Маркеры апоптоза в CD34-позитивных клетках при острых лейкозах

Е.Н. Паровичникова1, Е.Е. Ходунова1, И.В. Гальцева1, С.М. Куликов1, В.В. Троицкая1, Л.А. Кузьмина1, Д.В. Щебляков2, В.Г. Савченко1

1 ФГБУ «Гематологический научный центр» МЗ РФ, Москва, Российская Федерация

2 ФГБУ «НИИ эпидемиологии и микробиологии им. почетного академика Н.Ф. Гамалеи» МЗ РФ, Москва, Российская Федерация


РЕФЕРАТ

Цель. Определить экспрессию белков Bcl-2, Bax, CD95, р53 и АПФ (ангиотензинпревращающий фермент) в клетках CD34+ периферической крови (ПК) и костного мозга (КМ) у больных c впервые выявленным острым лейкозом (ОЛ) на разных этапах индукционной терапии.

Материалы и методы. Экспрессию Bcl-2, Bax, р53, CD95 и АПФ определяли в клетках CD34+ ПК и КМ у 23 больных ОЛ (14 — ОМЛ и 9 — ОЛЛ) методом проточной цитофлюориметрии. Образцы ПК и КМ исследовали до начала химиотерапии и в период индукционного лечения: на +8, +21 (только кровь) и +36–38-й дни от начала лечения. В группу контроля включено 8 доноров крови и костного мозга.

Результаты. Экспрессия Bcl-2+ на клетках CD34+ КМ у больных ОЛ (ОМЛ, ОЛЛ) на момент диагностики составила 34,8 ± 6 % и была статистически значимо выше, чем в контрольной группе здоровых доноров, — 11,5 ± 1,8 %. На +36–38-й день от начала химиотерапии не выявлено существенных отличий в количестве клеток CD34+/Bcl-2+ КМ и ПК как между больными ОЛ и контрольной группой, так и между группами пациентов с ОМЛ и ОЛЛ. Количество клеток CD34+/Bax+ при ОЛЛ в начале заболевания было статистически значимо выше по сравнению с больными ОМЛ и контрольной группой (< 0,005). Экспрессия АПФ и р53 в клетках CD34+ у больных ОЛ на момент диагностики и после курса химиотерапии была значимо ниже, чем у здоровых доноров. При исследовании экспрессии CD95 на клетках СD34+ КМ и ПК у больных ОЛ в период индукционного курса и в контрольной группе значимых отличий как между больными ОМЛ и ОЛЛ, так и между больными ОЛ и контрольной группой нами не обнаружено.

Заключение. Выявленные изменения свидетельствуют о дисбалансе про- и антиапоптотических белков-регуляторов у больных ОЛ. После химиотерапии профиль экспрессии этих белков существенно меняется, однако не достигает нормальных значений, как у здоровых доноров.


Ключевые слова: острые лейкозы, программированная клеточная гибель (апоптоз), экспрессия Bcl-2, Bax, р53, CD95 и АПФ.

Читать статью в PDFpdficon


Литература

  1. Hengartner M.O. The biochemistry of apoptosis. Nature 2000; 407(6805): 770–6.
  2. Lodish H., Berk A., Matsudaira P. et al. Molecular cell biology, 5th edn. New York: W.H. Freeman and Company, 2003: 961.
  3. Salminen A., Ojala J., Kaarniranta K. Apoptosis and aging: increased resistance to apoptosis enhances the aging process. Cell. Mol. Life Sci. 2011; 68(6): 1021–31.
  4. Spencer S.L., Sorger P.K. Measuring and modeling apoptosis in single cells. Cell 2011; 144(6): 926–39.
  5. Herr I., Debatin K.-M. Cellular stress response and apoptosis in cancer therapy. Blood 2001; 98(9): 2603–14.
  6. Chao D.T., Korsmeyer S. J. BCL-2 family: regulators of cell death. Ann. Rev. Immunol. 1998; 16: 395–419.
  7. Green D.R. Apoptotic pathways: The roads to ruin. Cell 1998; 94: 695–8.
  8. Chauncey T.R. Drug resistance mechanisms in acute leukemia. Curr. Opin. Oncol. 2001; 13(1): 21–6.
  9. Del Poeta G., Bruno A., Del M.I. Principe et al. Deregulation of the mitochondrial apoptotic machinery and development of molecular targeted drugs in acute myeloid leukemia. Curr. Cancer Drug Targets 2008; 8(3): 202–7.
  10. Testa U., Riccioni R. Deregulation of apoptosis in acute myeloid leukemia. Haematologica 2007; 92(1): 81–94.
  11. Banker D.E., Groudine M., Norwood T., Appelbaum F.R. Measurement of spontaneous and therapeutic agent-induced apoptosis with BCL-2 protein expression in acute myeloid leukemia. Blood 1997; 89(1): 243–55.
  12. Stijn A., Pol M.A., Kok A. et al. Differences between the CD34+ and CD34– blast compartments in apoptosis resistance in acute myeloid leukemia. Haematologica 2003; 88(5): 497–508.
  13. Fulda S., Los M., Friesen C., Debatin K.M. Chemosensitivity of solid tumor cells in vitro is related to activation of the CD95 system. Int. J. Cancer 1998; 76(1): 105–14.
  14. Fulda S., Sieverts H., Friesen C. et al. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res. 1997; 57(17): 3823–9.
  15. Барышников А.Ю., Полосухина Е.Р., Шишкин Ю.В. и др. Новый прогностический маркер острого лимфобластного лейкоза — антиген CD95 (FAS/APO-1). Гематол. и трансфузиол. 1998; 2: 8–11. [Baryshnikov A.Yu., Polosukhina Ye.R., Shishkin Yu.V. i dr. Novyy prognosticheskiy marker ostrogo limfoblastnogo leykoza — antigen CD95 (FAS/APO-1) (New prognostic marker of acute lymphoblastic leukemia — CD95 antigen (FAS/ APO-1). In: Hematol. & transfusiol.) Gematol. i transfuziol. 1998; 2: 8–11.]
  16. Molica S., Mannella A., Dattilo A. et al. Differential expression of BCL-2 oncoprotein and Fas antigen on normal peripheral blood and leukemic bone marrow cells. A flow cytometric analysis. Haematologica 1996; 81(4): 302–9.
  17. Greenblatt M.S., Bennett W.P., Hollstein M., Harris C.C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994; 54(18): 4855–78.
  18. Ko L.J., Prives C. p53: puzzle and paradigm. Genes & Dev. 1996; 10(9): 1054–72.
  19. Levine A.J. p53, the cellular gatekeeper for growth and division. Cell 1997; 88(3): 323–31.
  20. Resnick M.A., Tomso D., Inga A. et al. Functional diversity in the gene network controlled by the master regulator p53 in humans. Cell. Cycle 2005; 4(8): 1026–9.
  21. Prokocimer M., Rotter V. Structure and function of p53 in normal cells and their aberrations in cancer cells: projection on the hematologic cell lineages. Blood 1994; 84(8): 2391–411.
  22. Wada M., Bartram C.R., Nakamura H. et al. Analysis of p53 mutations in a large series of lymphoid hematologic malignancies of childhood. Blood 1993; 82(10): 3163–9.
  23. Cavalcanti G.B., Scheiner M.A., Simoes Magluta E.P. et al. p53 flow cytometry evaluation in leukemias: correlation to factors affecting clinical outcome. Cytometry B. Clin. Cytom. 2010; 78(4): 253–9.
  24. Beyazit Y., Aksu S., Haznedaroglu I.C. et al. Overexpression of the local bone marrow renin-angiotensin system in acute myeloid leukemia. J. Natl. Med. Assoc. 2007; 99: 57–63.
  25. Goker H., Haznedaroglu I.C., Beyazit Y. et al. Local umbilical cord blood renin-angiotensin system. Ann. Hematol. 2005; 84: 277–81.
  26. Jokubaitis V.J., Sinka L., Driessen R. et al. Angiotensin-converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues. Blood 2008; 111: 4055–63.
  27. Li J., Volkov L., Comte L. et al. Production and consumption of the tetrapeptide AcSDKP, a negative regulator of hematopoietic stem cells, by hematopoietic microenvironmental cells. Exp. Hematol. 1997; 25: 140–6.
  28. Гальцева И.В., Пашин Л.Е., Савченко В.Г. Лейкемические дендритные клетки. Тер. арх. 2008; 80(7): 84–8. [Galtseva I.V., Pashin L.Ye., Savchenko V.G. Leykemicheskiye dendritnyye kletki (Leukemic dendritic cells. In: Ther. archive). Ter. arkh. 2008; 80(7): 84–8.]
  29. Danilov S.M., Sadovnikova E., Scharenborg N. et al. Angiotensinconverting enzyme (CD 143) is abundantly expressed by dendritic cells and discriminates human monocyte-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. Exp. Hematol. 2003; 31(12): 1301–9.
  30. Del Poeta G., Venditti A., Del Principe M.I. et al. Amount of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid leukemia (AML). Blood 2003; 101(6): 2125–31.
  31. El-Manallawy H.A., El-Shkankiry N.H., El-Guindy S. et al. The Expression of Bcl-2 and Bax Proteins and Their Clinical Relevance in ALL and CLL Patients. J. Egypt. Nat. Cancer Inst. 2001; 13(1): 35–42.
  32. Hogarth L.A., Hall A.G. Increased BAX expression is associated with an increased risk of relapse in childhood acute lymphocytic leukemia. Blood 1999; 93(8): 2671–8.
  33. Aksu S., Beyazit Y., Haznedaroglu I.C. et al. Enhanced expression of the local haematopoietic bone marrow renin-angiotensin system in polycythemia rubra vera. J. Int. Med. Res. 2005; 33(6): 661–7.
  34. Aksu S., Beyazit Y., Haznedaroqlu I.C. et al. Over-expression of angiotensin-converting enzyme (CD 143) on leukemic blasts as a clue for the activated local bone marrow RAS in AML. Leuk. Lymphoma 2006; 47(5): 891–6.
  35. Барышников А.Ю., Шишкин Ю.В. Иммунологические проблемы апоптоза. М., 2002.  [Baryshnikov A.Yu., Shishkin Yu.V. Immunologicheskiye problemy apoptoza (Immunological problems of apoptosis). , 2002.]
  36. Miyawaki T., Uehara T., Nibu R. et al. Differential expression of apoptosisrelated Fas antigen on lymphocyte subpopulations in human peripheral blood. J. Immunol. 1992; 149(11): 3753–8.
  37. Lechner H., Amort M., Steger M.M. et al. Regulation of CD95 (APO-1) expression and the induction of apoptosis in human T cells: changes in old age. Int. Arch. Allergy Immunol. 1996; 110(3): 238–43.
  38. Kotani T., Aratake Y., Kondo S. et al. Expression of functional Fas antigen on adult T-cell leukemia. Leuk. Res. 1994; 18(4): 305–10.