Острые лейкозы у детей первого года жизни: прогностическое значение локализации точки разрыва в ДНК гена MLL

Г.А. Цаур1,2,3, К. Мейер4, Т.О. Ригер1,2, А.М. Кустанович5, Е.В. Флейшман6, Ю.В. Ольшанская7, А.М. Попов7, О.И. Сокова6, Е.А. Матвеева7, О.В. Никулина1,2, А.Е. Друй1,2, О.Р. Аракаев1,2, О.В. Стренева1,2, С.А. Румянцев7, Е.В. Шориков1,2, А.Г. Солодовников2, Л.И. Савельев1,2, Р. Маршалек4, Л.Г. Фечина1

1 Областная детская клиническая больница № 1, ул. Серафимы Дерябиной, д. 32, Екатеринбург, Российская Федерация, 620149

2 ГАУЗ СО «Институт медицинских клеточных технологий», ул. К. Маркса, д. 22а, Екатеринбург, Российская Федерация, 620026

3 ФГАОУ ВПО «УрФУ им. первого Президента России Б.Н. Ельцина», ул. Мира, д. 19, Екатеринбург, Российская Федерация, 620002

4 Диагностический центр острых лейкозов, Институт фармацевтической биологии/ЗАФЕС, Университет им. В. Гете Франкфурта-на-Майне, N230, Max-von-Laue Str. 9, Frankfurt am Main Deutschland, 60438

5 Республиканский центр детской онкологии, гематологии и иммунологии, ул. Фрунзенская, д. 43, д. Боровляны, Минский р-н, Республика Беларусь, 223053

6 ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

7 ФГБУ «Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Д. Рогачева», ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117198

Для переписки: Григорий Анатольевич Цаур, канд. мед. наук, ул. Серафимы Дерябиной, д. 32, Екатеринбург, Российская Федерация, 620149; тел.: +7(343)216-25-17; e-mail: tsaur@mail.ru

Для цитирования: Цаур Г.А., Мейер К., Ригер Т.О. и др. Острые лейкозы у детей первого года жизни: прогностическое значение локализации точки разрыва в ДНК гена MLL. Клиническая онкогематология. 2016;9(1):22–9.

DOI: 10.21320/2500-2139-2016-9-1-22-29


РЕФЕРАТ

Цель. Оценить влияние локализации точки разрыва в геномной ДНК гена MLL на прогноз острых лейкозов (ОЛ) у детей первого года жизни.

Методы. В исследование было включено 68 детей первого года жизни (29 мальчиков и 39 девочек с медианой возраста 4,8 мес.) с MLL-позитивными острым лимфобластным лейкозом (ОЛЛ) (n = 46), острым миелоидным лейкозом (ОМЛ) (n = 20) и ОЛ смешанной линейности (n = 2).

Результаты. 5-летняя бессобытийная выживаемость (БСВ) детей первого года жизни с ОЛЛ, включенных в исследование MLL-Baby, с точкой разрыва в интроне 11 ДНК гена MLL (n = 29) была статистически значимо ниже, чем у пациентов c локализацией точек разрыва, начиная с интрона 7 по экзон 11 (n = 17; 0,16 ± 0,07 и 0,38 ± 0,14; = 0,039), а кумулятивная вероятность развития рецидива была значительно выше в группе с точкой разрыва в интроне 11 (0,74 ± 0,09 и 0,52 ± 0,17; = 0,045). В то же время многофакторный анализ показал, что единственным значимым фактором, связанным с неблагоприятным прогнозом, остается сохранение минимальной остаточной болезни (МОБ) в точке наблюдения 4 протокола MLL-Baby (отношение опасности 5,994; 95%-й доверительный интервал 2,209–16,263; < 0,001). У 22 пациентов с ОМЛ связи между прогнозом и локализацией точки разрыва в ДНК гена MLL не выявлено.

Заключение. Наличие точки разрыва в интроне 11 гена MLL у детей первого года жизни с ОЛЛ, получавших лечение по протоколу MLL-Baby, вело к статистически значимо более низким показателям БСВ и более высокой кумулятивной вероятности развития рецидива. Однако в многофакторной модели риска это нивелировалось сохранением МОБ в точке наблюдения 4. У детей первого года жизни с ОМЛ взаимосвязи между локализацией точки разрыва в ДНК гена MLL и прогнозом не выявлено.


Ключевые слова: острые лейкозы, дети первого года жизни, перестройки 11q23/MLL, MLL-Baby, исходы терапии.

Получено: 14 сентября 2015 г.

Принято в печать: 20 октября 2015 г.

Читать статью в PDF pdficon


ЛИТЕРАТУРА

  1. Moorman A, Richards S, Robinson H, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007;109(6):2327–30. doi: 10.1182/blood-2006-08-040436.
  2. Moorman A, Ensor H, Richards S, et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol. 2010;11(5):429–38. doi: 10.1016/s1470-2045(10)70066-8.
  3. Fischer U, Forster M, Rinaldi A, et al. Genomics and drug profiling of fatal TCF3-HLF–positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet. 2015;47(9):1020–9. doi: 10.1038/ng.3362.
  4. Creutzig U, van den Heuvel-Eibrink M, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120(16):3187–205. doi: 10.1182/blood-2012-03-362608.
  5. Kuiper R, Waanders E, van der Velden V, et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia. 2010;24(7):1258–64. doi: 10.1038/leu.2010.87.
  6. Dorge P, Meissner B, Zimmermann M, et al. IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica. 2013;98(3):428–32. doi: 10.3324/haematol.2011.056135.
  7. den Boer M, van Slegtenhorst M, de Menezes R, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34. doi: 10.1016/s1470-2045(08)70339-5.
  8. Iwai T, Yokota S, Nakao M, et al. Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children’s Cancer and Leukemia Study Group, Japan. Leukemia. 1999;13(1):38–43. doi: 10.1038/sj.leu.2401241.
  9. Reaman G. Biology and treatment of infant leukemias. In: Pui C-H, ed. Treatment of acute leukemias: new directions for clinical research. Totowa: Humana Press; 2003. p. 75–83.
  10. Pieters R. Biology and treatment of infant leukemias. In: Pui C-H, ed. Treatment of acute leukemias: new directions for clinical research. Totowa: Humana Press; 2003. p. 61–73.
  11. Pieters R. Infant acute lymphoblastic leukemia: Lessons learned and future directions. Curr Hematol Malig Rep. 2009;4(3):167–74. doi: 10.1007/s11899-009-0023-4.
  12. Pieters R, Schrappe M, de Lorenzo P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. The Lancet. 2007;370:240–50. doi: 10.1016/s0140-6736(07)61126-x.
  13. Popov A, Buldini B, de Lorenzo P, et al. Identification of low risk group in infants with acute lymphoblastic leukemia by flow cytometric minimal residual disease measurement at day 15 of Interfant-99 and Interfant-06 protocols treatment. Blood (ASH Annual Meeting Abstracts). 2013;122(21): Abstract 1333.
  14. van der Velden V, Corral L, Valsecchi M-G, et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia. 2009;23(6):1073–9. doi: 10.1038/leu.2009.17.
  15. Pui C-H, Raimondi S, Srivastava D, et al. Prognostic factors in infants with acute myeloid leukemia. Leukemia. 2000;14(4):684–7. doi: 10.1038/sj.leu.2401725.
  16. Tomizawa D, Koh K, Sato T, et al. Outcome of risk-based therapy for infant acute lymphoblastic leukemia with or without an MLL gene rearrangement, with emphasis on late effects: a final report of two consecutive studies, MLL96 and MLL98, of the Japan Infant Leukemia Study Group. Leukemia. 2007;22(11):2258–63. doi: 10.1038/sj.leu.2404903.
  17. Stam R, Schneider P, de Lorenzo P, et al. Prognostic significance of high-level FLT3 expression in MLL-rearranged infant acute lymphoblastic leukemia. Blood. 2007;110(7):2774–5. doi: 10.1182/blood-2007-05-091934.
  18. Ho P, Alonzo T, Gerbing R, et al. High EVI1 expression is associated with MLL rearrangements and predicts decreased survival in paediatric acute myeloid leukaemia: a report from the children’s oncology group. Br J Haematol. 2013;162(5):670–7. doi: 10.1111/bjh.12444.
  19. Stam R, Schneider P, Hagelstein J, et al. Gene expression profiling–based dissection of MLL translocated and MLL germ-line acute lymphoblastic leukemia in infants. Blood. 2010;115(14):2835–44. doi: 10.1182/blood-2009-07-233049.
  20. Zangrando A, Dell’orto M, te Kronnie G, Basso G. MLL rearrangements in pediatric acute lymphoblastic and myeloblastic leukemias: MLL specific and lineage specific signatures. BMC Med Genom. 2009;2:36. doi: 10.1186/1755-8794-2-36.
  21. Emerenciano M, Meyer C, Mansur M, et al. The distribution of MLL breakpoints correlates with outcome in infant acute leukaemia. Br J Haematol. 2013;161(2):224–36. doi: 10.1111/bjh.12250.
  22. Roessler T, Marschalek R. An alternative splice process renders the MLL protein either into a transcriptional activator or repressor. Pharmazie. 2013;86:601–7. doi: 10.1055/s-0033-1343653.
  23. Bennett J, Catovsky D, Daniel M, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8. doi: 10.1111/j.1365-2141.1976.tb03563.x.
  24. Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.
  25. Bene MC, Nebe T, Bettelheim P, et al. Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10. Leukemia. 2011;25(4):567–74. doi: 10.1038/leu.2010.312.
  26. Vardiman J, Thiele J, Arber D, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51. doi: 10.1182/blood-2009-03-209262.
  27. Цаур Г.А., Наседкина Т.В., Попов А.М. и др. Время достижения молекулярной ремиссии как фактор прогноза у детей первого года жизни острым лимфобластным лейкозом. Онкогематология. 2010;2:46–54.
    [Tsaur GA, Nasedkina TV, Popov AM, et al. Time to molecular remission as prognostic factor in infant acute lymphoblastic leukemia. Onkogematologiya. 2010;2:46–54. (In Russ)]
  28. Цаур Г.А., Флейшман Е.В., Попов А.М. и др. Цитогенетическая и молекулярно-генетическая характеристика острых лейкозов у детей первого года жизни. Клиническая онкогематология. 2011;4(2):134–41.
    [Tsaur GA, Fleischman EV, Popov AM, et al. Cytogenetics and molecular genetics of acute leukemias in infants. Klinicheskaya onkogematologiya. 2011;4(2):134–41. (In Russ)]
  29. Цаур Г.А., Плеханова О.М., Гиндина Т.Л. и др. Применение метода флуоресцентной гибридизации in situ для выявления перестроек гена MLL при острых лейкозах у детей первого года жизни. Медицинская генетика. 2012;7(121):35–45.
    [Tsaur GA, Plekhanova OM, Gindina TL, et al. Use of fluorescence in situ hybridization technique to detect MLL gene rearrangements in acute leukemias in infants. Meditsinskaya genetika. 2012;7(121):35–45. (In Russ)]
  30. Meyer C, Schneider B, Reichel M, et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA. 2005;102(2):449–54. doi: 10.1073/pnas.0406994102.
  31. Цаур Г.А., Meyer C., Попов А.М. и др. Исследование структуры химерных генов с участием гена MLL при острых лейкозах у детей первого года жизни. Гематология и трансфузиология. 2014;59(1):29–37.
    [Tsaur GA, Meyer C, Popov AM, et al. Evaluation of structure of chimeric genes involving MLL gene in infant acute leukemia. Gematologiya i transfuziologiya. 2014;59(1):29–37. (in Russ)]
  32. Nilson I, Lochner K, Siegler G, et al. Exon/intron structure of ALL1 (MLL) gene involved in translocations to chromosomal region 11q23 and acute leukemias. Br J Haematol. 1996;94(4):966–72. doi: 10.1046/j.1365-2141.1996.d01-1748.x.
  33. Gabert J, Beillard E, van der Velden V, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – A Europe Against Cancer Program. Leukemia. 2003;17(12):2318–57. doi: 10.1038/sj.leu.2403135.
  34. Jansen M, van der Velden V, van Dongen J. Efficient and easy detection of MLL-AF4, MLL-AF9 and MLL-ENL fusion gene transcripts by multiplex real-time quantitative RT-PCR in TaqMan and LightCycler. Leukemia. 2005;19(11):2016. doi: 10.1038/sj.leu.2403939.
  35. Цаур Г.А., Друй А.Е., Попов А.М. и др. Возможность использования микроструйных биочипов для оценки качества и количества РНК у детей с онкологическими и онкогематологическими заболеваниями. Вестник Уральской медицинской академической науки. 2011;4:107–11.
    [Tsaur GA, Druy АЕ, Popov АМ, et al. Microfluidic biochips for RNA quantity and quality evaluation in children with oncological and oncohematological disorders. Vestnik Ural’skoi meditsinskoi akademicheskoi nauki. 2011;4:107–11. (In Russ)]
  36. Fechina L, Shorikov E, Tsaur G, et al. Contribution of all-trans retinoic acid to improved early relapse-free outcome in infant acute lymphoblastic leukemia comparing to the chemotherapy alone. Blood (ASH Annual Meeting Abstracts). 2007;110(11): Abstract 832А.
  37. Fechina L, Shorikov E, Streneva O, et al. Does ATRA confirm to play a role in the better relapse free survival of infants with acute lymphoblastic leukemia? Blood (ASH Annual Meeting Abstracts). 2011;118(21): Abstract 1515.
  38. Цаур Г.А., Попов А.М., Алейникова О.В. и др. Характеристика перестроек 11q23 (MLL) у детей первого года жизни с острым лимфобластным лейкозом. Онкогематология. 2011;3:57–64.
    [Tsaur GA, Popov AM, Aleinikova OV, et al. Detection of 11q23 (MLL) rearrangements in infant acute lymphoblastic leukemia. Onkogematologiya. 2011;3:57–64. (In Russ)]
  39. Reaman GH, Sposto R, Sensel M, et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children’s Cancer Group. J Clin Oncol. 1999;17(2):445–55.
  40. Conter V, Bartram C, Valsecchi M-G, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFMALL 2000 study. Blood. 2010;115(16):3206–14. doi: 10.1182/blood-2009-10-248146.
  41. Basso G, Veltroni M, Valsecchi M-G, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168–74. doi: 10.1200/jco.2008.20.8934.
  42. Campana D. Minimal residual disease in acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program). 2010;2010:7–12. doi: 10.1182/asheducation-2010.1.7.
  43. Цаур Г.А., Попов A.M., Наседкина Т.В. и др. Прогностическое значение минимальной остаточной болезни, определенной путем выявления химерных транскриптов у детей первого года жизни, больных острым лимфобластным лейкозом, получающих терапию по протоколу MLL-Baby. Гематология и трансфузиология. 2012;57(4):12–22.
    [Tsaur GA, Popov AM, Nasedkina TV, et al. Prognostic significance of minimal residual disease detected by PCR for fusion gene transcripts in infant acute lymphoblastic leukemia treated by MLL-baby protocol. Gematologiya i transfuziologiya. 2012;57(4):12–22. (In Russ)]
  44. Burmeister T, Marschalek R, Schneider B, et al. Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia. 2006;20(3):451–7. doi: 10.1038/sj.leu.2404082.