Развернутая и маскированная истинная полицитемия в структуре Ph-негативных миелопролиферативных заболеваний

Ж.В. Трацевская, А.М. Ковригина, Д.И. Чеботарев, А.Л. Меликян, А.О. Абдуллаев, А.Б. Судариков

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Алла Михайловна Ковригина, д-р биол. наук, профессор, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.:+7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

Для цитирования: Трацевская Ж.В., Ковригина А.М., Чеботарев Д.И. и др. Развернутая и маскированная истинная полицитемия в структуре Ph-негативных миелопролиферативных заболеваний. Клиническая онкогематология. 2020;13(1):58–66.

DOI: 10.21320/2500-2139-2020-13-1-58-66


РЕФЕРАТ

Цель. Изучение структуры Ph-негативных миелопролиферативных заболеваний (МПЗ Ph–) и выявление морфологических признаков для диагностики маскированной истинной полицитемии (ИП).

Материалы и методы. На основании базы данных патологоанатомического отделения ФГБУ «НМИЦ гематологии» МЗ РФ исследованных трепанобиоптатов костного мозга, охватывающих период с января 2014 г. по июнь 2017 г., проанализированы случаи диагностики МПЗ Ph–. Исследованию подвергнуты трепанобиоптаты пациентов, проходивших обследование и лечение в НМИЦ гематологии, и пациентов из других медицинских учреждений Российской Федерации с учетом клинико-лабораторных и молекулярных данных.

Результаты. У 1611 пациентов с МПЗ Ph– преобладала ИП, которая составила 40,6 % всех наблюдений. В группе с установленной ИП маскированная форма диагностирована у 29 % пациентов. Первичный миелофиброз (ПМФ) диагностирован в 26,6 % всех наблюдений, включая 10 % случаев с префиброзной/ранней стадией. На 3-м месте по частоте оказалась эссенциальная тромбоцитемия (ЭТ), составившая 16 %. Драйверная мутация гена JAK2 выявлена у всех 654 больных ИП. Из них в 4 случаях обнаружена мутация в экзоне 12. Аналогичная мутация имела место при ПМФ (53 %) и ЭТ (60 %). У 36 % пациентов с ПМФ и 27 % — с ЭТ обнаружена мутация CALR. Мутация MPL выявлена в 4 % наблюдений при ПМФ и отсутствовала при ЭТ. Пациенты с тройным негативным статусом составили 7 % при ПМФ и 13 % при ЭТ. Частота диагностики нозологии «миелопролиферативное заболевание, неклассифицируемое» составила 16,8 %. В работе рассматриваются критерии морфологической диагностики маскированной ИП при исследовании трепанобиоптатов костного мозга. У 30 % пациентов с маскированной ИП (по критериям ВОЗ 2017 г.), протекающей со спленомегалией (> 14 см), выявлены тромбозы сосудов портальной системы.

Заключение. В группе МПЗ Ph– по частоте диагностики ИП была на 1-м месте (40,6 %). При гистологическом исследовании трепанобиоптатов костного мозга у пациентов с маскированной формой, которая составила 29 % всех случаев ИП, выявлены морфологические признаки, характерные для развернутой ИП. Гистологическое исследование костного мозга является надежным методом диагностики развернутой и маскированной ИП. Среди морфологических особенностей костного мозга у пациентов с маскированной ИП, протекающей с тромбозами портальной вены, следует выделить степень ретикулярного фиброза MF-1 (29 % случаев) и рыхлые кластеры мегакариоцитов (71,4 %).

Ключевые слова: Ph-негативные миелопролиферативные заболевания/неоплазии, маскированная истинная полицитемия, патоморфология, трепанобиопсия костного мозга.

Получено: 14 сентября 2019 г.

Принято в печать: 12 декабря 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Lyon: IARC Press; 2017. 585 p.

  2. Gianelli U, Bossi A, Cortinovis I, et al. Reproducibility of the WHO histological criteria for the diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasms. Mod Pathol. 2014;27(6):814–22. doi: 10.1038/modpathol.2013.196.

  3. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.

  4. Pietra D, Rumi E, Ferretti VV, et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia. 2016;30(2):431–8. doi: 10.1038/leu.2015.277.

  5. Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472–7. doi: 10.1038/leu.2014.3.

  6. Zamora L, Xicoy B, Cabezon M, et al. Co-existence of JAK2 V617F and CALR mutations in primary myelofibrosis. Leuk Lymphoma. 2015;56(10):2973–4. doi: 10.3109/10428194.2015.1015124.

  7. Lin Y, Liu E, Sun Q, et al. The prevalence of JAK2, MPL, and CALR mutations in Chinese patients with BCR-ABL1-negative myeloproliferative neoplasms. Am J Clin Path. 2015;144(1):165–71. doi: 10.1309/AJCPALP51XDIXDDV.

  8. Ahmed RZ, Rashid M, Ahmed N, et al. Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms — Do They Designate a New Subtype? Asian Pacif J Cancer Prevent. 2016;17(3):923–6. doi: 10.7314/apjcp.2016.17.3.923.

  9. Bowman RL, Busque L, Levine RL. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell. 2018;22(2):157–70. doi: 10.1016/j.stem.2018.01.011.

  10. Shlush LI. Age-related clonal hematopoiesis. Blood. 2018;131(5):496–504. doi: 10.1182/blood-2017-07-746453.

  11. Steensma DP, Bejar R. Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16. doi: 10.1182/blood-2015-03-631747.

  12. Gianelli U, Iurlo A, Vener C, et al. The Significance of Bone Marrow Biopsy and JAK2V617F Mutation in the Differential Diagnosis Between the “Early” Prepolycythemic Phase of Polycythemia Vera and Essential Thrombocythemia. Am J Clin Pathol. 2008;130(3):336–42. doi: 10.1309/6BQ5K8LHVYAKUAF4.

  13. Thiele J, Kvasnicka HM, Zankovich R, Diehl V. The value of bone marrow histology in differentiating between early stage polycythemia vera and secondary (reactive) polycythemias. Haematologica. 2001;86(4):368–74.

  14. Barbui T, Thiele J, Vannucchi AM, et al. Rethinking the diagnostic criteria of polycythemia vera. Leukemia. 2013;28(6):1191–5. doi: 10.1038/leu.2013.380.

  15. Thiele J, Kvasnicka HM, Diehl V. Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol. 2005;113(4):213–9. doi: 10.1159/000084673.

  16. Barbui T, Thiele J, Carobbio A, et al. Masked polycythemia vera diagnosed according to WHO and BCSH classification. Am J Hematol. 2014;89(2):199–202. doi: 10.1002/ajh.23617.

  17. Kvasnicka HM, Orazi A, Thiele J, et al. European LeukemiaNet study on the reproducibility of bone marrow features in masked polycythemia vera and differentiation from essential thrombocythemia. Am J Hematol. 2017;92(10):1062–7. doi 10.1002/ajh.24837.

  18. Ковригина А.М., Байков В.В. Истинная полицитемия: новая концепция диагностики и клинические формы. Клиническая онкогематология. 2016;9(2):115–22. doi: 10.21320/2500-2139-2016-9-2-115-122.

    [Kovrigina AM, Baikov VV. Polycythemia Vera: New Diagnostic Concept and Its Types. Clinical oncohematology. 2016;9(2):115–22. doi: 10.21320/2500-2139-2016-9-2-115-122. (In Russ)]

  19. Spivak JL, Silver RT. The revised World Health Organization diagnostic criteria for polycythemia vera, essential thrombocytosis, and primary myelofibrosis: An alternative proposal. Blood. 2008;112(2):231–9. doi: 10.1182/blood-2007-12-128454.

  20. Silver RT, Chow W, Orazi A, et al. Evaluation of WHO criteria for diagnosis of polycythemia vera: A prospective analysis. Blood. 2013;122(11):1881–6. doi: 10.1182/blood-2013-06-508416.

  21. McMullin MF, Reilly JT, Campbell P, et al. Amendment to the guideline for diagnosis and investigation of polycythaemia/erythrocytosis. Br J Haematol. 2007;138(6):821–2. doi: 10.1111/j.1365-2141.2007.06741.x.

  22. Murphy S. Diagnostic criteria and prognosis in polycythemia vera and essential thrombocythemia. Semin Hematol. 1999;36(1 Suppl 2):9–13.

  23. Lussana F, Carobbio A, Randi ML, et al. A lower intensity of treatment may underlie the increased risk of thrombosis in young patients with masked polycythaemia Vera. Br J Haematol. 2014;167(4):541–6. doi: 10.1111/bjh.13080.

  24. Меликян А.Л., Туркина А.Г., Ковригина А.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2016 г.). Гематология и трансфузиология. 2017;62(1, прил. 1):25–60. doi: 10.18821/0234-5730-2017-62-1-S1-1-60.

    [Melikyan AL, Turkina AG, Kovrigina AM, et al. Clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2016). Gematologiya i transfuziologiya. 2017;62(1 Suppl 1):25–60. doi: 10.18821/0234-5730-2017-62-1-S1-1-60. (In Russ)]

  25. Суборцева И.Н., Колошейнова Т.И., Пустовая Е.И. и др. Истинная полицитемия: обзор литературы и собственные данные. Клиническая онкогематология. 2015;8(4):397–412. doi: 10.21320/2500-2139-2015-8-4-397-412.

    [Subortseva IN, Kolosheinova TI, Pustovaya EI, et al. Polycythemia Vera: Literature Review and Own Data. Clinical oncohematology. 2015;8(4):397–412. doi: 10.21320/2500-2139-2015-8-4-397-412. (In Russ)]

  26. Barbui T, Thiele J, Vannucchi AM, Tefferi A. Myeloproliferative neoplasms: Morphology and clinical practice. Am J Hematol. 2016;91(4):430–3. doi: 10.1002/ajh.24288.

  27. Wong WJ, Hasserjian RP, Pinkus GS, et al. JAK2, CALR, MPL and ASXL1 mutational status correlates with distinct histological features in Philadelphia chromosome-negative myeloproliferative neoplasms. Haematologica. 2018;103(2):e63–e68. doi: 10.3324/haematol.2017.178988.

  28. Alvarez-Larran A, Ancochea A, Gracia M, et al. WHO-histological criteria for myeloproliferative neoplasms: reproducibility, diagnostic accuracy and correlation with gene mutations and clinical outcomes. Br J Haematol. 2014;166(6):911–9. doi: 10.1111/bjh.12990.

Диагностика фолликулярной лимфомы педиатрического типа у молодых взрослых (собственные данные)

А.М. Ковригина, Л.В. Пластинина, С.К. Кравченко, Е.С. Нестерова, Т.Н. Обухова

ФГБУ «Гематологический научный центр» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Алла Михайловна Ковригина, д-р биол. наук, профессор, Новый Зыковский пр-д, д. 4а. Москва, Российская Федерация, 125167; тел.: +7(495)612-62-12; e-mail: kovrigina.alla@gmail.com

Для цитирования: Ковригина А.М., Пластинина Л.В., Кравченко С.К. и др. Диагностика фолликулярной лимфомы педиатрического типа у молодых взрослых (собственные данные). Клиническая онкогематология. 2017;10(1):52–60.

DOI: 10.21320/2500-2139-2017-10-1-52-60


РЕФЕРАТ

Цель. Патоморфологическая, иммунофенотипическая и клиническая характеристики выделенной в 2008 г. (классификация ВОЗ) новой клинико-морфологической формы — фолликулярной лимфомы (ФЛ) педиатрического типа у молодых взрослых.

Актуальность. ФЛ — гетерогенная по морфологическим, иммунофенотипическим и молекулярно-генетическим характеристикам нозологическая форма. ФЛ de novo включает трансформированную ФЛ, ФЛ без t(14;18), ФЛ с диффузным ростом, ассоциированную с del(1p.36) и мутацией TNFRSF14. ФЛ педиатрического типа у молодых взрослых мало изучена, представляет особый интерес в спектре клинического разнообразия и молекулярно-биологической разнородности ФЛ в целом.

Методы. Исследован материал биопсии у 5 пациентов (18–25 лет, медиана возраста 22 года, соотношение женщины/мужчины 3:2), прошедших обследование, диагностику и лечение в ФГБУ ГНЦ МЗ РФ в течение 2012–2016 гг. У 4/5 пациентов диагностирована I клиническая стадия с изолированным вовлечением нёбной миндалины или пахового лимфатического узла; у 1/5 — II клиническая стадия с вовлечением нёбной миндалины и шейного лимфатического узла. На парафиновом материале проведено морфологическое, иммунофенотипическое и FISH-исследования.

Результаты. Морфологическая картина характеризовалась как ФЛ типа 3B (n = 2) и ФЛ 3-го типа с бластоидной морфологией ядер (n = 3). Иммунофенотипические признаки занимают промежуточное положение между ФЛ 3-го типа de novo и трансформированной ФЛ 3-го типа. Реаранжировка BCL-2 не была выявлена ни в одном наблюдении.

Заключение. При сопоставлении полученных собственных данных с представленными в литературе характеристиками ФЛ педиатрического типа у детей особенностью исследованной группы молодых взрослых с ФЛ педиатрического типа стало отсутствие или слабая экспрессия (< 30 % клеток опухолевого субстрата) MUM1. Это, в свою очередь, свидетельствует об отсутствии реаранжировки IRF4 и, возможно, о наличии других генетических аномалий. Выявленные клинические, морфологические, иммунофенотипические характеристики расширяют спектр гетерогенности ФЛ у молодых взрослых.

Ключевые слова: фолликулярная лимфома педиатрического типа, фолликулярная лимфома, молодые взрослые, патоморфология, иммуногистохимия, MUM1.

Получено: 14 августа 2016 г.

Принято в печать: 27 ноября 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Lennert K, Stein H, Mohri N, et al. Malignant Lymphomas Other than Hodgkin’s Disease: Histology, Cytology, Ultrastructure, Immunology. Berlin, Heidelberg: Springer-Verlag; 1978. 833 p. doi: 10.1016/0092-8674(79)90172-7.
  2. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  3. Anderson JR, Armitage JO, Weisenburger DD. Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s Lymphoma Classification. Project Ann Oncol. 1998;9(7):717–20.
  4. Gallagher CJ, Gregory WM, Jones AE, et al. Follicular lymphoma: Prognostic factors for response and survival. J Clin Oncol. 1986;4(10):1470–80.
  5. Bastion Y, Sebban C, Berger F, et al. Incidence, predictive factors, and outcome of lymphoma transformation in follicular lymphoma patients. J Clin Oncol. 1997;15(4):1587–94.
  6. Montoto S, Davies AJ, Matthews J, et al. Risk and clinical implications of transformation of follicular lymphoma to diffuse large B-cell lymphoma. J Clin Oncol. 2007;25(17):2426–33. doi: 10.1200/jco.2006.09.3260.
  7. Montoto, S., Fitzgibbon J. Transformation of indolent B-cell lymphomas. J Clin Oncol. 2011;29(4):1827–34. doi: 10.1200/JCO.2010.32.7577.
  8. Hirt C, Weitmann K, Schuler F, et al. Circulating t(14;18)-positive cells in healthy individuals: association with age and sex but not with smoking. Leuk Lymphoma. 2013;54(12):2678–84. doi: 10.3109/10428194.2013.788177.
  9. Weigert O, Kopp N, Lane AA, et al. Molecular ontogeny of donor derived follicular lymphomas occurring after hematopoietic cell transplantation. Cancer Discov. 2012;2(1):47–55. doi: 10.1158/2159-8290.cd-11-0208.
  10. Leich E, Salaverria I, Bea S, et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood. 2009;114(4):826–34. doi: 10.1182/blood-2009-01-198580.
  11. Kridel R, Sehn LH, Gascoyne RD. Pathogenesis of follicular lymphoma. J Clin Invest. 2012;122(10):3424–31. doi: 10.1172/jci63186.
  12. Katzenberger T, Kalla J, Leich E, et al. A distinctive subtype of t(14;18)-negative nodal follicular non- Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood. 2009;113(5):1053–61. doi: 10.1182/blood-2008-07-168682.
  13. Pasqualucci L, Khiabanian H, Fangazio M, et al. Genetics of Follicular Lymphoma Transformation. Cell Reports. 2014;6(1):130–40. doi: 10.1016/j.celrep.2013.12.027.
  14. Bouska A, McKeithan TW, Deffenbacher KE, et al. Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood. 2014;123(11):1681–90. doi: 10.1182/blood-2013-05-500595.
  15. Lorsbach RB, Shay-Seymore D, Moore J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99(6):1959–64. doi: 10.1182/blood.v99.6.1959.
  16. Swerdlow SH. Pediatric follicular lymphomas, marginal zone lymphomas, and marginal zone hyperplasia. Am J Clin Pathol. 2004;122(Suppl 1):S98–S109. doi: 10.1309/4bknake4d7ct3c1b.
  17. Oschlies I, Salaverria I, Mahn F, et al. Pediatric follicular lymphoma—a clinico-pathological study of a population-based series of patients treated within the Non-Hodgkin’s Lymphoma—Berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. Haematologica. 2010;95(2):253–9. doi: 10.3324/haematol.2009.013177.
  18. Liu Q, Salaverria I, Pittaluga S, et al. Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol. 2013;37(3):333–43. doi: 10.1097/pas.0b013e31826b9b57.
  19. Louissaint A, Ackerman A, Dias-Santagata D, et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood. 2012;120(12):2395–404. doi: 10.1182/blood-2012-05-429514.
  20. Guo Y, Karube K, Kawano R, et al. Low-grade follicular lymphoma with t(14;18) presents a homogeneous disease entity otherwise the rest comprises minor groups of heterogeneous disease entities with Bcl2 amplification, Bcl6 translocation or other gene aberrances. Leukemia. 2005;19(6):1058–63. doi: 10.1038/sj.leu.2403738.
  21. Katzenberger T, Ott G, Klein T, et al. Cytogenetic alterations affecting BCL6 are predominantly found in follicular lymphomas grade 3B with a diffuse large B-cell component. Am J Pathol. 2004;165(2):481–90. doi: 10.1016/s0002-9440(10)63313-5.
  22. Salaverria I, Siebert R. Follicular lymphoma grade 3B. Best Pract Res Clin Haematol. 2011;24(2):111–9. doi: 10.1016/j.beha.2011.02.002.
  23. Ngan BY, Chen-Levy Z, Weiss LM, et al. Expression in non- Hodgkin lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N Engl J Med. 1988;318(25):1638–44. doi: 10.1056/nejm198806233182502.
  24. Adam P, Baumann R, Schmidt J, et al. The BCL2 E17 and SP66 antibodies discriminate 2 immunophenotypically and genetically distinct subgroups of conventionally BCL2-“negative” grade 1/2 follicular lymphomas. Hum Pathol. 2014;44(9):1817–26. doi: 10.1016/j.humpath.2013.02.004.
  25. Lorsbach RB, Shay-Seymore D, Moore J, et al. Clinicopathologic analysis of follicular lymphoma occurring in children. Blood. 2002;99(6):1959–64. doi: 10.1182/blood.v99.6.1959.
  26. Willis SN, Good-Jacobson KL, Curtis J, et al. Transcription Factor IRF4 Regulates Germinal Center Cell Formation through a B Cell–Intrinsic Mechanism. J Immunol. 2014;192(7):3200–6. doi: 10.4049/jimmunol.1303216.
  27. Karube K, Guo Y, Suzumiya J, et al. CD10- MUM1+ follicular lymphoma lacks BCL2 gene translocation and shows characteristic biologic and clinical features. Blood. 2007;109(7):3076–9. doi: 10.1182/blood-2006-09-045989.
  28. Sweetenham JW, Goldman B, LeBlanc ML, et al. Prognostic value of regulatory T cells, lymphoma-associated macrophages, and MUM-1 expression in follicular lymphoma treated before and after the introduction of monoclonal antibody therapy: a Southwest Oncology Group Study. Ann Oncol. 2010;21(6):1196–202. doi: 10.1093/annonc/mdp460.
  29. Xerri L, Bachy E, Fabiani B, et al; LYSA study. Identification of MUM1 as a prognostic immunohistochemical marker in follicular lymphoma using computerized image analysis. Hum Pathol. 2014;45(10):2085–93. doi: 10.1016/j.humpath.2014.06.019.
  30. Salaverria I, Philipp C, Oschlies I, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118(1):139–47. doi: 10.1182/blood-2011-01-330795.
  31. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.
  32. Quintanilla-Martinez L, Sander B, Chan JK, et al. Indolent lymphomas in the pediatric population: follicular lymphoma, IRF4/MUM1+ lymphoma, nodal marginal zone lymphoma and chronic lymphocytic leukemia. Virchows Arch. 2016;468(2):141–57. doi: 10.1007/s00428-015-1855-z.
  33. Jaffe ES. Follicular lymphomas: a tapestry of common and contrasting threads. Haematologica. 2013;98(8):1163–5. doi: 10.3324/haematol.2013.086678.
  34. Martin-Guerrero I, Salaverria I, Burkhardt B, et al. Recurrent loss of heterozygosity in 1p36 associated with TNFRSF14 mutations in IRF4 translocation negative pediatric follicular lymphomas. Haematologica 2013;98(8):1237–41. doi: 10.3324/haematol.2012.073916.
  35. Launay E, Pangault C, Bertrand P, et al. High rate of TNFRSF14 gene alterations related to 1p36 region in de novo follicular lymphoma and impact on prognosis. Leukemia. 2012;26(3):559–62. doi: 10.1038/leu.2011.266.
   

Принципы патоморфологической дифференциальной диагностики миелодиспластических синдромов

Ковригина А.М. 1, Глинкина С.А. 1, Байков В.В. 2

1 ФГБУ «Гематологический научный центр» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

2 НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова, ул. Рентгена, д. 12, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Алла Михайловна Ковригина, д-р биол. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(495)612-61-12; e-mail: kovrigina.alla@gmail.com

Для цитирования: Ковригина А.М., Глинкина С.А., Байков В.В. Принципы патоморфологической дифференциальной диагностики миелодиспластических синдромов. Клиническая онкогематология. 2015;8(1):62–8.


РЕФЕРАТ

Статья посвящена диагностике миелодиспластических синдромов (МДС) на материале трепанобиоптатов костного мозга. В работе рассматриваются вопросы комплексной дифференциальной диагностики МДС с неклональными/реактивными изменениями гемопоэза. Подчеркивается необходимость предоставления патологу клинико-анамнестических и лабораторных данных. Авторы обосновывают алгоритм патоморфологического исследования трепанобиоптата костного мозга, включающий оценку его клеточности, характеристику стромы, выявление морфологических признаков дисплазии ростков миелопоэза. Обсуждается информативность гистохимического и иммуногистохимического исследований.

Ключевые слова: миелодиспластический синдром, трепанобиопсия костного мозга, патоморфология, дифференциальная диагностика.


Получено: 22 октября 2014 г.

Принято в печать: 10 ноября 2014 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  2. Boultwood J, Wainscoat JS. Gene silencing by DNA methylation in haematological malignancies. Br J Haematol. 2007;138(1):3–11. doi: 10.1111/j.1365-2141.2007.06604.x.
  3. Cazzola M, Porta MG, Malcovati L. The genetic basis of myelodysplasia and its clinical relevance. Blood. 2013;122(25):4021–34. doi: 10.1182/blood-2013-09-381665.
  4. Lindsley RC, Elbert BL. Molecular pathophysiology of myelodysplastic syndromes. Annu Rev Pathol. 2013;8(1):21–47. doi: 10.1146/annurev-pathol-011811-132436.
  5. Maciejewski JP, Mufti GJ. Whole genome scanning as a cytogenetic tool in hematologic malignancies. Blood. 2008;112(4):965–74. doi: 10.1182/blood-2008-02-130435.
  6. Mohamedali A, Gаken J, Twine NA, et al. Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood. 2007;110(9):3365–73. doi: 10.1182/blood-2007-03-079673.
  7. Raza A, Galili N. The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Cancer. 2012;12(12):849–59. doi: 10.1038/nrc3321.
  8. Smith AE, Mohamedali AM, Kulasekararaj A, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010;116(19):3923–32. doi: 10.1182/blood-2010-03-274704.
  9. Thol F, Friesen I, Damm F, et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 2011;29(18):2499–506. doi: 10.1200/jco.2010.33.4938.
  10. Thol F, Kade S, Schlarmann C, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119(15):3578–84. doi: 10.1182/blood-2011-12-399337.
  11. Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9. doi: 10.1038/nature10496.
  12. Koca E, Buyukasik Y, Cetiner D, et al. Copper deficiency with increased hematogones mimicking refractory anemia with excess blasts. Leuk Res. 2008;32(3):495–9. doi: 10.1016/j.leukres.2007.06.023.
  13. Steensma DP. Dysplasia has a differential diagnosis: distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors. Curr Hematol Malig Rep. 2012;7(4):310–20. doi: 10.1016/j.leukres.2007.06.023.
  14. Tanaka N, Kim JS, Newell JD, et al. Rheumatoid arthritis-related lung diseases: CT findings. Radiology. 2004;232(1):81–91. doi: 10.1148/radiol.2321030174.
  15. Song Y, Du X, Hao F, et al. Immunosuppressive therapy of cyclosporin A for severe benzene-induced haematopoetic disorders and a 6-month follow-up. Chem Biol Interact. 2010;186(1):96–102. doi: 10.1016/j.cbi.2010.03.049.
  16. Komrokji RS, Moffitt HL, Padron E. Deletion 5q MDS: Molecular and therapeutic implications. Best Pract Res Clin Haematol. 2013;26(4):365–75. doi: 10.1016/j.beha.2013.10.013.
  17. Ковригина А.М., Байков В.В. Принципы патоморфологической дифференциальной диагностики первичного миелофиброза. Москва, Санкт-Петербург, 2014. 63 с. [Kovrigina AM, Baikov VV. Printsipy patomorfologicheskoi differentsial’noi diagnostiki pervichnogo mielofibroza. (Principles of pathomorphological differential diagnosis of primary myelofibrosis.) Moscow, Saint Petersburg; 2014. 63 p. (In Russ)]
  18. Foucar K. Myelodysplastic/Myeloproliferative Neoplasms. Am J Clin Pathol. 2009;132(2):281–9. doi: 10.1309/AJCPJ71PTVIKGEVT.
  19. Wang SA. Diagnosis of myelodysplastic syndromes in cytopenic patients. Hematol Oncol Clin North Am. 2011;25(5):1085–110. doi: 10.1016/j.hoc.2011.09.009.
  20. Thiele J, Kvasnicka H-M, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  21. Baur AS, Meuge-Moraw C, Schmidt PM, et al. CD34/QBEND10 immunostaining in bone marrow biopsies: an additional parameter for the diagnosis and classification of myelodysplastic syndromes. Eur J Haematol. 2000;64(2):71–9.
  22. Horny HP, Sotlar K, Valent P. Diagnostic value of histology and immunohistochemistry in myelodysplastic syndromes. Leuk Res. 2007;31(12):1609–16. doi: 10.1016/j.leukres.2007.05.010.
  23. Valent P, Horny HP. Minimal diagnostic criteria for myelodysplastic syndromes and separation from ICUS and IDUS: update and open questions. Eur J Clin Invest. 2009;39(7):548–53. doi: 10.1111/j.1365-2362.2009.02151.x.
  24. Valent P, Jager E, Mitterbauer-Hohendanner G, et al. Idiopathic bone marrow dysplasia of unknown significance (IDUS): definition, pathogenesis, follow up, and prognosis. Am J Cancer Res. 2011;1:531–41.
  25. Wimazal F, Fonatsch C, Thalhammer R. Idiopathic cytopenia of undetermined significance (ICUS) versus low risk MDS: The diagnostic interface. Leuk Res. 2007;31(11):1461–8. doi: 10.1016/j.leukres.2007.03.015.