Резистентность хронического миелолейкоза к ингибиторам тирозинкиназ: 10 лет изучения профиля мутаций гена BCR-ABL в России (2006–2016 гг.)

В.В. Тихонова1,2, М.А. Исаков3, В.А. Мисюрин1, Ю.П. Финашутина1,2, Л.А. Кесаева1,2, Н.А. Лыжко1, И.Н. Солдатова2, Н.Н. Касаткина1, Е.Н. Мисюрина4, А.В. Мисюрин1,2

1 ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

2 OOO «ГеноТехнология», ул. Профсоюзная, д. 104, Москва, Российская Федерация, 117485

3 ЗАО «Астон Консалтинг», ул. Шаболовка, д. 31г, Москва, Российская Федерация, 115162

4 ГКБ № 52, ул. Пехотная, д. 3, Москва, Российская Федерация, 123182

Для переписки: Вера Вячеславовна Тихонова, Каширское ш., д. 24, Moсква, Российская Федерация, 115478; тел.: +7(967)008-02-84; e-mail: brilfor@mail.ru

Для цитирования: Тихонова В.В., Исаков М.А., Мисюрин В.А. и др. Резистентность хронического миелолейкоза к ингибиторам тирозинкиназ: 10 лет изучения профиля мутаций гена BCR-ABL в России (2006–2016 гг.). Клиническая онкогематология. 2018;11(3):227–33.

DOI: 10.21320/2500-2139-2018-11-3-227-233


РЕФЕРАТ

Актуальность. Мутации киназного домена гена BCR-ABL — наиболее частая причина резистентности к ингибиторам тирозинкиназ.

Цель. Представить данные о прогностической значимости динамики мутаций гена BCR-ABL у российских пациентов за последние 10 лет.

Материалы и методы. В исследование включено 1885 больных хроническим миелолейкозом (ХМЛ) с резистентностью к ингибиторам тирозинкиназ, обследовавшихся в период с 2006 по 2016 г. Точечные мутации гена BCR-ABL в образцах мРНК анализировали с помощью полимеразной цепной реакции и последующего секвенирования по Сэнгеру.

Результаты. У 1257 больных ХМЛ с признаками резистентности к терапии ингибиторами тирозинкиназ уровень экспрессии BCR-ABL был > 1 %. Мутации BCRABL обнаружены у 31,8 % из них. Общее количество обнаруженных мутаций составило 467 (70 видов мутаций). Общее число больных с устойчивостью к ингибиторам тирозинкиназ, связанной с мутациями, снижалось от 36,6 (2006–2008 гг.) до 24,95 % (2013–2016 гг.) со значительным падением (до 23,12 %) в 2014 г. Частота выявления иматиниб-резистентных мутаций и мутации F359V постепенно снизилась в период с 2010–2011 по 2014–2015 гг. Уровень F317L, обусловливающий резистентность к дазатинибу, в 2015 г. значительно вырос. Частота T315I максимально возрастала к 2014 г. и затем постепенно снижалась. Частота устойчивости, связанной с мутациями, зависит от региона РФ.

Заключение. Выявление закономерностей возникновения мутаций у пациентов с ХМЛ может иметь важное значение для долговременного прогноза развития устойчивости и более успешного планирования терапии.

Ключевые слова: хронический миелолейкоз, мутации киназного домена BCR-ABL, таргетная терапия, резистентность.

Получено: 22 января 2018 г.

Принято в печать: 16 апреля 2018 г.

Читать статью в PDF 

ЛИТЕРАТУРА

  1. Soverini S, Colarossi S, Gnani A, et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res. 2006;12(24):7374–9. doi: 10.1158/1078-0432.ccr-06-1516.
  2. Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European Leukemia Net. J Clin Oncol. 2009;27(35):6041–51. doi: 10.1200/JCO.2009.25.0779.
  3. Soverini S, Rosti G, Iacobucci I, et al. Choosing the best second-line tyrosine kinase inhibitor in imatinib-resistant chronic myeloid leukemia patients harboring Bcr-Abl kinase domain mutations: how reliable is the IC50? Oncologist. 2011;16(6):868–76. doi: 10.1634/theoncologist.2010-0388.
  4. Овсянникова Е.Г., Капланов К.Д., Клиточенко Т.Ю. и др. Мутационный статус резистентных к иматинибу больных хроническим миелолейкозом. Онкогематология. 2012;4:16–24.[Ovsyannikova EG, Kaplanov KD, Klitochenko TYu, et al. Mutation status of chronic myeloid leukemia patients with imatinib resistance. Onkogematologiya. 2012;4:16–24. (In Russ)]
  5. Patkar N, Ghodke K, Joshi S, et al. Characteristics of BCR-ABL kinase domain mutations in chronic myeloid leukemia from India: not just missense mutations but insertions and deletions are also associated with TKI resistance. Leuk Lymphoma. 2016;57(11):2653–60. doi: 10.3109/10428194.2016.1157868.
  6. Elnahass YH, Mahmoud HK, Ali FT, et al. Abl Kinase Domain Mutations in Imatinib-treated Egyptian Patients with Chronic Myeloid Leukemia. J Leuk. 2013;1(1):106. doi: 10.4172/2329-6917.1000106.
  7. Awidi A, Ababneh N, Magablah A, et al. ABL Kinase Domain Mutations in Patients with Chronic Myeloid Leukemia in Jordan. Genet Test Mol Biomark. 2012;16(11):1317–21. doi: 10.1089/gtmb.2012.0147.
  8. Elias MH, Baba AA, Husin A, et al. Contribution of BCR-ABL kinase domain mutations to imatinib mesylate resistance in Philadelphia chromosome positive Malaysian chronic myeloid leukemia patients. Hematol Rep. 2012;4(4):e23. doi: 10.4081/hr.2012.e23.
  9. Vaidya S, Vundinti BR, Shanmukhaiah C, et al. Evolution of BCR/ABL Gene Mutation in CML Is Time Dependent and Dependent on the Pressure Exerted by Tyrosine Kinase Inhibitor. PLoS One. 2015;10(1):e0114828. doi: 10.1371/journal.pone.0114828.
  10. Челышева Е.Ю., Шухов О.А., Лазарева О.В., Туркина А.Г. Мутации киназного домена гена BCR-ABL при хроническом миелолейкозе. Клиническая онкогематология. 2012;5(1):13–21.[Chelysheva EYu, Shukhov OA, Lazareva OV, Turkina AG. Kinase domain mutations of BCR-ABL gene in patients with chronic myeloid leukemia. Klinicheskaya onkogematologiya. 2012;5(1):13–21. (In Russ)]
  11. Kimura S, Ando T, Kojima K. BCR-ABL Point Mutations and TKI Treatment in CML Patients. J Hematol Transfus. 2014;2(3):1022.
  12. Soverini S, de Benedittis C, Mancini M, Martinelli G. Mutations in the BCR-ABL1 Kinase Domain and Elsewhere in Chronic Myeloid Leukemia. Clin Lymph Myel Leuk. 2015;15(Suppl):S120–8. doi: 10.1016/j.clml.2015.02.035.
  13. Soverini S, De Benedittis C, Papayannidis C, et al. Drug resistance and BCR-ABL kinase domain mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia from the imatinib to the second-generation tyrosine kinase inhibitor era: The main changes are in the type of mutations, but not in the frequency of mutation involvement. 2014;120(7):1002–9. doi: 10.1002/cncr.28522.
  14. Мисюрин А.В., Мисюрина Е.Н., Тихонова В.В. и др. Частота встречаемости мутаций киназного домена гена BCR-ABL у больных хроническим миелолейкозом, резистентных к терапии иматинибом. Российский биотерапевтический журнал. 2016;15(4):102–9. doi: 10.17650/1726-9784-2016-15-4-102-109.[Misyurin AV, Misyurina EN, Tikhonova VV, et al. BCR-ABL gene kinase domain mutation frequency in imatinib resistant chronic myeloid leukemia patients. Rossiiskii bioterapevticheskii zhurnal. 2016;15(4):102–9. doi: 10.17650/1726-9784-2016-15-4-102-109. (In Russ)]
  15. Hughes TP, Saglio G, Quintas-Cardama A, et al. BCR-ABL1 mutation development during first-line treatment with dasatinib or imatinib for chronic myeloid leukemia in chronic phase. Leukemia. 2015;29(9):1832–8. doi: 10.1038/leu.2015.168.
  16. Абдулкадыров К.М., Шуваев В.А., Фоминых М.С. Дженерики иматиниба: мифы и реальность (обзор литературы и собственные данные). Клиническая онкогематология. 2014;7(3):311–6.[Abdulkadyrov KM, Shuvaev VA, Fominykh MS. Imatinib Generics: Myths and Reality (Literature Review and Our Experience). Klinicheskaya onkogematologiya. 2014;7(3):311–6. (In Russ)]
  17. Валиев Т.Т., Левашов А.С., Сенжапова Э.Р. Таргетные препараты в детской онкологии. Онкопедиатрия. 2016;3(1):8–15. doi: 10.15690/onco.v3i1.1524.[Valiev TT, Levashov AS, Senzhapova ER. Targeted Drugs in Pediatric Oncology. Onkopediatriya. 2016;3(1):8–15. doi: 10.15690/onco.v3i1.1524. (In Russ)]

Блокада PD-1-пути ниволумабом — новая возможность иммунотерапии классической лимфомы Ходжкина

Е.А. Демина

ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Елена Андреевна Демина, д-р мед. наук, профессор, Каширское ш., д. 24, Москва, Российская Федерация, 115478; e-mail: drdemina@yandex.ru

Для цитирования: Демина Е.А. Блокада PD-1-пути ниволумабом — новая возможность иммунотерапии классической лимфомы Ходжкина. Клиническая онкогематология. 2018;11(3):213–19.

DOI: 10.21320/2500-2139-2018-11-3-213-219


РЕФЕРАТ

За последние два десятилетия показано, что индивидуализация программного лечения с одновременной интенсификацией химиотерапии позволяет излечить большинство больных классической лимфомой Ходжкина (кЛХ). Однако у 10–30 % больных развиваются рецидивы или отмечается резистентное течение заболевания. Дальнейшая интенсификация терапии сопровождается токсичностью, снижающей общую выживаемость и качество жизни больных. Современный стандарт терапии второй линии, включающий высокодозную химиотерапию (ВДХТ) с трансплантацией аутологичных гемопоэтических стволовых клеток (аутоТГСК), позволяет достичь длительной 5-летней выживаемости без прогрессирования лишь у 50–60 % больных с рецидивами и не более 40–45 % — при рефрактерном течении. Приблизительно у 50 % больных после ВДХТ и аутоТГСК наблюдается возврат заболевания. Медиана общей выживаемости у пациентов с рецидивами не превышает 2 лет. АллоТГСК несколько улучшает результаты, но ее выполнение возможно далеко не у всех больных. Необходимость повышения эффективности терапии рецидивов и резистентных форм кЛХ и снижения токсичности высокоэффективных программ послужила основанием для поиска новых возможностей лечения. Идея использовать анти-CD30-моноклональные антитела против специфичного маркера опухолевых клеток Березовского—Рид—Штернберга в качестве средства для доставки высокоэффективного противоопухолевого соединения монометилауристатина Е непосредственно в опухолевую клетку привела к созданию нового CD30-таргетного конъюгата брентуксимаба ведотина. Препарат продемонстрировал высокую эффективность, но не решил проблему полностью. Создание анти-PD1-антител ниволумаба открыло новые возможности в лечении кЛХ. В настоящем обзоре представлены сведения о фармакологии препарата, механизме противоопухолевого действия, а также результаты крупных международных рандомизированных клинических исследований.

Ключевые слова: ниволумаб, лимфома Ходжкина, рецидив, резистентность, лечение.

Получено: 5 февраля 2018 г.

Принято в печать: 30 апреля 2018 г.

Читать статью в PDF 
ЛИТЕРАТУРА
  1. Engert A, Jounes A, Hematologic malignancies: Hodgkin lymphoma. A Comprehensive Overview. 2nd edition. Berlin, Heidelberg: Springer; 2015. pp. 437. doi: 10.1007/978-3-319-12505-3.
  2. Skoetz N, Trelle S, Rancea M, et al. Effect of initial treatment strategy on survival of patients with advanced-stage Hodgkin’s lymphoma: a systematic review and network meta-analysis. Lancet Oncol. 2013;14(10):943–52. doi:1016/s1470-2045(13)70341-3.
  3. Czyz J, Szydlo R, Knopinska-Posluszny W, et al. Treatment for primary refractory Hodgkin’s disease: a comparison of high-dose chemotherapy followed by ASCT with conventional therapy. Bone Marrow Transplant. 2004;33(12):1225–9. doi: 10.1038/sj.bmt.1704508.
  4. Gerrie AS, Power MM, Shepherd JD, et al. Chemoresistance can be overcome with high-dose chemotherapy and autologous stem-cell transplantation for relapsed and refractory Hodgkin lymphoma. Ann Oncol. 2014;25(11):2218–23. doi: 10.1093/annonc/mdu387.
  5. Sureda A, Constans M, Iriondo A, et al. Prognostic factors affecting long-term outcome after stem cell transplantation in Hodgkin’s lymphoma autografted after a first relapse. Ann Oncol. 2005;16(4):625–33. doi: 10.1093/annonc/mdi119.
  6. Brice P, Bouabdallah R, Moreau P, et al. Prognostic factors for survival after high-dose therapy and autologous stem cell transplantation for patients with relapsing Hodgkin’s disease: analysis of 280 patients from the French registry. Societe Francaise de Greffe de Moelle. Bone Marrow Transplant. 1997;20(1):21–6. doi: 10.1038/sj.bmt.1700838.
  7. Crump M. Management of Hodgkin lymphoma in relapse after autologous stem cell transplant. Hematology Am Soc Hematol Educ Program. 2008;2008(1):326–33. doi: 10.1182/asheducation-2008.1.326.
  8. Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an antiCD30–monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003;102(4):1458–65. doi: 10.1182/blood-2003-01-0039.
  9. Sutherland MSK, Sanderson RJ, Gordon KA, et al. Lysosomal Trafficking and Cysteine Protease Metabolism Confer Target-specific Cytotoxicity by Peptide-linked Anti-CD30-Auristatin Conjugates. J Biol Chem. 2006;281(15):10540–7. doi: 10.1074/jbc.M510026200.
  10. Gopal AK, Chen R, Smith SE, et al. Durable remissions in a pivotal phase 2 study of brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(8):1236–43. doi: 10.1182/blood-2014-08-595801.
  11. Arai S, Fanale M, DeVos S, et al. Defining a Hodgkin lymphoma population for novel therapeutics after relapse from autologous hematopoietic cell transplant. Leuk Lymphoma. 2013;54(11):2531–3. doi: 10.3109/10428194.2013.798868.
  12. Moskowitz CH, Nademanee A, Masszi T, et Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980):1853–62. doi: 10.1016/S0140-6736(15)60165-9.
  13. Boussiotis VA. Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N Engl J Med. 2016;375(18):1767–78. doi: 10.1056/NEJMra1514296.
  14. Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. doi: 10.1056/NEJMoa1414428.
  15. Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N Engl J Med. 2016;375(19):1823–33. doi: 10.1056/NEJMoa1606774
  16. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med. 2015;373(19):1803–13. doi: 10.1056/NEJMoa1510665.
  17. Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27. doi: 10.1038/nrc2542.
  18. Yamamoto R, Nishikori M, Kitawaki T, et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111(6):3220–4. doi: 1182/blood-2007-05-085159.
  19. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. doi: 10.1182/blood-2010-05-282780.
  20. Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J Clin Oncol. 2016;34(23):2690–7. doi: 10.1200/JCO.2016.66.4482.
  21. Green MR, Rodig S, Juszczynski P, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res. 2012;18(6):1611–8. doi: 1158/1078-0432.ccr-11-1942.
  22. Chen BJ, Chapuy B, Ouyang J, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19(13):3462–73. doi: 10.1158/1078-0432.CCR-13-0855.
  23. Merryman R, Armand Ph. Hodgkin lymphoma and PD-1 blockade: an unfinished story. Ann Lymphoma. 2017;1:4. doi: 10.21037/aol.2017.08.03.
  24. Ansell SM. Nivolumab in the Treatment of Hodgkin Lymphoma. Clin Cancer Res. 2017;23(7):1623–6. doi: 10.1158/1078-0432.CCR-16-1387.
  25. Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med. 2016;375(19):1856–67. doi: 10.1056/NEJMoa1602252.
  26. Sharma P, Retz M, Siefker-Radtke A, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22. doi: 10.1016/S1470-2045(17)30065-7.
  27. Borghaei H, Paz‑Ares L, Horn L, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N Engl J Med. 2015;373(17):1627–39. doi: 10.1056/NEJMoa1507643.
  28. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer. N Engl J Med. 2015;373(2):123–35. doi: 10.1056/NEJMoa1504627.
  29. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med. 2015;373(19):1803–13. doi: 10.1056/NEJMoa1510665.
  30. Wolchok JD, Rollin L, Larkin J. Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 2017;377(25):2503–4. doi: 10.1056/NEJMc1714339.
  31. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9. doi: 10.1056/NEJMoa1411087.
  32. Armand P. Immune checkpoint blockade in hematologic malignancies. Blood. 2015;125(22):3393–400. doi: 10.1182/blood-2015-02-567453.
  33. Kasamon YL, De Carlo RA, Wang Y, et al. FDA Approval Summary: Nivolumab for the Treatment of Relapsed or Progressive Classical Hodgkin Lymphoma. 2017;22(5):585–91. doi: 10.1634/theoncologist.2017-0004.
  34. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/JCO.2006.09.2403.
  35. Fanale M, Engert A, Younes A. Nivolumab for relapsed/refractory classical Hodgkin lymphoma after autologous transplant: full results after extended follow-up of the phase 2 CheckMate 205 trail. Hematol Oncol. 2017;35:135–6. doi: 10.1002/hon.2437_124.
  36. Majhail NS, Weisdorf DJ, Defor TE, et al. Long-Term Results of Autologous Stem Cell Transplantation for Primary Refractory or Relapsed Hodgkin’s Lymphoma. Biol Blood Marrow 2006;12(10):1065–72. doi: 10.1016/j.bbmt.2006.06.006
  37. Merryman RW, Kim HT, Zinzani PL, et al. Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma. Blood. 2017;129(10):1380–8. doi: 10.1182/blood-2016-09-738385.
  38. Saha A, Aoyama K, Taylor PA, et al. Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality. Blood. 2013;122(17):3062–73. doi: 10.1182/blood-2013-05-500801.
  39. Ciurea SO, Zhang MJ, Bacigalupo AA, et al. Haploidentical transplant with posttransplant cyclophosphamidevs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126(8):1033–40. doi: 10.1182/blood-2015-04-639831.
  40. Опдиво® [инструкция по медицинскому применению]. Принстон, США: Bristol-Myers Squibb Company. Доступно по: https://www.vidal.ru/drugs/opdivo. Ссылка активна на 30.03.2018.[Opdivo® [package insert]. Princeton, NJ, USA: Bristol-Myers Squibb Company. Available from: https://www.vidal.ru/drugs/opdivo. (accessed 30.03.2018) (In Russ)]
  41. Hoppe RT, Advani RH, Ai WZ, et al. NCCN Clinical Practice Guidelines in Oncology. Hodgkin Lymphoma. Version 1.2018. Available from: https://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf (accessed 05.04.2018).
  42. Herrera AF, Moskowitz AJ, Bartlett NL, et al. Interim results from a phase 1/2 study of brentuximab vedotin in combination with relapsed or refractory Hodgkin lymphoma. Hematol Oncol. 2017;35:85–6. doi: 10.1002/hon.2437_73.
  43. Ramchandren R, Fanale MA, Rueda A, et al. Nivolumab for Newly Diagnosed Advanced-Stage Classical Hodgkin Lymphoma (cHL): Results from the Phase 2 CheckMate 205 Study. ASH Annual Meeting Abstracts. 2017: Abstract 651.
  44. Mikhailova N, Lepik K, Kondakova E, et al. Regaining the Tumor Control in Relapsed/Refractory Hodgkin Lymphoma after Nivolumab Failure with Addition of Another Antineoplastic Agent. ASH Annual Meeting Abstracts. 2017: Abstract