГБУН «Институт общей генетики им. Н.И. Вавилова РАН», Санкт-Петербургский филиал, Университетская наб., д. 7/9, Санкт-Петербург, Российская Федерация, 199034

4 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

Для переписки: Анна Юрьевна Аксенова, канд. биол. наук, ул. Ботаническая, д. 17, Санкт-Петербург, Российская Федерация, 198504; тел.: +7(812)428-40-09; e-mail: a.aksenova@spbu.ru; Сергей Васильевич Грицаев, д-р мед. наук, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(812)717-54-68; e-mail: gritsaevsv@mail.ru

Для цитирования: Аксенова А.Ю., Жук А.С., Степченкова Е.И., Грицаев С.В. Стратификация пациентов cо множественной миеломой: современное состояние вопроса и дальнейшие перспективы. Клиническая онкогематология. 2022;15(3):259–70.

DOI: 10.21320/2500-2139-2022-15-3-259-270


РЕФЕРАТ

В последние годы наблюдается существенный прогресс в улучшении выживаемости без прогрессирования (ВБП) и качества жизни пациентов со множественной миеломой (ММ). Это стало возможным благодаря внедрению в клиническую практику новых препаратов, разработанных с учетом данных мультиомиксных молекулярно-генетических исследований при ММ. Результаты этих исследований позволили также оценить уровень генетической гетерогенности опухолевых клеток при ММ. Так, были выявлены типы и частота однонуклеотидных вариаций, структурных изменений хромосом и нарушений копийности хромосом, встречающихся в геноме злокачественных плазматических клеток. Показано, что у разных пациентов с ММ существенно отличается спектр выявляемых генетических нарушений в опухоли. Высокая генетическая гетерогенность заболевания служит одной из главных причин различной эффективности лекарственных препаратов и различий в ВБП. В настоящем обзоре подробно рассматривается вопрос о значении ряда хромосомных аберраций для распределения больных ММ по группам риска. Представлено описание наиболее частых аберраций, в т. ч. с высоким и низким риском раннего прогрессирования ММ, уже включенных в различные международные прогностические шкалы. Кроме того, определены дополнительные аберрации, которые обладают потенциалом для применения в клинической практике. Особое внимание уделяется проблеме оценки риска при обнаружении нескольких различных хромосомных перестроек у одного пациента. В обзоре описаны трудности и перспективы использования информации о хромосомных перестройках для выбора наиболее оптимальных схем лечения и оценки их эффективности. В этом контексте важное значение придается проблемам интеграции генетических данных и таких клинических показателей, как возраст больного, сопутствующие заболевания, почечная дисфункция, степень поражения костей, показания к трансплантации аутологичных гемопоэтических стволовых клеток и др.

Ключевые слова: множественная миелома, международные системы стадирования, хромосомные перестройки, R-ISS, R2-ISS, mSMART, MASS.

Получено: 28 марта 2022 г.

Принято в печать: 5 июня 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Бессмельцев C.C. Множественная миелома (патогенез, клиника, диагностика, дифференциальный диагноз). Часть I. Онкогематология. 2013;3(6):237–57.
    [Bessmeltsev SS. Multiple myeloma (pathogenesis, clinical features, diagnosis, differential diagnosis). Part I. Onkogematologiya. 2013;3(6):237–57. (In Russ)]
  2. Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95(5):548–67. doi: 10.1002/ajh.25791.
  3. Binder M, Nandakumar B, Rajkumar SV, et al. Mortality trends in multiple myeloma after the introduction of novel therapies in the United States. Leukemia. 2021;36(3):801–8. doi: 10.1038/s41375-021-01453-5.
  4. Chalopin T, Vallet N, Theisen O, et al. No survival improvement in patients with high-risk multiple myeloma harbouring del(17p) and/or t(4;14) over the two past decades. Br J Haematol. 2021;194(3):635–8. doi: 10.1111/bjh.17488.
  5. Aksenova AY, Zhuk AS, Lada AG, et al. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers. 2021;13(23):5949. doi: 10.3390/cancers13235949.
  6. Rasillo A, Tabernero MD, Sanchez ML, et al. Fluorescence in situ hybridization analysis of aneuploidization patterns in monoclonal gammopathy of undetermined significance versus multiple myeloma and plasma cell leukemia. Cancer. 2003;97(3):601–9. doi: 10.1002/cncr.11100.
  7. Rajkumar SV, Kumar S. Multiple myeloma current treatment algorithms. Blood Cancer J. 2020;10(9):94. doi: 10.1038/s41408-020-00359-2.
  8. Walker BA, Wardell CP, Murison A, et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun. 2015;6:6997. doi: 10.1038/ncomms7997.
  9. Rustad EH, Yellapantula V, Leongamornlert D, et al. Timing the initiation of multiple myeloma. Nat Commun. 2020;11(1):1–14. doi: 10.1038/s41467-020-15740-9.
  10. Plowright EE, Li Z, Bergsagel PL, et al. Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis. Blood. 2000;95(3):992–8.
  11. Alvarez JV, Frank DA. Genome-wide analysis of STAT target genes: Elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol Ther. 2004;3(11):1045–50. doi: 10.4161/cbt.3.11.1172.
  12. Ramlee MK, Wang J, Toh WX, Li S. Transcription regulation of the human telomerase reverse transcriptase (hTERT) gene. Genes. 2016;7(8):50. doi: 10.3390/genes7080050.
  13. Marango J, Shimoyama M, Nishio H, et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood. 2008;111(6):3145–54. doi: 10.1182/blood-2007-06-092122.
  14. Xie Z, Chng WJ. MMSET: Role and therapeutic opportunities in multiple myeloma. Biomed Res Int. 2014;2014:636514. doi: 10.1155/2014/636514.
  15. Dutta AK, Fink JL, Grady JP, et al. Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia. 2019;33(2):457–68. doi: 10.1038/s41375-018-0206-x.
  16. Maura F, Bolli N, Rustad EH, et al. Moving from Cancer Burden to Cancer Genomics for Smoldering Myeloma: A Review. JAMA Oncol. 2020;6(3):425–32. doi: 10.1001/jamaoncol.2019.4659.
  17. Maura F, Bolli N, Angelopoulos N, et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun. 2019;10(1):1–12. doi: 10.1038/s41467-019-11680-1.
  18. Konigsberg R, Ackermann J, Kaufmann H, et al. Deletions of chromosome 13q in monoclonal gammopathy of undetermined significance. Leukemia. 2000;14(11):1975–9. doi: 10.1038/sj.leu.2401909.
  19. Avet-Loiseau H, Li JY, Morineau N, et al. Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone du Myelome. Blood. 1999;94(8):2583–9.
  20. Shaughnessy J, Tian E, Sawyer J, et al. High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH. Blood. 2000;96(4):1505–11. doi: 10.1182/blood.v96.4.1505.
  21. Walker BA, Leone PE, Chiecchio L, et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 2010;116(15). doi: 10.1182/blood-2010-04-279596.
  22. Chavan SS, He J, Tytarenko R, et al. Bi-allelic inactivation is more prevalent at relapse in multiple myeloma, identifying RB1 as an independent prognostic marker. Blood Cancer J. 2017;7(2):e535. doi: 10.1038/bcj.2017.12.
  23. Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132(6):587–97. doi: 10.1182/blood-2018-03-840132.
  24. Manier S, Salem KZ, Park J, et al. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14(2):100–13. doi: 10.1038/nrclinonc.2016.122.
  25. Lode L, Eveillard M, Trichet V, et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica. 2010;95(11):1973–6. doi: 10.3324/haematol.2010.023697.
  26. Oliva S, De Paoli L, Ruggeri M, et al. A longitudinal analysis of chromosomal abnormalities in disease progression from MGUS/SMM to newly diagnosed and relapsed multiple myeloma. Ann Hematol. 2021;100(2):437–43. doi: 10.1007/s00277-020-04384-w.
  27. Lopez-Corral L, Gutierrez NC, Vidriales MB, et al. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells. Clin Cancer Res. 2011;17(7):1692–700. doi: 10.1158/1078-0432.CCR-10-1066.
  28. Mikulasova A, Smetana J, Wayhelova M, et al. Genomewide profiling of copy-number alteration in monoclonal gammopathy of undetermined significance. Eur J Haematol. 2016;97(6):568–75. doi: 10.1111/EJH.12774.
  29. Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5(1):1–13. doi: 10.1038/ncomms3997.
  30. Walker BA, Boyle EM, Wardell CP, et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol. 2015;33(33):3911–20. doi: 10.1200/JCO.2014.59.1503.
  31. Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32(12):2604–16. doi: 10.1038/s41375-018-0037-9.
  32. Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: The experience of the Intergroupe Francophone du Myelome. Blood. 2007;109(8):3489–95. doi: 10.1182/blood-2006-08-040410.
  33. Jovanovic KK, Escure G, Demonchy J, et al. Deregulation and targeting of TP53 pathway in multiple myeloma. Front Oncol. 2019;8:665. doi: 10.3389/fonc.2018.00665.
  34. Walker BA, Mavrommatis K, Wardell CP, et al. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2019;33(1):159–70. doi: 10.1038/s41375-018-0196-8.
  35. Chin M, Sive JI, Allen C, et al. Prevalence and timing of TP53 mutations in del(17p) myeloma and effect on survival. Blood Cancer J. 2017;7(9):e610. doi: 10.1038/bcj.2017.76.
  36. Corre J, Perrot A, Caillot D, et al. del(17p) without TP53 mutation confers a poor prognosis in intensively treated newly diagnosed patients with multiple myeloma. Blood. 2021;137(9):1192–5. doi: 10.1182/blood.2020008346.
  37. Martello M, Poletti A, Borsi E, et al. Clonal and subclonal TP53 molecular impairment is associated with prognosis and progression in multiple myeloma. Blood Cancer J. 2022;12(1):15. doi: 10.1038/S41408-022-00610-Y.
  38. Абрамова Т.В., Обухова Т.Н., Грибанова Е.О. и др. Структура и значение цитогенетических перестроек у больных множественной миеломой. Гематология и трансфузиология. 2021;66(1):54–67. doi: 10.35754/0234-5730-2021-66-1-54-67.
    [Abramova TV, Obukhova TN, Gribanova EO, et al. Structure and significance of cytogenetic abnormalities in patients with multiple myeloma. Russian journal of hematology and transfusiology. 2021;66(1):54–67. doi: 10.35754/0234-5730-2021-66-1-54-67. (In Russ)]
  39. Schmidt TM, Fonseca R, Usmani SZ. Chromosome 1q21 abnormalities in multiple myeloma. Blood Cancer J. 2021;11(4):1–11. doi: 10.1038/s41408-021-00474-8.
  40. Shi L, Wang S, Zangari M, et al. Over-expression of CKS1B activates both MEK/ERK and JAK/STAT3 signaling pathways and promotes myeloma cell drug-resistance. Oncotarget. 2010;1(1):22–33. doi: 10.18632/ONCOTARGET.105.
  41. Schmidt TM, Barwick BG, Joseph N, et al. Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J. 2019;9(12):94. doi: 10.1038/s41408-019-0254-0.
  42. Neben K, Lokhorst HM, Jauch A, et al. Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p. Blood. 2012;119(4):940–8. doi: 10.1182/blood-2011-09-379164.
  43. Minguela A, Vasco-Mogorron MA, Campillo JA, et al. Predictive value of 1q21 gain in multiple myeloma is strongly dependent on concurrent cytogenetic abnormalities and first-line treatment. Am J Cancer Res. 2021;11(9):4438.
  44. Giri S, Huntington SF, Wang R, et al. Chromosome 1 abnormalities and survival of patients with multiple myeloma in the era of novel agents. Blood Adv. 2020;4(10):2245–53. doi: 10.1182/bloodadvances.2019001425.
  45. Weinhold N, Salwender HJ, Cairns DA, et al. Chromosome 1q21 abnormalities refine outcome prediction in patients with multiple myeloma – a meta-analysis of 2,596 trial patients. Haematologica. 2021;106(10):2754–8. doi: 10.3324/HAEMATOL.2021.278888.
  46. Shaughnessy J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27 Kip1 and an aggressive clinical course in multiple myeloma. Hematology. 2005;10(Suppl 1):117–26. doi: 10.1080/10245330512331390140.
  47. Hanamura I. Gain/amplification of chromosome arm 1q21 in multiple myeloma. Cancers. 2021;13(2):1–16. doi: 10.3390/cancers13020256.
  48. Mikulasova A, Wardell CP, Murison A, et al. The spectrum of somatic mutations in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape than that in multiple myeloma. Haematologica. 2017;102(9):1617–25. doi: 10.3324/haematol.2017.163766.
  49. Hanamura I, Stewart JP, Huang Y, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: Incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006;108(5):1724–32. doi: 10.1182/blood-2006-03-009910.
  50. Greipp PR, Miguel JS, Dune BGM, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–20. doi: 10.1200/JCO.2005.04.242.
  51. Dimopoulos MA, Barlogie B, Smith TL, Alexanian R. High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med. 1991;115(12):931–5. doi: 10.7326/0003-4819-115-12-931.
  52. Terpos E, Katodritou E, Roussou M, et al. High serum lactate dehydrogenase adds prognostic value to the international myeloma staging system even in the era of novel agents. Eur J Haematol. 2010;85(2):114–9. doi: 10.1111/J.1600-0609.2010.01466.X.
  53. Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23(12):2210–21. doi: 10.1038/LEU.2009.174.
  54. Chng WJ, Dispenzieri A, Chim CS, et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia. 2014;28(2):269–77. doi: 10.1038/LEU.2013.247.
  55. Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: A report from international myeloma working group. J Clin Oncol. 2015;33(26):2863–9. doi: 10.1200/JCO.2015.61.2267.
  56. Boyd KD, Ross FM, Chiecchio L, et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia. 2012;26(2):349–55. doi: 10.1038/LEU.2011.204.
  57. Ravi G, Gonsalves WI. Current diagnosis, risk stratification and treatment paradigms in newly diagnosed multiple myeloma. Cancer Treat Res Commun. 2021;29:100444. doi: 10.1016/J.CTARC.2021.100444.
  58. Wallington-Beddoe CT, Mynott RL. Prognostic and predictive biomarker developments in multiple myeloma. J Hematol Oncol. 2021;14(1):1–15. doi: 10.1186/S13045-021-01162-7.
  59. Mikhael JR, Dingli D, Roy V, et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo stratification of myeloma and risk-adapted therapy (mSMART) consensus guidelines 2013. Mayo Clin Proc. 2013;88(4):360–76. doi: 10.1016/J.MAYOCP.2013.01.019.
  60. Dispenzieri A, Rajkumar SV, Gertz MA, et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): consensus statement. Mayo Clin Proc. 2007;82(3):323–41. doi: 10.4065/82.3.323.
  61. Cho HJ, Jung SH, Jo JC, et al. Development of a new risk stratification system for patients with newly diagnosed multiple myeloma using R-ISS and 18F-FDG PET/CT. Blood Cancer J. 2021;11(12):190. doi: 10.1038/S41408-021-00577-2.
  62. Galieni P, Travaglini F, Vagnoni D, et al. The detection of circulating plasma cells may improve the Revised International Staging System (R-ISS) risk stratification of patients with newly diagnosed multiple myeloma. Br J Haematol. 2021;193(3):542–50. doi: 10.1111/BJH.17118.
  63. Mellors PW, Binder M, Ketterling RP, et al. Metaphase cytogenetics and plasma cell proliferation index for risk stratification in newly diagnosed multiple myeloma. Blood Adv. 2020;4(10):2236. doi: 10.1182/BLOODADVANCES.2019001275.
  64. Terpos E, Katodritou E, Tsiftsakis E, et al. Cystatin-C is an independent prognostic factor for survival in multiple myeloma and is reduced by bortezomib administration. Haematologica. 2009;94(3):372–9. doi: 10.3324/HAEMATOL.2008.000638.
  65. Zhang J, Jiang Y, Guo D, et al. The role of cystatin C in multiple myeloma. Int J Lab Hematol. 2022;44(1):135–41. doi: 10.1111/IJLH.13695.
  66. Chen X, Liu L, Chen M, et al. A Five-Gene Risk Score Model for Predicting the Prognosis of Multiple Myeloma Patients Based on Gene Expression Profiles. Front Genet. 2021;12:785330. doi: 10.3389/FGENE.2021.785330/BIBTEX.
  67. Rangel-Pozzo A, Yu PLI, Lal S, et al. Telomere Architecture Correlates with Aggressiveness in Multiple Myeloma. Cancers. 2021;13(8):1969. doi: 10.3390/CANCERS13081969.
  68. D’Agostino M, Lahuerta J-J, Wester R, et al. A New Risk Stratification Model (R2-ISS) in Newly Diagnosed Multiple Myeloma: Analysis of Mature Data from 7077 Patients Collected By European Myeloma Network within Harmony Big Data Platform. Blood. 2020;136(Suppl 1):34–7. doi: 10.1182/blood-2020-137021.
  69. Abdallah NH, Binder M, Rajkumar SV, et al. A simple additive staging system for newly diagnosed multiple myeloma. Blood Cancer J. 2022;12(1):21. doi: 10.1038/S41408-022-00611-X.
  70. Dimopoulos MA, Moreau P, Terpos E, et al. Multiple Myeloma: EHA-ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. HemaSphere. 2021;5(2):e528. doi: 10.1097/HS9.0000000000000528.
  71. Touzeau C, Maciag P, Amiot M, Moreau P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia. 2018;32(9):1899–907. doi: 10.1038/s41375-018-0223-9.
  72. Paner A, Patel P, Dhakal B. The evolving role of translocation t(11;14) in the biology, prognosis, and management of multiple myeloma. Blood Rev. 2020;41:100643. doi: 10.1016/j.blre.2019.100643.
  73. Greenberg AJ, Rajkumar S V, Therneau TM, et al. Relationship between initial clinical presentation and the molecular cytogenetic classification of myeloma. Leukemia. 2014;28(2):398–403. doi: 10.1038/LEU.2013.258.
  74. Abdallah N, Rajkumar SV, Greipp P, et al. Cytogenetic abnormalities in multiple myeloma: association with disease characteristics and treatment response. Blood Cancer J. 2020;10(8):1–9. doi: 10.1038/s41408-020-00348-5.
  75. Sato S, Kamata W, Okada S, Tamai Y. Clinical and prognostic significance of t(4;14) translocation in multiple myeloma in the era of novel agents. Int J Hematol. 2021;113(2):207–13. doi: 10.1007/S12185-020-03005-6.
  76. Shah MY, Martinez-Garcia E, Phillip JM, et al. MMSET/WHSC1 enhances DNA damage repair leading to an increase in resistance to chemotherapeutic agents. Oncogene. 2016;35(45):5905–15. doi: 10.1038/onc.2016.116.
  77. Jaksic W, Trudel S, Chang H, et al. Clinical outcomes in t(4;14) multiple myeloma: a chemotherapy-sensitive disease characterized by rapid relapse and alkylating agent resistance. J Clin Oncol. 2005;23(28):7069–73. doi: 10.1200/JCO.2005.17.129.
  78. Avet-Loiseau H, Leleu X, Roussel M, et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J Clin Oncol. 2010;28(30):4630–4. doi: 10.1200/JCO.2010.28.3945.
  79. An G, Xu Y, Shi L, et al. Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated with bortezomib but copy number variation and percentage of plasma cells involved have no additional prognostic value. Haematologica. 2014;99(2):353–9. doi: 10.3324/haematol.2013.088211.
  80. Caro J, Al Hadidi S, Usmani S, et al. How to Treat High-Risk Myeloma at Diagnosis and Relapse. Am Soc Clin Oncol Educ Book. 2021;41(41):291–309. doi: 10.1200/edbk_320105.
  81. Marneni N, Chakraborty R. Current Approach to Managing Patients with Newly Diagnosed High-Risk Multiple Myeloma. Curr Hematol Malig Rep. 2021;16(2):148–61. doi: 10.1007/S11899-021-00631-7.
  82. Rajkumar SV. Sequencing of myeloma therapy: Finding the right path among many standards. Hematol Oncol. 2021;39(Suppl 1):68–72. doi: 10.1002/HON.2848.
  83. Bal S, Giri S, Godby KN, Costa LJ. New regimens and directions in the management of newly diagnosed multiple myeloma. Am J Hematol. 2021;96(3):367–78. doi: 10.1002/AJH.26080.
  84. Ntanasis-Stathopoulos I, Gavriatopoulou M, Kastritis E, et al. Multiple myeloma: Role of autologous transplantation. Cancer Treat Rev. 2020;82:101929. doi: 10.1016/j.ctrv.2019.101929.
  85. Cavo M, Gay F, Beksac M, et al. Autologous haematopoietic stem-cell transplantation versus bortezomib–melphalan–prednisone, with or without bortezomib–lenalidomide–dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): multicentre, randomised, open-label, phase 3 study. Lancet Haematol. 2020;7(6):e456–e468. doi: 10.1016/S2352-3026(20)30099-5.
  86. Vaxman I, Visram A, Kapoor P, et al. Outcomes of multiple myeloma patients with del 17p undergoing autologous stem cell transplantation. Am J Hematol. 2021;96(1):E35–E38. doi: 10.1002/AJH.26023.
  87. Gagelmann N, Eikema DJ, de Wreede LC, et al. Upfront stem cell transplantation for newly diagnosed multiple myeloma with del(17p) and t(4;14): a study from the CMWP-EBMT. Bone Marrow Transplant. 2021;56(1):210–7. doi: 10.1038/S41409-020-01007-W.
  88. Srour SA, Saliba RM, Bashir Q, et al. Influence of Overlapping Genetic Abnormalities on Treatment Outcomes of Multiple Myeloma. Transplant Cell Ther. 2021;27(3):243.e1–243.e6. doi: 10.1016/j.jtct.2020.10.021.
  89. Croft J, Ellis S, Sherborne AL, et al. Copy number evolution and its relationship with patient outcome—an analysis of 178 matched presentation-relapse tumor pairs from the Myeloma XI trial. Leukemia. 2021;35(7):2043–53. doi: 10.1038/s41375-020-01096-y.
  90. Perrot A, Lauwers-Cances V, Tournay E, et al. Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma. J Clin Oncol. 2019;37(19):1657–65. doi: 10.1200/JCO.18.00776.
  91. Shah V, Sherborne AL, Walker BA, et al. Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients. Leukemia. 2018;32(1):102–10. doi: 10.1038/LEU.2017.179.
  92. Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100–5. doi: 10.1182/BLOOD-2011-11-390658.
  93. Chretien ML, Corre J, Lauwers-Cances V, et al. Understanding the role of hyperdiploidy in myeloma prognosis: Which trisomies really matter? Blood. 2015;126(25):2713–9. doi: 10.1182/blood-2015-06-650242.
  94. Hebraud B, Magrangeas F, Cleynen A, et al. Role of additional chromosomal changes in the prognostic value of t(4;14) and del(17p) in multiple myeloma: the IFM experience. Blood. 2015;125(13):2095–100. doi: 10.1182/BLOOD-2014-07-587964.
  95. Takamatsu H, Yamashita T, Kurahashi S, et al. Clinical Implications of t(11;14) in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation. Biol Blood Marrow Transplant. 2019;25(3):474–9. doi: 10.1016/J.BBMT.2018.11.003.
  96. John L, Krauth MT, Podar K, Raab MS. Pathway-directed therapy in multiple myeloma. Cancers. 2021;13(7):1668. doi: 10.3390/cancers13071668.
  97. Leow CCY, Low MSY. Targeted therapies for multiple myeloma. J Pers Med. 2021;11(5):334. doi: 10.3390/jpm11050334.
  98. Goldman-Mazur S, Vesole DH, Jurczyszyn A. Clinical implications of cytogenetic and molecular aberrations in multiple myeloma. Acta Haematol Pol. 2021;52(1):18–28. doi: 10.5603/AHP.2021.0004.
  99. Cardona-Benavides IJ, de Ramon C, Gutierrez NC. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells. 2021;10(2):336. doi: 10.3390/cells10020336.
  100. Mao XH, Zhuang JL, Zhao DD, et al. IgH translocation with undefined partners is associated with superior outcome in multiple myeloma patients. Eur J Haematol. 2020;105(3):326–34. doi: 10.1111/ejh.13440.
  101. Hassan H, Szalat R. Genetic predictors of mortality in patients with multiple myeloma. Appl Clin Genet. 2021;14:241–54. doi: 10.2147/TACG.S262866.
  102. Sessa M, Cavazzini F, Cavallari M, et al. Tangle of genomic aberrations drives multiple myeloma and correlates with clinical aggressiveness of the disease: a comprehensive review from a biological perspective to clinical trial results. Genes. 2020;11(12):1–24. doi: 10.3390/GENES11121453.
  103. Jackson GH, Pawlyn C, Cairns DA, et al. Carfilzomib, lenalidomide, dexamethasone, and cyclophosphamide (KRdc) as induction therapy for transplant-eligible, newly diagnosed multiple myeloma patients (Myeloma XI+): Interim analysis of an open-label randomised controlled trial. PLOS Med. 2021;18(1):e1003454. doi: 10.1371/JOURNAL.PMED.1003454.
  104. Qiang YW, Ye S, Chen Y, et al. MAF protein mediates innate resistance to proteasome inhibition therapy in multiple myeloma. Blood. 2016;128(25):2919–30. doi: 10.1182/BLOOD-2016-03-706077.
  105. Rajkumar VS. Multiple myeloma: selection of initial chemotherapy for symptomatic disease. Available from: https://www.uptodate.com/contents/multiple-myeloma-selection-of-initial-chemotherapy-for-symptomatic-disease (accessed 23.03.2022).
  106. Qiang YW, Ye S, Huang Y, et al. MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma. BMC Cancer. 2018;18(1):1–13. doi: 10.1186/S12885-018-4602-4/FIGURES/6.
  107. Mateos MV, Martinez BP, Gonzalez-Calle V. High-risk multiple myeloma: how to treat at diagnosis and relapse? Hematology. 2021;2021(1):30–6. doi: 10.1182/HEMATOLOGY.2021000229.
  108. Sonneveld P, Avet-Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International Myeloma Working Group. Blood. 2016;127(24):2955–62. doi: 10.1182/blood-2016-01-631200.
  109. Costa LJ, Usmani SZ. Defining and Managing High-Risk Multiple Myeloma: Current Concepts. J Natl Compr Canc Netw. 2020;18(12):1730–7. doi: 10.6004/JNCCN.2020.7673.
  110. Jurczyszyn A, Charlinski G, Suska A, Vesole DH. The importance of cytogenetic and molecular aberrations in multiple myeloma. Acta Haematol Pol. 2021;52(4):361–70. doi: 10.5603/AHP.2021.0069.
  111. Garifullin A, Voloshin S, Shuvaev V, et al. Significance of Modified Risk Stratification Msmart 3.0 and Autologous Stem Cell Transplantation for Patients with Newly Diagnosed Multiple Myeloma. Blood. 2019;134(Suppl_1):5593. doi: 10.1182/BLOOD-2019-130092.

Фармакоэкономический анализ терапии CAR Т-клетками при диффузной В-крупноклеточной лимфоме и В-линейных острых лимфобластных лейкозах

И.В. Грибкова, А.А. Завьялов

ГБУ «НИИ организации здравоохранения и медицинского менеджмента ДЗМ», ул. Шарикоподшипниковская, д. 9, Москва, Российская Федерация, 115088

Для переписки: Ирина Владимировна Грибкова, канд. биол. наук, ул. Шарикоподшипниковская, д. 9, Москва, Российская Федерация, 115088; тел.: +7(916)078-73-90; e-mail: igribkova@yandex.ru

Для цитирования: Грибкова И.В., Завьялов А.А. Фармакоэкономический анализ терапии CAR Т-клетками при диффузной В-крупноклеточной лимфоме и В-линейных острых лимфобластных лейкозах. Клиническая онкогематология. 2022;15(2):205–12.

DOI: 10.21320/2500-2139-2022-15-2-205-212


РЕФЕРАТ

Генетически модифицированные Т-лимфоциты с химерными антигенными рецепторами (CAR T-клетки) представляют собой новую стратегию лечения пациентов с рецидивами или рефрактерным течением В-клеточных злокачественных новообразований. В 2017–2018 гг. два препарата CAR T-клеточной терапии: тисагенлеклейсел и аксикабтаген силолейсел — были одобрены Управлением по контролю за качеством пищевых продуктов и лекарственных средств США (FDA) и Европейским агентством по лекарственным средствам (EMA) для клинического применения у пациентов с рефрактерным острым лимфобластным лейкозом и рецидивами/рефрактерными В-клеточными лимфомами. К настоящему времени CAR Т-клеточная терапия все более становится неотъемлемой частью клинической практики благодаря своей высокой эффективности. Однако стоимость этого метода противоопухолевого воздействия чрезвычайно высока. Средняя стоимость тисагенлеклейсела составляет 475 000 долларов США ($), а аксикабтагена силолейсела — 373 000 $. Следует отметить, что это только цены на лекарственные препараты без учета других затрат, связанных с данным методом терапии. В работах 2018–2020 гг. группы исследователей предприняли попытки оценить затраты, связанные с CAR T-клеточной терапией. Цель настоящего обзора — анализ этих исследований, оценка общей стоимости терапии и структуры затрат, рассмотрение факторов, ведущих к увеличению затрат, обсуждение возможности повышения доступности технологии CAR-T в целом. Результаты показали, что в среднем общая стоимость терапии тисагенлеклейселом при В-клеточной лимфоме составила 515 150 $, аксикабтагеном силолейселом — 503 955 $. Стоимость терапии острого лимфобластного лейкоза составила 580 459 $. Основными факторами, влияющими на общую стоимость лечения, были цены на препараты CAR T-клеток, высокая степень тяжести нежелательных явлений и большая опухолевая нагрузка до инфузии CAR T-клеточного продукта. Признается, что в качестве основных возможностей повышения доступности терапии CAR T-клетками может служить понижение цены на препараты (например, за счет собственного производства на базе медицинского учреждения), дальнейшее совершенствование терапии с целью снизить ее токсичность, а также применение на ранних стадиях опухолевого заболевания.

Ключевые слова: В-клеточная лимфома, острый лимфобластный лейкоз, CAR T-клеточная терапия, химерный антигенный рецептор, тисагенлеклейсел, аксикабтаген силолейсел, затраты, обзор.

Получено: 29 октября 2021 г.

Принято в печать: 15 февраля 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-03-769620.
  2. Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi: 10.1016/S1470-2045(14)71170-2.
  3. Roex G, Feys T, Beguin Y, et al. Chimeric Antigen Receptor-T-Cell Therapy for B-Cell Hematological Malignancies: An Update of the Pivotal Clinical Trial Data. Pharmaceutics. 2020;12(2):194. doi: 10.3390/pharmaceutics12020194.
  4. Zheng XH, Zhang XY, Dong QQ, et al. Efficacy and safety of chimeric antigen receptor-T cells in the treatment of B cell lymphoma: a systematic review and meta-analysis. Chin Med J (Engl). 2020;133(1):74–85. doi: 10.1097/CM9.0000000000000568.
  5. Ершов А.В., Демьянов Г.В., Насруллаева Д.А. и др. Новейшие тенденции в совершенствовании CAR-T-клеточной терапии: от лейкозов к солидным злокачественным новообразованиям. Российский журнал детской гематологии и онкологии. 2021;8(2):84–95. doi: 10.21682/2311-1267-2021-8-2-84-95.
    [Ershov AV, Demyanov GV, Nasrullaeva DA, et al. The latest trends in improving CAR-T cell therapy: from leukemias to solid malignant neoplasms. Russian Journal of Pediatric Hematology and Oncology. 2021;8(2):84–95. doi: 10.21682/2311-1267-2021-8-2-84-95. (In Russ)]
  6. Грибкова И.В., Завьялов А.А. CAR Т-клетки для лечения хронического лимфоцитарного лейкоза: обзор литературы. Клиническая онкогематология. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230.
    [Gribkova IV, Zavyalov CAR-Т Cells for the Treatment of Chronic Lymphocytic Leukemia: Literature Review. Clinical oncohematology. 2021;14(2):225–30. doi: 10.21320/2500-2139-2021-14-2-225-230. (In Russ)]
  7. Грибкова И.В., Завьялов А.А. Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы. Вопросы онкологии. 2021;67(3):350–60. doi: 10.37469/0507-3758-2021-67-3-350-360.
    [Gribkova IV, Zavyalov AA. Chimeric Antigen Receptor T-Cell Therapy for B-Cell Non-Hodgkin Lymphoma: Opportunities And Challenges. Voprosy onkologii. 2021;67(3):350–60. doi: 10.37469/0507-3758-2021-67-3-350-360. (In Russ)]
  8. Orlowski RJ, Porter DL, Frey NV. The promise of chimeric antigen receptor T cells (CARTs) in leukaemia. Br J Haematol. 2017;177(1):13–26. doi: 10.1111/bjh.14475.
  9. Park JH, Riviere I, Gonen M, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):449–59. doi: 10.1056/NEJMoa1709919.
  10. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439–48. doi: 10.1056/NEJMoa1709866.
  11. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 2017;377(26):2531–44. doi: 10.1056/NEJMoa1707447.
  12. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J Med. 2019;380(1):45–56. doi: 10.1056/NEJMoa1804980.
  13. Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20:31–42. doi: 10.1016/S1470-2045(18)30864-7.
  14. Bach PB, Giralt SA, Saltz LB. FDA Approval of Tisagenlecleucel: Promise and Complexities of a $475 000 Cancer Drug. JAMA. 2017;318(19):1861–2. doi: 10.1001/jama.2017.15218.
  15. Nastoupil LJ, Jain MD, Feng L, et al. Standard-of-Care Axicabtagene Ciloleucel for Relapsed or Refractory Large B-Cell Lymphoma: Results From the US Lymphoma CAR T Consortium. J Clin Oncol. 2020;38(27):3119–28. doi: 10.1200/JCO.19.02104.
  16. de Lima Lopes G, Nahas GR. Chimeric antigen receptor T cells, a savior with a high price. Chin Clin Oncol. 2018;7(2):21. doi: 10.21037/cco.2018.04.02.
  17. Makita S, Imaizumi K, Kurosawa S, Tobinai K. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Drugs Context. 2019;8:212567. doi: 10.7573/dic.212567.
  18. Yakoub-Agha I, Chabannon C, Bader P, et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2020;105(2):297–316. doi: 10.3324/haematol.2019.229781.
  19. Lyman GH, Nguyen A, Snyder S, et al. Economic Evaluation of Chimeric Antigen Receptor T-Cell Therapy by Site of Care Among Patients With Relapsed or Refractory Large B-Cell Lymphoma. JAMA Netw Open. 2020;3(4):e202072. doi: 10.1001/jamanetworkopen.2020.2072.
  20. Lin JK, Muffly LS, Spinner MA, et al. Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Multiply Relapsed or Refractory Adult Large B-Cell Lymphoma. J Clin Oncol. 2019;37(24):2105–19. doi: 10.1200/JCO.18.02079.
  21. Harris AH, Hohmann S, Dolan C. Real-World Quality and Cost Burden of Cytokine Release Syndrome Requiring Tocilizumab or Steroids during CAR-T Infusion Encounter. Biol Blood Marrow Transplant. 2020;26(3):S312. doi: 10.1016/j.bbmt.2019.12.389.
  22. Hernandez I, Prasad V, Gellad WF. Total Costs of Chimeric Antigen Receptor T-Cell Immunotherapy. JAMA Oncol. 2018;4(7):994–6. doi: 10.1001/jamaoncol.2018.0977.
  23. Roth JA, Sullivan SD, Lin VW, et al. Cost-effectiveness of axicabtagene ciloleucel for adult patients with relapsed or refractory large B-cell lymphoma in the United States. J Med Econ. 2018;21(12):1238–45. doi: 10.1080/13696998.2018.1529674.
  24. Whittington MD, McQueen RB, Ollendorf DA, et al. Long-term Survival and Cost-effectiveness Associated With Axicabtagene Ciloleucel vs Chemotherapy for Treatment of B-Cell Lymphoma. JAMA Netw Open. 2019;2(2):e190035. doi: 10.1001/jamanetworkopen.2019.0035.
  25. Sarkar RR, Gloude NJ, Schiff D, Murphy JD. Cost-Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Pediatric Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia. J Natl Cancer Inst. 2019;111(7):719–26. doi: 10.1093/jnci/djy193.
  26. Thielen FW, van Dongen-Leunis A, Arons AMM, et al. Cost-effectiveness of anti-CD19 chimeric antigen receptor T-cell therapy in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia. A societal view. Eur J Haematol. 2020;105(2):203–15. doi: 10.1111/ejh.13427.
  27. Yang H, Hao Y, Qi CZ, et al. Estimation of Total Costs in Pediatric and Young Adult Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia Receiving Tisagenlecleucel from a U.S. Hospital’s Perspective. J Manag Care Spec Pharm. 2020;26(8):971–80. doi: 10.18553/jmcp.2020.20052.
  28. Lin JK, Lerman BJ, Barnes JI, et al. Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Relapsed or Refractory Pediatric B-Cell Acute Lymphoblastic Leukemia. J Clin Oncol. 2018;36(32):3192–202. doi: 10.1200/JCO.2018.79.0642.
  29. Whittington MD, McQueen RB, Ollendorf DA, et al. Long-term Survival and Value of Chimeric Antigen Receptor T-Cell Therapy for Pediatric Patients With Relapsed or Refractory Leukemia. JAMA Pediatr. 2018;172(12):1161–8. doi: 10.1001/jamapediatrics.2018.2530.
  30. Furzer J, Gupta S, Nathan PC, et al. Cost-effectiveness of Tisagenlecleucel vs Standard Care in High-risk Relapsed Pediatric Acute Lymphoblastic Leukemia in Canada. JAMA Oncol. 2020;6(3):393–401. doi: 10.1001/jamaoncol.2019.5909.
  31. Zhu F, Wei G, Zhang M, et al. Factors Associated with Costs in Chimeric Antigen Receptor T-Cell Therapy for Patients with Relapsed/Refractory B-Cell Malignancies. Cell Transplant. 2020;29:963689720919434. doi: 10.1177/0963689720919434.
  32. Heine R, Thielen FW, Koopmanschap M, et al. Health Economic Aspects of Chimeric Antigen Receptor T-cell Therapies for Hematological Cancers: Present and Future. Hemasphere. 2021;5(2):e524. doi: 10.1097/HS9.0000000000000524.
  33. Zhang LN, Song Y, Liu D. CD19 CAR-T cell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies. J Hematol Oncol. 2018;11(1):41. doi: 10.1186/s13045-018-0593-5.
  34. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321–30. doi: 10.1182/blood-2016-04-703751.
  35. Kochenderfer JN, Somerville RPT, Lu T, et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol. 2017;35(16):1803–13. doi: 10.1200/JCO.2016.71.3024.
  36. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95. doi: 10.1182/blood-2014-05-552729.
  37. Ran T, Eichmuller SB, Schmidt P, Schlander M. Cost of decentralized CAR T-cell production in an academic nonprofit setting. Int J Cancer. 2020;147(12):3438–45. doi: 10.1002/ijc.33156.
  38. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52. doi: 10.1016/S0140-6736(20)31366-0.
  39. Benjamin R, Graham C, Yallop D, et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet. 2020;396(10266):1885–94. doi: 10.1016/S0140-6736(20)32334-5.
  40. Pfeiffer A, Thalheimer FB, Hartmann S, et al. In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Mol Med. 2018;10(11):e9158. doi: 10.15252/emmm.201809158.
  41. Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol. 2014;5:254. doi: 10.3389/fphar.2014.00254.
  42. Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science. 2015;350(6258):aab4077. doi: 10.1126/science.aab4077.
  43. Mikkilineni L, Kochenderfer JN. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol. 2021;18(2):71–84. doi: 10.1038/s41571-020-0427-6.
  44. Strati P, Ahmed S, Furqan F, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137(23):3272–6. doi: 10.1182/blood.2020008865.
  45. Gauthier J, Hirayama AV, Hay KA, et al. Comparison of efficacy and toxicity of CD19-specific chimeric antigen receptor T-cells alone or in combination with ibrutinib for relapsed and/or refractory CLL. Blood. 2018;132(Suppl 1):299. doi: 10.1182/blood-2018-99-111061.
  46. Gill SI, Vides V, Frey NV, et al. Prospective clinical trial of anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia shows a high response rate. Blood. 2018;132(Suppl 1):298. doi: 10.1182/blood-2018-99-115418.

Искусственный интеллект в гематологии

Искусственный интеллект не заменит врача, однако врачи, использующие искусственный

интеллект, заменят тех, кто его не использует.

Dr. Bertalan Mesko, медицинский футурист


А.С. Лучинин

ФГБУН «Кировский НИИ гематологии и переливания крови ФМБА», ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027

Для переписки: Александр Сергеевич Лучинин, канд. мед. наук, ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027; тел.: +7(919)506-87-86; e-mail: glivec@mail.ru

Для цитирования: Лучинин А.С. Искусственный интеллект в гематологии. Клиническая онкогематология. 2022;15(1):16–27.

DOI: 10.21320/2500-2139-2022-15-1-16-27


РЕФЕРАТ

«Искусственный интеллект» — это общий термин, описывающий компьютерные технологии для решения задач, которые требуют применения интеллекта человека, например распознавание человеческого голоса или изображений. Большинство продуктов с использованием искусственного интеллекта, применяемых в здравоохранении, связано с машинным обучением — отраслью информатики и статистики, которая генерирует предсказательные или описательные модели путем обучения на основе данных, а не путем программирования четких правил. Машинное обучение получило широкое распространение в патоморфологии, радиологии, геномике и анализе данных электронных медицинских карт. С учетом имеющейся тенденции технологии искусственного интеллекта, вероятно, будут все больше интегрироваться в исследовательскую и практическую медицину, включая гематологию. Таким образом, искусственный интеллект и машинное обучение заслуживают внимания и понимания со стороны исследователей и клиницистов. В данном обзоре описываются важные терминологические понятия и основные концепции обозначенных технологий, а также приводятся примеры их практического использования в научной и практической работе врача-гематолога.

Ключевые слова: искусственный интеллект, машинное обучение, нейронная сеть.

Получено: 23 сентября 2021 г.

Принято в печать: 15 декабря 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Muhsen IN, Shyr D, Sung AD, Hashmi SK. Machine Learning Applications in the Diagnosis of Benign and Malignant Hematological Diseases. Clin Hematol Intern. 2021;3(1):13–20. doi: 10.2991/chi.k.201130.001.
  2. Radakovich N, Nagy M, Nazha A. Machine learning in haematological malignancies. Lancet Haematol. 2020;7(7):e541–e550. doi: 10.1016/S2352-3026(20)30121-6.
  3. Deo RC. Machine Learning in Medicine. Circulation. 2015;132(20):1920–30. doi: 10.1161/CIRCULATIONAHA.115.001593.
  4. Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236–46. doi: 10.1093/bib/bbx044.
  5. Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9. doi: 10.1038/s41591-018-0316-z.
  6. Komura D, Ishikawa S. Machine learning approaches for pathologic diagnosis. Virchows Arch. 2019;475(2):131–8. doi: 10.1007/s00428-019-02594-w.
  7. Sha L, Osinski BL, Ho IY, et al. Multi-Field-of-View Deep Learning Model Predicts Nonsmall Cell Lung Cancer Programmed Death-Ligand 1 Status from Whole-Slide Hematoxylin and Eosin Images. J Pathol Inform. 2019;10(1):24. doi: 10.4103/jpi.jpi_24_19.
  8. Abramoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1(1):39. doi: 10.1038/s41746-018-0040-6.
  9. Benjamens S, Dhunnoo P, Mesko B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. 2020;3(1):118. doi: 10.1038/s41746-020-00324-0.
  10. Shouval R, Fein JA, Savani B, et al. Machine learning and artificial intelligence in haematology. Br J Haematol. 2021;192(2):239–50. doi: 10.1111/bjh.16915.
  11. Shahid AH, Singh MP. Computational intelligence techniques for medical diagnosis and prognosis: problems and current developments. Biocybern Biomed Eng. 2019;39(3):638–72. doi: 10.1016/j.bbe.2019.05.010.
  12. Морозов С.П., Владзимирский А.В., Кляшторный В.Г. и др. Клинические испытания программного обеспечения на основе интеллектуальных технологий (лучевая диагностика). Лучшие практики лучевой и инструментальной диагностики. Препринт № ЦДТ-2019-1. М., 2019. 34 с.
    [Morozov SP, Vladzimirskii AV, Klyashtornyi VG, et al. Clinical acceptance of software based on artificial intelligence technologies (radiology). Preprint No. CDT-2019-1. Luchshie praktiki luchevoi i instrumental’noi diagnostiki. (Best practices in medical imaging.) Moscow; 2019. 34 (In Russ)]
  13. Shekelle PG, Shetty K, Newberry S, et al. Machine Learning Versus Standard Techniques for Updating Searches for Systematic Reviews: A Diagnostic Accuracy Study. Ann Intern Med. 2017;167(3):213–5. doi: 10.7326/L17-0124.
  14. Kimura K, Tabe Y, Ai T, et al. A novel automated image analysis system using deep convolutional neural networks can assist to differentiate MDS and AA. Sci Rep. 2019;9(1):13385. doi: 10.1038/s41598-019-49942-z.
  15. Wang Q, Bi S, Sun M, et al. Deep learning approach to peripheral leukocyte recognition. PLoS One. 2019;14(6):e0218808. doi: 10.1371/journal.pone.0218808.
  16. Hegde RB, Prasad K, Hebbar H, Singh BMK. Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybern Biomed Eng. 2019;39(2):382–92. doi: 10.1016/j.bbe.2019.01.005.
  17. Syrykh C, Abreu A, Amara N, et al. Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning. NPJ Digit Med. 2020;3(1):63. doi: 10.1038/s41746-020-0272-0.
  18. Achi HE, Belousova T, Chen L, et al. Automated Diagnosis of Lymphoma with Digital Pathology Images Using Deep Learning. Ann Clin Lab Sci. 2019;49(2):153–60.
  19. Sheng B, Zhou M, Hua M, et al. A blood cell dataset for lymphoma classification using faster R-CNN. Biotechnol Biotechnol Equip. 2020;34(1):413–20. doi: 10.1080/13102818.2020.1765871.
  20. Xu L, Tetteh G, Lipkova J, et al. Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on (68)Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods. Contrast Media Mol Imaging. 2018;2018:1–11. doi: 10.1155/2018/2391925.
  21. Martinez-Martinez F, Kybic J, Lambert L, Meckova Z. Fully automated classification of bone marrow infiltration in low-dose CT of patients with multiple myeloma based on probabilistic density model and supervised learning. Comput Biol Med. 2016;71:57–66. doi: 10.1016/j.compbiomed.2016.02.001.
  22. Wang L, Zhao Z, Luo Y, et al. Classifying 2-year recurrence in patients with DLBCL using clinical variables with imbalanced data and machine learning methods. Comput Meth Program Biomed. 2020;196:105567. doi: 10.1016/j.cmpb.2020.105567.
  23. Biccler JL, Eloranta S, de Nully Brown P, et al. Optimizing Outcome Prediction in Diffuse Large B-Cell Lymphoma by Use of Machine Learning and Nationwide Lymphoma Registries: A Nordic Lymphoma Group Study. JCO Clin Cancer Inform. 2018;2:1–13. doi: 10.1200/CCI.18.00025.
  24. Guncar G, Kukar M, Notar M, et al. An application of machine learning to haematological diagnosis. Sci Rep. 2018;8(1):411. doi: 10.1038/s41598-017-18564-8.
  25. Breiman L. Random forests. Machine Learning. 2001;45:5–32. doi: 1023/A:1010933404324.
  26. Nazha A, Komrokji RS, Meggendorfer M, et al. A Personalized Prediction Model to Risk Stratify Patients with Myelodysplastic Syndromes. Blood. 2018;132(Suppl 1):793. doi: 10.1182/blood-2018-99-114774.
  27. Hu SB, Wong DJ, Correa A, et al. Prediction of Clinical Deterioration in Hospitalized Adult Patients with Hematologic Malignancies Using a Neural Network Model. PLoS One. 2016;11(8):e0161401. doi: 10.1371/journal.pone.0161401.
  28. Prochazka VK, Matustikova S, Furst T, et al. Bayesian Network Modelling As a New Tool in Predicting of the Early Progression of Disease in Follicular Lymphoma Patients. Blood. 2020;136(Suppl 1):20–1. doi: 10.1182/blood-2020-139830.
  29. Mahmood N, Shahid S, Bakhshi T, et al. Identification of significant risks in pediatric acute lymphoblastic leukemia (ALL) through machine learning (ML) approach. Med Biol Eng Comput. 2020;58(11):2631–40. doi: 10.1007/s11517-020-02245-2.
  30. Gandelman JS, Byrne MT, Mistry AM, et al. Machine learning reveals chronic graft-versus-host disease phenotypes and stratifies survival after stem cell transplant for hematologic malignancies. Haematologica. 2019;104(1):189–96. doi: 10.3324/haematol.2018.193441.
  31. Chen D, Goyal G, Go RS, et al. Improved Interpretability of Machine Learning Model Using Unsupervised Clustering: Predicting Time to First Treatment in Chronic Lymphocytic Leukemia. JCO Clin Cancer Inform. 2019;3:1–11. doi: 10.1200/CCI.18.00137.
  32. Coombes CE, Abrams ZB, Li S, et al. Unsupervised machine learning and prognostic factors of survival in chronic lymphocytic leukemia. J Am Med Inform Assoc. 2020;27(7):1019–27. doi: 10.1093/jamia/ocaa060.
  33. Shah P, Kendall F, Khozin S, et al. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med. 2019;2(1):69. doi: 10.1038/s41746-019-0148-3.
  34. Shouval R, Labopin M, Bondi O, et al. Prediction of Allogeneic Hematopoietic Stem-Cell Transplantation Mortality 100 Days After Transplantation Using a Machine Learning Algorithm: A European Group for Blood and Marrow Transplantation Acute Leukemia Working Party Retrospective Data Mining Study. J Clin Oncol. 2015;33(28):3144–51. doi: 10.1200/JCO.2014.59.1339.
  35. Nazha A, Hu ZH, Wang T, et al. A Personalized Prediction Model for Outcomes after Allogeneic Hematopoietic Cell Transplant in Patients with Myelodysplastic Syndromes. Biol Blood Marrow Transplant. 2020;26(11):2139–46. doi: 10.1016/j.bbmt.2020.08.003.
  36. Bigorra L, Larriba I, Gutierrez-Gallego R. Machine learning algorithms for accurate differential diagnosis of lymphocytosis based on cell population data. Br J Haematol. 2019;184(6):1035–7. doi: 10.1111/bjh.15230.
  37. Nazha A, Sekeres MA, Bejar R, et al. Genomic Biomarkers to Predict Resistance to Hypomethylating Agents in Patients with Myelodysplastic Syndromes Using Artificial Intelligence. JCO Precis Oncol. 2019;3:1–11. doi: 10.1200/po.19.00119.
  38. Milgrom SA, Elhalawani H, Lee J, et al. A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma. Sci Rep. 2019;9(1):1322. doi: 10.1038/s41598-018-37197-z.
  39. Moraes LO, Pedreira CE, Barrena S, et al. A decision-tree approach for the differential diagnosis of chronic lymphoid leukemias and peripheral B-cell lymphomas. Comput Meth Program Biomed. 2019;178:85–90. doi: 10.1016/j.cmpb.2019.06.014.
  40. Ni W, Hu B, Zheng C, et al. Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine. Oncotarget. 2016;7(44):71915–21. doi: 10.18632/oncotarget.12430.
  41. Fuse K, Uemura S, Tamura S, et al. Patient-based prediction algorithm of relapse after allo-HSCT for acute Leukemia and its usefulness in the decision-making process using a machine learning approach. Cancer Med. 2019;8(11):5058–67. doi: 10.1002/cam4.2401.
  42. Goswami C, Poonia S, Kumar L, Sengupta D. Staging System to Predict the Risk of Relapse in Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplantation. Front Oncol. 2019;9:633. doi: 10.3389/fonc.2019.00633.
  43. Gal O, Auslander N, Fan Y, Meerzaman D. Predicting Complete Remission of Acute Myeloid Leukemia: Machine Learning Applied to Gene Expression. Cancer Inform. 2019;18:1–5. doi: 10.1177/1176935119835544.
  44. Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett. 2020;471:61–71. doi: 10.1016/j.canlet.2019.12.007.
  45. Ubels J, Sonneveld P, van Beers EH, et al. Predicting treatment benefit in multiple myeloma through simulation of alternative treatment effects. Nat Commun. 2018;9(1):2943. doi: 10.1038/s41467-018-05348-5.
  46. Shain KH, Hart D, Silva AS, et al. Reinforcement Learning to Optimize the Treatment of Multiple Myeloma. Blood. 2019;134(Suppl_1):5511. doi: 10.1182/blood-2019-132234.
  47. Mateos MV, Blacklock H, Schjesvold F, et al. Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial. Lancet Haematol. 2019;6(9):e459–e469. doi: 10.1016/S2352-3026(19)30110-3.
  48. Liao JJZ, Farooqui MZH, Marinello P, et al. Using artificial intelligence tools in answering important clinical questions: The KEYNOTE-183 multiple myeloma experience. Contemp Clin Trials. 2020;99:106179. doi: 10.1016/j.cct.2020.106179.
  49. Третье мнение. AI для клинической лабораторной диагностики (электронный документ). Доступно по: https://thirdopinion.ai/ru#rec Ссылка активна на 06.10.2021.
    [Third Opinion. AI for clinical laboratory diagnostics (Internet). Available from: https://thirdopinion.ai/ru#rec354556522 (accessed 06.10.2021). (In Russ)]

Гистиоцитоз из клеток Лангерганса у взрослых: современные возможности терапии

В.Д. Латышев, Е.А. Лукина

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Виталий Дмитриевич Латышев, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; e-mail: LatyshevVD@gmail.com

Для цитирования: Латышев В.Д., Лукина Е.А. Гистиоцитоз из клеток Лангерганса у взрослых: современные возможности терапии. Клиническая онкогематология. 2021;14(4):444–54.

DOI: 10.21320/2500-2139-2021-14-4-444-454


РЕФЕРАТ

Гистиоцитоз из клеток Лангерганса (ГКЛ) — крайне редкое заболевание, обусловленное тканевой инфильтрацией патологическими клетками, имеющими фенотипическое сходство с нормальными клетками Лангерганса. Стандартная терапия ГКЛ у взрослых до настоящего времени не разработана ввиду отсутствия достаточной доказательной базы для тех или иных методов лечения. В клинической практике находит применение как цитостатическое лечение, так и новые подходы с использованием ингибиторов сигнальных путей, вовлеченных в патогенез ГКЛ. Настоящий литературный обзор посвящен существующим на текущий момент методам терапии ГКЛ у взрослых пациентов и возможностям их применения в клинической практике.

Ключевые слова: гистиоцитоз из клеток Лангерганса, терапия гистиоцитозов, мутация BRAFV600E, MAPK.

Получено: 20 июля 2021 г.

Принято в печать: 23 сентября 2021 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Лукина Е.А., Козловская А.С., Капланская И.Б., Мокеева Р.А. Гистиоцитоз X — Гистиоцитоз из клеток Лангерганса. Гематология и трансфузиология. 1990;35(9):10–5.
    [Lukina EA, Kozlovskaya AS, Kaplanskaya IB, Mokeeva RA. Histiocytosis X — Langerhans cell histiocytosis. Gematologiya i transfuziologiya. 1990;35(9):10–5. (In Russ)]
  2. Yu RC, Chu AC, Chu C, et al. Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet. 1994;343(8900):767–8. doi: 10.1016/S0140-6736(94)91842-2.
  3. Willman CL, Busque L, Griffith BB, et al. Langerhans’-Cell Histiocytosis (Histiocytosis X) — A Clonal Proliferative Disease. N Engl J Med. 1994;331(3):154–60. doi: 10.1056/NEJM199407213310303.
  4. Badalian-Very G, Vergilio J-A, Degar BA, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23. doi: 10.1182/blood-2010-04-279083.
  5. Braier J. Is Langerhans cell histiocytosis a neoplasia? Pediatr Blood Cancer. 2017;64(3):e26267. doi: 10.1002/pbc.26267.
  6. Egeler RM, Katewa S, Leenen PJM, et al. Langerhans cell histiocytosis is a neoplasm and consequently its recurrence is a relapse: In memory of Bob Arceci. Pediatr Blood Cancer. 2016;63(10):1704–12. doi: 10.1002/pbc.26104.
  7. Collin M, Bigley V, McClain KL, et al. Cell(s) of Origin of Langerhans Cell Histiocytosis. Hematol Oncol Clin North Am. 2015;29(5):825–38. doi: 10.1016/j.hoc.2015.06.003.
  8. Allen CE, Beverley PCL, Collin M, et al. The coming of age of Langerhans cell histiocytosis. Nat Immunol. 2020;21(1):1–7. doi: 10.1038/s41590-019-0558-z.
  9. Allen CE, Merad M, McClain KL. Langerhans-Cell Histiocytosis. N Engl J Med. 2018;379(9):856–68. doi: 10.1056/NEJMra1607548.
  10. Girschikofsky M, Arico M, Castillo D, et al. Management of adult patients with Langerhans cell histiocytosis: recommendations from an expert panel on behalf of Euro-Histio-Net. Orphanet J Rare Dis. 2013;8(1):72. doi: 10.1186/1750-1172-8-72.
  11. Key SJ, O’Brien CJ, Silvester KC, et al. Eosinophilic granuloma: resolution of maxillofacial bony lesions following minimal intervention. Report of three cases and a review of the literature. J Cranio-Maxillofac Surg. 2004;32(3):170–5. doi: 10.1016/j.jcms.2004.01.004.
  12. Namai T, Yusa H, Yoshida H. Spontaneous remission of a solitary eosinophilic granuloma of the mandible after biopsy: A case report. J Oral Maxillofac Surg. 2001;59(12):1485–7. doi: 10.1053/joms.2001.28290.
  13. Esen A, Dolanmaz D, Kalayci A, et al. Treatment of localized Langerhans’ cell histiocytosis of the mandible with intralesional steroid injection: report of a case. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2010;109(2):e53–8. doi: 10.1016/j.tripleo.2009.10.015.
  14. Watzke IM, Millesi W, Kermer C, et al. Multifocal eosinophilic granuloma of the jaw: Long-term follow-up of a novel intraosseous corticoid treatment for recalcitrant lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2000;90(3):317–22. doi: 10.1067/moe.2000.107535.
  15. Almuzayyen A, Elhassan W, Alabbadi M. Intralesional triamcinolone for treating mandibular Langerhans cell histiocytosis: A case report and literature review. Saudi J Med Med Sci. 2019;7(1):47. doi: 10.4103/sjmms.sjmms_84_17.
  16. Gadner H, Minkov M, Grois N, et al. Therapy prolongation improves outcome in multisystem Langerhans cell histiocytosis. Blood. 2013;121(25):5006–14. doi: 10.1182/blood-2012-09-455774.
  17. Minkov M. Multisystem Langerhans Cell Histiocytosis in Children. Pediatr Drugs. 2011;13(2):75–86. doi: 10.2165/11538540-000000000-00000.
  18. Cantu MA, Lupo PJ, Bilgi M, et al. Optimal Therapy for Adults with Langerhans Cell Histiocytosis Bone Lesions. PLoS One. 2012;7(8):e43257. doi: 10.1371/journal.pone.0043257.
  19. Tazi A, Lorillon G, Haroche J, et al. Vinblastine chemotherapy in adult patients with langerhans cell histiocytosis: a multicenter retrospective study. Orphanet J Rare Dis. 2017;12(1):95. doi: 10.1186/s13023-017-0651-z.
  20. Donadieu J, Bernard F, van Noesel M, et al. Cladribine and cytarabine in refractory multisystem Langerhans cell histiocytosis: results of an international phase 2 study. Blood. 2015;126(12):1415–23. doi: 10.1182/blood-2015-03-635151.
  21. Saven A, Figueroa ML, Piro LD, et al. 2-Chlorodeoxyadenosine to Treat Refractory Histiocytosis X. N Engl J Med. 1993;329(10):734–5. doi: 10.1056/NEJM199309023291013.
  22. Saven A, Burian C. Cladribine Activity in Adult Langerhans-Cell Histiocytosis. Blood. 1999;93(12):4125–30. doi: 10.1182/blood.V93.12.4125.
  23. Adam Z, Szturz P, Vanicek J, et al. Cladribine (2-chlorodeoxyadenosine) in frontline chemotherapy for adult Langerhans cell histiocytosis: A single-center study of seven cases. Acta Oncol (Madr). 2013;52(5):994–1001. doi: 10.3109/0284186X.2012.716164.
  24. Allen CE, Ladisch S, McClain KL. How I treat Langerhans cell histiocytosis. Blood. 2015;126(1):26–35. doi: 10.1182/blood-2014-12-569301.
  25. Friedman B, Cronstein B. Methotrexate mechanism in treatment of rheumatoid arthritis. Jt Bone Spine. 2019;86(3):301–7. doi: 10.1016/j.jbspin.2018.07.004.
  26. Steen AE, Steen KH, Bauer R, et al. Successful treatment of cutaneous Langerhans cell histiocytosis with low-dose methotrexate. Br J Dermatol. 2001;145(1):137–40. doi: 10.1046/j.1365-2133.2001.04298.x.
  27. Cao X, Li J, Zhao A, et al. Methotrexate and Cytarabine for Adult Patients with Newly Diagnosed Langerhans Cell Histiocytosis: A Single Arm, Single Center, Prospective Phase 2 Study. Blood. 2019;134(Suppl_1):294. doi: 10.1182/blood-2019-122220.
  28. Derenzini E, Stefoni V, Pellegrini C, et al. High efficacy of the MACOP-B regimen in the treatment of adult Langerhans cell histiocytosis, a 20 year experience. BMC Cancer. 2015;15(1):879. doi: 10.1186/s12885-015-1903-8.
  29. Tanimura S, Takeda K. ERK signalling as a regulator of cell motility. J Biochem. 2017;162(3):145–54. doi: 10.1093/jb/mvx048.
  30. Ducreux M, Chamseddine A, Laurent-Puig P, et al. Molecular targeted therapy of BRAF-mutant colorectal cancer. Ther Adv Med Oncol. 2019;11:175883591985649. doi: 10.1177/1758835919856494.
  31. Falini B, Martelli MP, Tiacci E. BRAF V600E mutation in hairy cell leukemia: from bench to bedside. Blood. 2016;128(15):1918–27. doi: 10.1182/blood-2016-07-418434.
  32. Emile J-F, Abla O, Fraitag S, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127(22):2672–81. doi: 10.1182/blood-2016-01-690636.
  33. Крылов А.С., Долгушин М.Б., Рыжков А.Д. и др. Болезнь Эрдгейма–Честера. Обзор литературы и клинический случай. Онкогематология. 2020;15(2):61–75. doi: 10.17650/1818-8346-2020-15-2-61-75.
    [Krylov AS, Dolgushin MB, Ryzhkov AD, et al. Erdheim-Chester disease. Literature review and clinical case. Oncohematology. 2020;15(2):61–75. doi: 10.17650/1818-8346-2020-15-2-61-75. (In Russ)]
  34. Chakraborty R, Burke TM, Hampton OA, et al. Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. Blood. 2016;128(21):2533–7. doi: 10.1182/blood-2016-08-733790.
  35. Diamond EL, Subbiah V, Lockhart AC, et al. Vemurafenib for BRAF V600–Mutant Erdheim-Chester Disease and Langerhans Cell Histiocytosis. JAMA Oncol. 2018;4(3):384. doi: 10.1001/jamaoncol.2017.5029.
  36. Haroche J, Cohen-Aubart F, Emile J-F, et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood. 2013;121(9):1495–500. doi: 10.1182/blood-2012-07-446286.
  37. Ruan G, Goyal G, Abeykoon JP, et al. Low-Dose BRAF-Inhibitors in the Treatment of Histiocytic Disorders with the BRAF-V600E Mutation. Blood. 2019;134(Suppl_1):5895. doi: 10.1182/blood-2019-124891.
  38. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. N Engl J Med. 2012;367(18):1694–703. doi: 10.1056/NEJMoa1210093.
  39. Papapanagiotou M, Griewank KG, Hillen U, et al. Trametinib-Induced Remission of an MEK1-Mutated Langerhans Cell Histiocytosis. JCO Precis Oncol. 2017;1:1–5. doi: 10.1200/PO.16.00070.
  40. Lorillon G, Jouenne F, Baroudjian B, et al. Response to Trametinib of a Pulmonary Langerhans Cell Histiocytosis Harboring a MAP2K1 Deletion. Am J Respir Crit Care Med. 2018;198(5):675–8. doi: 10.1164/rccm.201802-0275LE.
  41. Sullivan RJ, Infante JR, Janku F, et al. First-in-Class ERK1/2 Inhibitor Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors: Results of a Phase I Dose-Escalation and Expansion Study. Cancer Discov. 2018;8(2):184–95. doi: 10.1158/2159-8290.CD-17-1119.
  42. Smalley I, Smalley KSM. ERK Inhibition: A New Front in the War against MAPK Pathway–Driven Cancers? Cancer Discov. 2018;8(2):140–2. doi: 10.1158/2159-8290.CD-17-1355.
  43. Sosman MC. Xanthomatosis. J Am Med Assoc. 1932;98(2):110. doi: 10.1001/jama.1932.02730280018005.
  44. Kriz J, Eich H, Bruns F, et al. Radiotherapy in Langerhans cell histiocytosis – a rare indication in a rare disease. Radiat Oncol. 2013;8(1):233. doi: 10.1186/1748-717X-8-233.
  45. Olschewski T, Seegenschmiedt MH. Radiotherapy of Langerhans’ Cell Histiocytosis. Strahlenther Onkol. 2006;182(11):629–34. doi: 10.1007/s00066-006-1630-9.
  46. Greenberger JS, Crocker AC, Vawter G, et al. Results of Treatment of 127 Patients with Systemic Histiocytosis (Letterer-Siwe Syndrome, Schuller-Christian Syndrome and Multifocal Eosinophilic Granuloma). Medicine (Baltimore). 1981;60(5):311–38. doi: 10.1097/00005792-198109000-00001.
  47. Furudate S, Fujimura T, Kambayashi Y, et al. Successful Treatment of Adult Onset Langerhans Cell Histiocytosis with Bi-weekly Administration of Pegylated Interferon-α. Acta Derm Venereol. 2014;94(5):611–2. doi: 10.2340/00015555-1807.
  48. El-Safadi S, Dreyer T, Oehmke F, et al. Management of adult primary vulvar Langerhans cell histiocytosis: review of the literature and a case history. Eur J Obstet Gynecol Reprod Biol. 2012;163(2):123–8. doi: 10.1016/j.ejogrb.2012.03.010.
  49. Ibrahim IF, Naina HVK. Treatment of recurrent Langerhans cell histiocytosis of the vulva with lenalidomide. J Clin Oncol. 2013;31(15_suppl):e16555. doi: 10.1200/jco.2013.31.15_suppl.e16555.
  50. Лукина Е.А., Кузнецов В.П., Беляев Д.Л. и др. Лечение гистиоцитоза Х (гистиоцитоз из клеток Лангерганса) препаратами α-интерферона. Терапевтический архив. 1993;11(65):67–70.
    [Lukina EA, Kuznetsov VP, Belyaev DL, et al. The treatment of histiocytosis X (Langerhans-cell histiocytosis) with alpha-interferon preparations. Terapevticheskii arkhiv. 1993;11(65):67–70. (In Russ)]
  51. Szturz P, Adam Z, Rehak Z, et al. Lenalidomide proved effective in multisystem Langerhans cell histiocytosis. Acta Oncol (Madr). 2012;51(3):412–5. doi: 10.3109/0284186X.2011.631581.
  52. Zinn DJ, Grimes AB, Lin H, et al. Hydroxyurea: a new old therapy for Langerhans cell histiocytosis. Blood. 2016;128(20):2462–5. doi: 10.1182/blood-2016-06-721993.
  53. Fleisch H. Bisphosphonates: Mechanisms of Action. Endocr Rev. 1998;19(1):80–100. doi: 10.1210/edrv.19.1.0325.
  54. Sivendran S, Harvey H, Lipton A, et al. Treatment of Langerhans cell histiocytosis bone lesions with zoledronic acid: a case series. Int J Hematol. 2011;93(6):782–6. doi: 10.1007/s12185-011-0839-2.
  55. Lebret T, Casas A, Cavo M, et al. The use of bisphosphonates in the management of bone involvement from solid tumours and haematological malignancies – a European survey. Eur J Cancer Care (Engl). 2017;26(4):e12490. doi: 10.1111/ecc.12490.
  56. Montella L, Merola C, Merola G, et al. Zoledronic acid in treatment of bone lesions by Langerhans cell histiocytosis. J Bone Miner Metab. 2009;27(1):110–3. doi: 10.1007/s00774-008-0001-2.
  57. Elomaa I, Blomqvist C, Porkka L, et al. Experiences of clodronate treatment of multifocal eosinophilic granuloma of bone. J Intern Med. 1989;225(1):59–61. doi: 10.1111/j.1365-2796.1989.tb00038.x.
  58. Arzoo K, Sadeghi S, Pullarkat V. Pamidronate for Bone Pain from Osteolytic Lesions in Langerhans’-Cell Histiocytosis. N Engl J Med. 2001;345(3):225. doi: 10.1056/NEJM200107193450318.
  59. Weitzman R, Sauter N, Eriksen EF, et al. Critical review: Updated recommendations for the prevention, diagnosis, and treatment of osteonecrosis of the jaw in cancer patients—May 2006. Crit Rev Oncol Hematol. 2007;62(2):148–52. doi: 10.1016/j.critrevonc.2006.12.005.
  60. Makras P, Tsoli M, Anastasilakis AD, et al. Denosumab for the treatment of adult multisystem Langerhans cell histiocytosis. Metabolism. 2017;69:107–11. doi: 10.1016/j.metabol.2017.01.004.
  61. Pan Y, Xi R, Wang C, et al. Autologous hematopoietic stem cell transplantation for efficient treatment of multisystem, high-risk, BRAF V600E-negative Langerhans cell histiocytosis. J Int Med Res. 2019;47(9):4522–9. doi: 10.1177/0300060519864807.
  62. Braier J, Rosso D, Pollono D, et al. Symptomatic Bone Langerhans Cell Histiocytosis Treated at Diagnosis or After Reactivation With Indomethacin Alone. J Pediatr Hematol Oncol. 2014;36(5):e280–е284. doi: 10.1097/MPH.0000000000000165001.
  63. gov [Internet]. LCH-IV, International Collaborative Treatment Protocol for Children and Adolescents With Langerhans Cell Histiocytosis. Identifier NCT02205762. Available from: https://clinicaltrials.gov/ct2/show/NCT02205762 (accessed 21.07.2021).
  64. Kurtulmus N, Mert M, Tanakol R, et al. The pituitary gland in patients with Langerhans cell histiocytosis: a clinical and radiological evaluation. Endocrine. 2015;48(3):949–56. doi: 10.1007/s12020-014-0408-6.
  65. Kaltsas GA, Powles TB, Evanson J, et al. Hypothalamo-Pituitary Abnormalities in Adult Patients with Langerhans Cell Histiocytosis: Clinical, Endocrinological, and Radiological Features and Response to Treatment. J Clin Endocrinol Metab. 2000;85(4):1370–6. doi: 10.1210/jcem.85.4.6501.
  66. Abla O, Janka G, eds. Histiocytic Disorders. Cham: Springer International Publishing; 2018. doi: 10.1007/978-3-319-59632-7.
  67. Hutter C, Minkov M. Insights into the pathogenesis of Langerhans cell histiocytosis: the development of targeted therapies. ImmunoTarg Ther. 2016;5:81–91. doi: 10.2147/itt.s91058.