Множественная миелома, осложненная костными плазмоцитомами: патогенез, клиническая картина, лечебные подходы (обзор литературы)

Е.А. Мамаева, М.В. Соловьева, Л.П. Менделеева

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Елизавета Андреевна Мамаева, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: +7(982)480-51-44; e-mail: mamaeva.e@blood.ru

Для цитирования: Мамаева Е.А., Соловьева М.В., Менделеева Л.П. Множественная миелома, осложненная костными плазмоцитомами: патогенез, клиническая картина, лечебные подходы (обзор литературы). Клиническая онкогематология. 2023;16(3):303–10.

DOI: 10.21320/2500-2139-2023-16-3-303-310


РЕФЕРАТ

Костная плазмоцитома — злокачественное новообразование из плазматических клеток, которое развивается в костномозговых полостях костей скелета. Опухоль способна разрушить корковый слой кости с выходом пролиферата в окружающие ткани. В отличие от костных экстрамедуллярные плазмоцитомы формируются в результате гематогенной диссеминации в различных тканях и органах. По данным литературы, частота костных плазмоцитом в дебюте множественной миеломы (ММ) колеблется от 7,0 до 32,5 %, а при рецидивах/прогрессировании ММ — от 9,0 до 27,4 %. При формировании костной плазмоцитомы опухолевая клетка приобретает ряд новых черт: уменьшается экспрессия молекул адгезии, появляются новые цитогенетические аберрации, усиливается аутокринная секреция и неоангиогенез. Клиническое течение ММ, осложненной костными плазмоцитомами, характеризуется минимальным поражением костного мозга, концентрацией гемоглобина в пределах нормальных значений и сниженными показателями β2-микроглобулина, парапротеина, кальция и лактатдегидрогеназы. Острое почечное повреждение и иммунопарез развиваются редко, преобладают начальные стадии ММ. В литературе форма ММ, протекающая со множественными костными плазмоцитомами, получила название макрофокальной ММ. Показатели выживаемости у больных ММ, осложненной костными плазмоцитомами, с точки зрения прогноза занимают промежуточное положение. Наиболее благоприятный прогноз у пациентов с ММ без плазмоцитом, наименее — у больных ММ с экстрамедуллярными плазмоцитомами. Унифицированного подхода к терапии ММ, осложненной костными плазмоцитомами, не существует. Рандомизированных проспективных клинических исследований, направленных на изучение эффективности лечения этой категории больных, нет. Сведения об успешном применении ингибиторов протеасом и иммуномодулирующих препаратов основываются на малом числе клинических наблюдений больных ММ с плазмоцитомами. В ряде работ доказана эффективность аутоТГСК у этой категории пациентов с ММ. Лучевая терапия на область костных плазмоцитом применяется преимущественно после системной противоопухолевой терапии.

Ключевые слова: множественная миелома, костная плазмоцитома, аутоТГСК.

Получено: 18 ноября 2022 г.

Принято в печать: 22 мая 2023 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–е548. doi: 10.1016/S1470-2045(14)70442-5.
  2. Firsova MV, Mendeleeva LP, Kovrigina AM, et al. Plasmacytoma in patients with multiple myeloma: Morphology and immunohistochemistry. BMC Cancer. 2020;20(1):346. doi: 10.1186/s12885-020-06870-w.
  3. Holler A, Cicha I, Eckstein M, et al. Extramedullary plasmacytoma: Tumor occurrence and therapeutic concepts—A follow-up. Cancer Med. 2022;11(24):4743–55. doi: 10.1002/cam4.4816.
  4. Cerny J, Fadare O, Hutchinson L, et al. Clinicopathological features of extramedullary recurrence/relapse of multiple myeloma. Eur J Hematol. 2008;81(1):65–9. doi: 10.1111/j.1600-0609.2008.01087.x.
  5. Фирсова М.B., Менделеева Л.П., Ковригина А.М. и др. Особенности морфологического строения субстрата опухоли у пациентов с множественной миеломой, осложненной плазмоцитомой. Онкогематология. 2018;13(2):73–81. doi: 10.17650/1818-8346-2018-13-2-73-81.
    [Firsova MV, Mendeleeva LP, Kovrigina AM, et al. Morphological features of tumors substrate in multiple myeloma patients complicated with plasmacytoma. Oncohematology. 2018;13(2):73–81. doi: 10.17650/1818-8346-2018-13-2-73-81. (In Russ)]
  6. Pour L, Sevcikova S, Greslikova H, et al. Soft-tissue extramedullary multiple myeloma prognosis is significantly worse in comparison to bone-related extramedullary relapse. Haematologica. 2014;99(2):360–4. doi: 10.3324/haematol.2013.094409.
  7. Weinstock M, Aljawai Y, Morgan EA, et al. Incidence and clinical features of extramedullary multiple myeloma in patients who underwent stem cell transplantation. Br J Haematol. 2015;169(6):851–8. doi: 10.1111/bjh.13383.
  8. Rosinol L, Jimenez R, Cibeira MT, et al. Plasmacytomas in Multiple Myeloma: 45-Years Experience from a Single Institution. Clin Lymphoma Myeloma Leuk. 2017;17(1):e107. doi: 10.1016/j.clml.2017.03.194.
  9. Менделеева Л.П., Покровская О.С., Нарейко М.В. и др. Мягкотканые плазмоцитомы, осложняющие течение множественной миеломы (клинические примеры). Современная онкология. 2015;17(5):44–8.
    [Mendeleeva LP, Pokrovskaya OS, Nareiko MV, et al. Soft-tissue plasmacytomas complicate the course of multiple myeloma (clinical cases). Sovremennaya onkologiya. 2015;17(5):44–8. (In Russ)]
  10. Varettoni M, Corso A, Pica G, et al. Incidence, presenting features and outcome of extramedullary disease in multiple myeloma: a longitudinal study on 1003 consecutive patients. Ann Oncol. 2010;21(2):325–30. doi: 10.1093/annonc/mdp329.
  11. Wirk B, Wingard JR, Moreb JS. Extramedullary disease in plasma cell myeloma: The iceberg phenomenon. Bone Marrow Transplant. 2013;48(1):10–8. doi: 10.1038/bmt.2012.26.
  12. Usmani SZ, Heuck C, Mitchell A, et al. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica. 2012;97(11):1761–7. doi: 10.3324/haematol.2012.065698.
  13. Blade J, Kyle RA, Greipp PR. Presenting features and prognosis in 72 patients with multiple myeloma who were younger than 40 years. Br J Haematol. 1996;93(2):345–51. doi: 10.1046/j.1365-2141.1996.5191061.x.
  14. Hedvat CV, Comenzo RL, Teruya-Feldstein J, et al. Insights into extramedullary tumour cell growth revealed by expression profiling of human plasmacytomas and multiple myeloma. Br J Haematol. 2003;122(5):728–44. doi: 10.1046/j.1365-2141.2003.04481.x.
  15. Rosinol L, Beksac M, Zamagni E, et al. Expert review on soft‐tissue plasmacytomas in multiple myeloma: definition, disease assessment and treatment considerations. Br J Haematol. 2021;194(3):496–507. doi: 10.1111/bjh.17338.
  16. Varga C, Xie W, Laubach J, et al. Development of extramedullary myeloma in the era of novel agents: No evidence of increased risk with lenalidomide-bortezomib combinations. Br J Haematol. 2015;169(6):843–50. doi: 10.1111/bjh.13382.
  17. Mangiacavalli S, Pezzatti S, Rossini F, et al. Implemented myeloma management with whole-body low-dose CT scan: a real life experience. Leuk Lymphoma. 2016;57(7):1539–45. doi: 10.3109/10428194.2015.1129535.
  18. Костина И.Э., Гитис М.К., Менделеева Л.П. и др. Рентгеновская компьютерная томография в диагностике и мониторинге поражения костей при множественной миеломе с использованием низкодозового и стандартного протоколов сканирования. Гематология и трансфузиология. 2018;63(2):113–23. doi: 10.25837/hat.2018.13.2.002.
    [Kostina IE, Gitis MK, Mendeleeva LP, et al. Computed tomography in the diagnosis and monitoring of bone lesions in multiple myeloma using low-dose and standard scanning protocols. Russian journal of hematology and transfusiology. 2018;63(2):113–23. doi: 10.25837/hat.2018.13.2.002. (In Russ)]
  19. Papanikolaou X, Repousis P, Tzenou T, et al. Incidence, clinical features, laboratory findings and outcome of patients with multiple myeloma presenting with extramedullary relapse. Leuk Lymphoma. 2013;54(7):1459–64. doi: 10.3109/10428194.2012.746683.
  20. Fernandez De Larrea C, Jimenez R, Rosinol L, et al. Pattern of relapse and progression after autologous SCT as upfront treatment for multiple myeloma. Bone Marrow Transplant. 2014;49(2):223–7. doi: 10.1038/bmt.2013.150.
  21. Rasche L, Bernard C, Topp MS, et al. Features of extramedullary myeloma relapse: High proliferation, minimal marrow involvement, adverse cytogenetics: A retrospective single-center study of 24 cases. Ann Hematol. 2012;91(7):1031–7. doi: 10.1007/s00277-012-1414-5.
  22. Mangiacavalli S, Pompa A, Ferretti V, et al. The possible role of burden of therapy on the risk of myeloma extramedullary spread. Ann Hematol. 2017;96(1):73–80. doi: 10.1007/s00277-016-2847-z.
  23. Terpos E, Rezvani K, Basu S, et al. Plasmacytoma relapses in the absence of systemic progression post-high-dose therapy for multiple myeloma. Eur J Haematol. 2005;75(5):376–83. doi: 10.1111/j.1600-0609.2005.00531.x.
  24. Bartel TB, Haessler J, Brown TLY, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood. 2009;114(10):2068–76. doi: 10.1182/blood-2009-03-213280.
  25. Pasmantier MW, Azar HA. Extraskeletal spread in multiple plasma cell myeloma: A review of 57 autopsied cases. Cancer. 1969;23(1):167–74. doi: 10.1002/1097-0142(196901)23:1<167::aid-cncr2820230122>3.0.co;2-0.
  26. Akhtar M, Haider A, Rashid S, et al. Paget’s “seed and Soil” Theory of Cancer Metastasis: An Idea Whose Time has Come. Adv Anat Pathol. 2019;26(1):69–74. doi: 10.1097/PAP.0000000000000219.
  27. Mitsiades CS, McMillin DW, Klippel S, et al. The Role of the Bone Marrow Microenvironment in the Pathophysiology of Myeloma and Its Significance in the Development of More Effective Therapies. Hematol Oncol Clin North Am. 2007;21(6):1007–34. doi: 10.1016/j.hoc.2007.08.007.
  28. Rasmussen T, Kuehl M, Lodahl M, et al. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood. 2005;105(1):317–23. doi: 10.1182/blood-2004-03-0833.
  29. Rasche L, Chavan SS, Stephens OW, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017;8(1):1–11. doi: 10.1038/s41467-017-00296-y.
  30. Ghobrial IM. Myeloma as a model for the process of metastasis: Implications for therapy. Blood. 2012;120(1):20–30. doi: 10.1182/blood-2012-01-379024.
  31. Фирсова М.В., Менделеева Л.П., Ковригина А.М. и др. Экспрессия молекулы адгезии CD56 на опухолевых плазматических клетках в костном мозге как фактор прогноза при множественной миеломе. Клиническая онкогематология. 2019;12(4):377–84. doi: 10.21320/2500-2139-2019-12-4-377-384.
    [Firsova MV, Mendeleeva LP, Kovrigina AM, et al. Expression of Adhesion Molecule CD56 in Tumor Plasma Cells in Bone Marrow as a Prognostic Factor in Multiple Myeloma. Clinical oncohematology. 2019;12(4):377–84. doi: 10.21320/2500-2139-2019-12-4-377-384. (In Russ)]
  32. Vande Broek I, Vanderkerken K, Van Camp B, et al. Extravasation and homing mechanisms in multiple myeloma. Clin Exp Metastasis. 2008;25(4):325–34. doi: 10.1007/s10585-007-9108-4.
  33. Dahl IMS, Rasmussen T, Husebekk A, et al. Differential expression of CD56 and CD44 in the evolution of extramedullary myeloma. Br J Haematol. 2002;116(2):273–7. doi: 10.1046/j.1365-2141.2002.03258.x.
  34. Kumar S, Fonseca R, Dispenzieri A, et al. Prognostic value of angiogenesis in solitary bone plasmacytoma. Blood. 2003;101(5):1715–7. doi: 10.1182/blood-2002-08-2441.
  35. Paydas S, Zorludemir S, Baslamisli F, et al. Vascular endothelial growth factor (VEGF) expression in plasmacytoma. Leuk Lymphoma. 2002;43(1):139–43. doi: 10.1080/10428190210203.
  36. Yang Y, MacLeod V, Bendre M, et al. Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood. 2005;105(3):1303–9. doi: 10.1182/blood-2004-06-2141.
  37. Lopez-Anglada L, Gutierrez NC, Garcia JL, et al. P53 deletion may drive the clinical evolution and treatment response in multiple myeloma. Eur J Haematol. 2010;84(4):359–61. doi: 10.1111/j.1600-0609.2009.01399.x.
  38. Sheth N, Yeung J, Chang H. p53 nuclear accumulation is associated with extramedullary progression of multiple myeloma. Leuk Res. 2009;33(10):1357–60. doi: 10.1016/j.leukres.2009.01.010.
  39. Billecke L, Murga Penas EM, May AM, et al. Cytogenetics of extramedullary manifestations in multiple myeloma. Br J Haematol. 2013;161(1):87–94. doi: 10.1111/bjh.12223.
  40. Besse L, Sedlarikova L, Greslikova H, et al. Cytogenetics in multiple myeloma patients progressing into extramedullary disease. Eur J Haematol. 2016;97(1):93–100. doi: 10.1111/ejh.12688.
  41. Lee SE, Kim JH, Jeon YW, et al. Impact of extramedullary plasmacytomas on outcomes according to treatment approach in newly diagnosed symptomatic multiple myeloma. Ann Hematol. 2015;94(3):445–52. doi: 10.1007/s00277-014-2216-8.
  42. Фирсова М.В. Клинико-морфологическая характеристика и молекулярно-биологические особенности опухолевого субстрата у пациентов с множественной миеломой, протекающей с плазмоцитомой: Автореф. дис. … канд. мед. наук. М., 2017. 32 с.
    [Firsova MV. Kliniko-morfologicheskaya kharakteristika i molekulyarno-biologicheskie osobennosti opukholevogo substrata u patsientov s mnozhestvennoi mielomoi, protekayushchei s plazmotsitomoi. (Clinicopathologic characteristic and molecular biological features of tumor substrate in patients with multiple myeloma with plasmacytoma.) [dissertation] Moscow; 2017. 32 p. (In Russ)]
  43. Dimopoulos MA, Pouli A, Anagnostopoulos A, et al. Macrofocal multiple myeloma in young patients: A distinct entity with favorable prognosis. Leuk Lymphoma. 2006;47(8):1553–6. doi: 10.1080/10428190600647723.
  44. Katodritou E, Kastritis E, Gatt M, et al. Real-world data on incidence, clinical characteristics and outcome of patients with macrofocal multiple myeloma (MFMM) in the era of novel therapies: A study of the Greco-Israeli collaborative myeloma working group. Am J Hematol. 2020;95(5):465–71. doi: 10.1002/AJH.25755.
  45. Batsukh K, Lee SE, Min GJ, et al. Distinct Clinical Outcomes between Paramedullary and Extramedullary Lesions in Newly Diagnosed Multiple Myeloma. Immune Netw. 2017;17(4):250–60. doi: 10.4110/IN.2017.17.4.250.
  46. Ciftciler R, Goker H, Demiroglu H, et al. Evaluation of the Survival Outcomes of Multiple Myeloma Patients According to Their Plasmacytoma Presentation at Diagnosis. Turkish J Haematol. 2020;37(4):256–62. doi: 10.4274/TJH.GALENOS.2019.2019.0061.
  47. Rosinol L, Cibeira MT, Martinez J, et al. Thalidomide/Dexamethasone (TD) Vs. Bortezomib (Velcade)a/Thalidomide/Dexamethasone (VTD) Vs. VBMCP/VBAD/Velcadea as Induction Regimens Prior Autologous Stem Cell Transplantation (ASCT) in Multiple Myeloma (MM): Results of a Phase III PETHEMA/GEM Trial. Blood. 2009;114(22):130. doi: 10.1182/blood.v114.22.130.130.
  48. Rosinol L, Oriol A, Teruel AI, et al. Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: A randomized phase 3 PETHEMA/GEM study. Blood. 2012;120(8):1589–96. doi: 10.1182/blood-2012-02-408922.
  49. Qu X, Chen L, Qiu H, et al. Extramedullary manifestation in multiple myeloma bears high incidence of poor cytogenetic aberration and novel agents resistance. Biomed Res Int. 2015;2015:1–7. doi: 10.1155/2015/787809.
  50. Paubelle E, Coppo P, Garderet L, et al. Complete remission with bortezomib on plasmocytomas in an end-stage patient with refractory multiple myeloma who failed all other therapies including hematopoietic stem cell transplantation: Possible enhancement of graft-vs-tumor effect. Leukemia. 2005;19(9):1702–4. doi: 10.1038/sj.leu.2403855.
  51. Krauth M-T, Bankier A, Valent P, et al. Sustained remission including marked regression of a paravertebral plasmacytoma in a patient with heavily pretreated, relapsed multiple myeloma after treatment with bortezomib. Leuk Res. 2005;29(12):1473–7. doi: 10.1016/j.leukres.2005.05.003.
  52. Rosinol L, Cibeira MT, Uriburu C, et al. Bortezomib: An effective agent in extramedullary disease in multiple myeloma. Eur J Haematol. 2006;76(5):405–8. doi: 10.1111/j.0902-4441.2005.t01-1-EJH2462.x.
  53. Katodritou E, Gastari V, Verrou E, et al. Extramedullary (EMP) relapse in unusual locations in multiple myeloma: Is there an association with precedent thalidomide administration and a correlation of special biological features with treatment and outcome? Leuk Res. 2009;33(8):1137–40. doi: 10.1016/j.leukres.2009.01.036.
  54. Dimopoulos MA, Moreau P, Terpos E, et al. Multiple Myeloma: EHA-ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. HemaSphere. 2021;5(2):e528. doi: 10.1097/HS9.0000000000000528.
  55. Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk‐stratification and management. Am J Hematol. 2020;95(5):548–67. doi: 10.1002/ajh.25791.
  56. Nakazato T, Suzuki K, Mihara A, et al. Refractory plasmablastic type myeloma with multiple extramedullary plasmacytomas and massive myelomatous effusion: Remarkable response with a combination of thalidomide and dexamethasone. Intern Med. 2009;48(20):1827–32. doi: 10.2169/internalmedicine.48.2142.
  57. Blade J, Perales M, Rosinol L, et al. Thalidomide in multiple myeloma: Lack of response of soft-tissue plasmacytomas. Br J Haematol. 2001;113(2):422–4. doi: 10.1046/j.1365-2141.2001.02765.x.
  58. Rosinol L, Esteve J, Rozman M, et al. Extramedullary myeloma escapes the effect of thalidomide. Haematologica. 2004;89(7):832–6.
  59. Calvo-Villas JM, Alegre A, Calle C, et al. Lenalidomide is effective for extramedullary disease in relapsed or refractory multiple myeloma. Eur J Haematol. 2011;87(3):281–4. doi: 10.1111/j.1600-0609.2011.01644.x.
  60. Short KD, Rajkumar SV, Larson D, et al. Incidence of extramedullary disease in patients with multiple myeloma in the era of novel therapy, and the activity of pomalidomide on extramedullary myeloma. Leukemia. 2011;25(6):906–8. doi: 10.1038/leu.2011.29.
  61. Muchtar E, Gatt ME, Rouvio O, et al. Efficacy and safety of salvage therapy using Carfilzomib for relapsed or refractory multiple myeloma patients: A multicentre retrospective observational study. Br J Haematol. 2016;172(1):89–96. doi: 10.1111/bjh.13799.
  62. Zhou X, Fluchter P, Nickel K, et al. Carfilzomib Based Treatment Strategies in the Management of Relapsed/Refractory Multiple Myeloma with Extramedullary Disease. Cancers (Basel). 2020;12(4):1035. doi: 10.3390/cancers12041035.
  63. Chng WJ, Goldschmidt H, Dimopoulos MA, et al. Carfilzomib-dexamethasone vs bortezomib-dexamethasone in relapsed or refractory multiple myeloma by cytogenetic risk in the phase 3 study ENDEAVOR. Leukemia. 2017;31(6):1368–74. doi: 10.1038/leu.2016.390.
  64. Jimenez-Segura R, Fernandez De Larrea C, Cibeira M, et al. Efficacy of Novel Agents on Soft-Tissue Plasmacytomas in Patients with Relapsed Multiple Myeloma. Blood. 2016;128(22):5709. doi: 10.1182/blood.v128.22.5709.5709.
  65. Wu P, Davies FE, Boyd K, et al. The impact of extramedullary disease at presentation on the outcome of myeloma. Leuk Lymphoma. 2009;50(2):230–5. doi: 10.1080/10428190802657751.
  66. Gagelmann N, Eikema D-J, Iacobelli S, et al. Impact of extramedullary disease in patients with newly diagnosed multiple myeloma undergoing autologous stem cell transplantation: a study from the Chronic Malignancies Working Party of the EBMT. Haematologica. 2018;103(5):890–7. doi: 10.3324/haematol.2017.178434.
  67. Tsang RW, Campbell BA, Goda JS, et al. Critical Review Radiation Therapy for Solitary Plasmacytoma and Multiple Myeloma: Guidelines From the International Lymphoma Radiation Oncology Group Radiation Oncology. Int J Radiat Oncol Biol Phys. 2018;101(4):794–808. doi: 10.1016/j.ijrobp.2018.05.009.
  68. Ailawadhi S, Frank R, Ailawadhi M, et al. Utilization of radiation therapy in multiple myeloma: trends and changes in practice. Ann Hematol. 2021;100(3):735–41. doi: 10.1007/s00277-020-04371-1.
  69. Rades D, Conde-Moreno AJ, Cacicedo J, et al. Excellent outcomes after radiotherapy alone for malignant spinal cord compression from myeloma. Radiol Oncol. 2016;50(3):337–40. doi: 10.1515/raon-2016-0029.
  70. Gaube A, Nica SG, Dobrea C, et al. Radiation response of soft-tissue extramedullary plasmacytoma in multiple myeloma—A case report. Clin Case Reports. 2021;9(11):e05084. doi: 10.1002/ccr3.5084.
  71. Goranova-Marinova V, Yaneva M, Deneva T, et al. Multiple myeloma with advanced bone disease and low tumor burden – different clinical presentation but similar outcome after bortezomib-based therapy and radiotherapy. Acta Clin Croat. 2017;56(2):262–8. doi: 10.20471/acc.2017.56.02.09.

Экспрессия молекулы адгезии CD56 на опухолевых плазматических клетках в костном мозге как фактор прогноза при множественной миеломе

М.В. Фирсова, Л.П. Менделеева, А.М. Ковригина, М.В. Соловьев, Н.Л. Дейнеко, М.Ю. Дроков, В.Г. Савченко

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Майя Валерьевна Фирсова, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; e-mail: firs-maia@yandex.ru

Для цитирования: Фирсова М.В., Менделеева Л.П., Ковригина А.М. и др. Экспрессия молекулы адгезии CD56 на опухолевых плазматических клетках в костном мозге как фактор прогноза при множественной миеломе. Клиническая онкогематология. 2019;12(4):377–84.

DOI: 10.21320/2500-2139-2019-12-4-377-384


РЕФЕРАТ

Цель. Изучить иммуногистохимические параметры опухолевых плазматических клеток костного мозга и оценить влияние экспрессии молекулы адгезии CD56 на общую выживаемость (ОВ) больных множественной миеломой (ММ).

Материалы и методы. В исследование включено 35 пациентов (19 мужчин, 16 женщин) в возрасте 23–73 года (медиана 58 лет) с впервые диагностированной ММ. В дебюте заболевания плазмоцитома диагностирована у 21 больного. Всем пациентам выполнена трепанобиопсия костного мозга с последующими гистологическим и иммуногистохимическим (ИГХ) исследованиями. Для ИГХ-исследования использовалась панель антител к CD56, CD166, CXCR4, Ki-67, c-MYC/CD138. Кривые выживаемости построены методом Каплана—Мейера с оценкой статистической значимости с помощью F-теста Кокса.

Результаты. Средние значения экспрессии большинства исследуемых маркеров (CD56, CXCR4, c-MYC, Ki-67) в костном мозге у больных без плазмоцитомы (n = 14) оказались выше по сравнению с пациентами с плазмоцитомой в дебюте ММ. Под средним значением экспрессии подразумевается процентное отношение плазматических клеток, экспрессирующих исследуемый маркер, к общему числу клеток опухолевого субстрата. Вероятно, высокая экспрессия хемокиновых рецепторов (CXCR4) и молекул адгезии (CD56) сдерживает миграцию плазматических клеток и препятствует экстрамедуллярному росту опухоли. При сравнении экспрессии белков опухолевыми плазматическими клетками в костном мозге в группах с костной экстрамедуллярной плазмоцитомой отчетливая закономерность прослеживается в отношении молекулы адгезии CD56. Так, экспрессия CD56 статистически значимо (< 0,05) ниже по числу экспрессирующих маркер опухолевых плазматических клеток в костном мозге у больных ММ с экстрамедуллярной плазмоцитомой, чем у пациентов с костной плазмоцитомой (1 ± 1 vs 65,71 ± 12,12 %). При сопоставлении ОВ больных ММ в зависимости от экспрессии CD56 опухолевыми плазматическими клетками костного мозга показано, что 4-летняя ОВ пациентов с экспрессией CD56 в костном мозге была статистически значимо выше и составила 80 vs 38 % в группе с экспрессией CD56 менее чем в 10 % опухолевых клеток.

Заключение. Экспрессия молекулы адгезии CD56 на опухолевых плазматических клетках в костном мозге может служить фактором прогноза при ММ. Вероятно, при обнаружении экспрессии CD56 менее чем в 10 % опухолевых плазматических клетках костного мозга в дебюте болезни необходимо более тщательное дополнительное обследование пациента для исключения экстрамедуллярных очагов поражения в различных органах и тканях.

Ключевые слова: множественная миелома, костная плазмоцитома, экстрамедуллярная плазмоцитома, трепанобиопсия костного мозга, CD56.

Получено: 12 мая 2019 г.

Принято в печать: 2 сентября 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Фрейдлин И.С. Система мононуклеарных фагоцитов. М.: Медицина, 1984. 272 c.

    [Freidlin IS. Sistema mononuklearnykh fagotsitov. (The system of mononuclear phagocytes.) Moscow: Meditsina Publ.; 1984. 272 p. (In Russ)]

  2. Van Furth R, Raeburn JA, van Zwet TL. Characteristics of human mononuclear phagocytes. Blood. 1979;54(2):485–500.

  3. Mitsiades CS, McMillin DW, Klippel S, et al. The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin N Am. 2007;21(6):1007–34. doi: 10.1016/j.hoc.2007.08.007.

  4. Van Camp B, Durie BG, Spier C, et al. Plasma cells in multiple myeloma express a natural killer cell-associated antigen: CD56 (NKH-1; Leu-19). Blood. 1990;76(2):377–82.

  5. Sahara N, Takeshita A, Shigeno K, et al. Clinicopathological and prognostic characteristics of CD56-negative multiple myeloma. Br J Haematol. 2002;117(4):882–5. doi: 10.1046/j.1365-2141.2002.03513.x.

  6. Cayrol R, Wosik K, Berard JL, et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol. 2008;9(2):137–45. doi: 10.1038/ni1551.

  7. Masedunskas A, King JA, Tan F, et al. Activated leukocyte cell adhesion molecule is a component of the endothelial junction involved in transendothelial monocyte migration. FEBS Lett. 2006;580(11):2637–45. doi: 10.1016/j.febslet.2006.04.013.

  8. Avet-Loiseau H, Gerson F, Magrangeas F, et al. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood. 2001;98(10):3082–6. doi: 10.1182/blood.v98.10.3082.

  9. Gabrea A, Martelli ML, Qi Y, et al. Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumors. Genes Chromos Cancer. 2008;47(7):573–90. doi: 10.1002/gcc.20563.

  10. Gerdes J. Ki-67 and other proliferation markers useful for immunohistological diagnostic and prognostic evaluations in human malignancies. Semin Cancer Biol. 1990;1(3):199–206.

  11. Endl E, Steinbach P, Knuchel R, et al. Analysis of cell cycle-related Ki-67 and p120 expression by flow cytometric BrdUrd-Hoechst/7AAD and immunolabeling technique. Cytometry. 1997;29(3):233–41. doi: 10.1002/(sici)1097-0320(19971101)29:3<233::aid-cyto6>3.3.co;2-3.

  12. Kausch I, Lingnau A, Endl E, et al. Antisense treatment against Ki-67 mRNA inhibits proliferation and tumor growth in vitro and in vivo. Int J Cancer. 2003;105(5):710–6. doi: 10.1002/ijc.11111.

  13. Greipp PR, Lust JA, O’Fallon WM, et al. Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma. Blood. 1993;81(12):3382–7.

  14. Tsirakis G, Pappa CA, Spanoudakis M, et al. Clinical significance of sCD105 in angiogenesis and disease activity in multiple myeloma. Eur J Intern Med. 2012;23(4):368–73. doi: 10.1016/j.ejim.2012.01.012.

  15. Tsirakis G, Pappa CA, Psarakis FE, et al. Serum concentrations and clinical significance of soluble CD40 ligand in patients with multiple myeloma. Med Oncol. 2012;29(4):2396–401. doi: 10.1007/s12032-012-0203-2.

  16. Tsirakis G, Pappa CA, Kaparou M, et al. The relationship between soluble receptor of interleukin-6 with angiogenic cytokines and proliferation markers in multiple myeloma. Tumour Biol. 2013;34(2):859–64. doi: 10.1007/s13277-012-0618-6.

  17. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000;18(1):217–42. doi: 10.1146/annurev.immunol.18.1.217.

  18. Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996;382(6594):833–5. doi: 10.1038/382833a0.

  19. Piazza R, Valletta S, Winkelmann N, et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet. 2013;45(1):18–24. doi: 10.1038/ng.2495.

  20. Blade J, Fernandez de Larrea C, Rosinol L, et al. Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol. 2011;29(28):3805–12. doi: 10.1200/JCO.2011.34.9290.

  21. Usmani SZ, Heuck C, Mitchell A, et al. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica. 2012;97(11):1761–7. doi: 10.3324/haematol.2012.065698.

  22. Varettoni M, Corso A, Pica G, et al. Incidence, presenting features and outcome of extramedullary disease in multiple myeloma: a longitudinal study on 1003 consecutive patients. Ann Oncol. 2009;21(2):325–30. doi: 10.1093/annonc/mdp329.

  23. Weinstock M, Aljawai Y, Morgan EA, et al. Incidence and clinical features of extramedullary multiple myeloma in patients who underwent stem cell transplantation. Br J Haematol. 2015;169(6):851–8. doi: 10.1111/bjh.13383.

  24. Bao L, Lai Y, Liu Y, et al. CXCR4 is a good survival prognostic indicator in multiple myeloma patients. Leuk Res. 2013;37(9):1083–8. doi: 10.1016/j.leukres.2013.06.002.

  25. Xu L, Mohammad KS, Wu H, et al. Cell Adhesion Molecule CD166 Drives Malignant Progression and Osteolytic Disease in Multiple Myeloma. Cancer Res. 2016;76(23):6901–10. doi: 10.1158/0008-5472.CAN-16-0517.