Ингибиторы иммунных контрольных точек в терапии лимфом

К.В. Лепик

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова», ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Кирилл Викторович Лепик, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; e-mail: lepikkv@gmail.com

Для цитирования: Лепик К.В. Ингибиторы иммунных контрольных точек в терапии лимфом. Клиническая онкогематология. 2018;11(4):303–12.

DOI: 10.21320/2500-2139-2018-11-4-303-312


РЕФЕРАТ

Рецепторы и лиганды программируемой клеточной гибели (PD-1 и PD-L1) — наиболее изученные представители семейства иммунных контрольных точек (ИКТ), представляют собой ключевой элемент регуляции иммунного ответа. Способность злокачественных клеток воздействовать на рецепторы ИКТ является одним из важнейших механизмов подавления противоопухолевого иммунитета. Создание препаратов — ингибиторов ИКТ предоставляет возможность контроля и активации иммунного ответа, открывая новые перспективы иммунотерапии злокачественных новообразований, в т. ч. лимфом. В данном обзоре освещаются биологические основы применения ингибиторов ИКТ при классической лимфоме Ходжкина и неходжкинских лимфомах, а также представлен опыт их использования в клинике. Кроме того, обозначены новые подходы к созданию комбинированных режимов с включением ИКТ.

Ключевые слова: иммунные контрольные точки (ИКТ), PD-1, PD-L1, классическая лимфома Ходжкина, неходжкинские лимфомы, ингибиторы ИКТ.

Получено: 25 марта 2018 г.

Принято в печать: 23 июля 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Walunas TL, Bakker CY, Bluestone JA. CTLA 4 ligation blocks CD28 dependent T cell activation. J Exp Med. 1996;183(6):2541–50.

  2. Freeman GJ, Long AJ, Iwai Y. Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34. doi: 1084/jem.192.7.1027.

  3. Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood. 2013;121(5):734–44. doi: 1182/blood-2012-10-385591.

  4. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9. doi: 1056/NEJMoa1411087.

  5. Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26(1):677–704. doi: 1146/annurev.immunol.26.021607.090331.

  6. Lee SJ, Jang BC, Lee SW, et al. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett. 2006;580(3):755–62. doi: 1016/j.febslet.2005.12.093.

  7. Liu J, Hamrouni A, Wolowiec D, et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-gamma and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood. 2007;110(1):296–304. doi: 1182/blood-2006-10-051482.

  8. Fife BT, Pauken KE, Eagar TN, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol. 2009;10(11):1185–92. doi: 1038/ni.1790.

  9. Yokosuka T, Takamatsu M, Kobayashi-Imanishiet W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17. doi: 1084/jem.20112741.

  10. Chemnitz JM, Parry RV, Nicholset KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173(2):945–54. doi: 4049/jimmunol.173.2.945.

  11. Nurieva R, Thomas S, Nguyen T, et al. T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J. 2006;25(11):2623–33. doi: 1038/sj.emboj.7601146.

  12. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7 H1 promotes T cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. doi: 1038/nm730.

  13. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi: 1056/NEJMoa1003466.

  14. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30. doi: 10.1056/NEJMoa1412082.

  15. Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA 4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84. doi: 1016/S1470-2045(15)70076-8.

  16. Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–30. doi: 1200/JCO.2013.53.0105.

  17. Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–7. doi: 10.1200/jco.2016.66.4482.

  18. Carey CD, Gusenleitner D, Lipschitz M, et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood. 2017;130(22):2420–30. doi: 10.1182/blood-2017-03-770719.

  19. Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27. doi: 10.1038/nrc2542.

  20. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. doi: 10.1182/blood-2010-05-282780.

  21. Chen BJ, Chapuy B, Ouyang J, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19(13):3462–73. doi: 10.1158/1078-0432.CCR-13-0855.

  22. Steidl C, Lee T, Shah SP, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85. doi: 10.1056/NEJMoa0905680.

  23. Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–9. doi: 10.1038/nature22396.

  24. Paydas S, Bagir E, Seydaoglu G, et al. Programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), and EBV-encoded RNA (EBER) expression in Hodgkin lymphoma. Ann Hematol. 2015;94(9):1545–52. doi: 10.1007/s00277-015-2403-2.

  25. Hollander P, Kamper P, Smedby KE, et al. High proportions of PD-1+ and PD-L1+ leukocytes in classical Hodgkin lymphoma microenvironment are associated with inferior outcome. Blood Adv. 2017;1(18):1427–39. doi: 10.1182/bloodadvances.2017006346.

  26. Younes A, Santoro A, Shipp M, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94. doi: 10.1016/S1470-2045(16)30167-X.

  27. Armand P, Shipp MA, Ribrag V, et al. Pembrolizumab in Patients with Classical Hodgkin Lymphoma after Brentuximab Vedotin Failure: Long-Term Efficacy from the Phase 1b Keynote-013 Study. Blood. 2016;128:1108, abstract.

  28. Armand P, Engert A, Younes A, et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma After Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J Clin Oncol. 2018;36(14):1428–39. doi: 10.1200/JCO.2017.76.0793.

  29. Engert A, Fanale M, Santoro A, et al. Nivolumab for relapsed/refractory classical Hodgkin lymphoma after autologous transplant: full results after extended follow-up of the multicohort multicenter phase 2 CheckMate 205 trial. EHA conference 2017. Abstract S412.

  30. Armand P, Shipp MA, Ribrag V, et al. Programmed Death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016; 34(31):3733–9. doi: 10.1200/JCO.2016.67.3467.

  31. Chen R, Zinzani PL, Fanale MA, et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J Clin Oncol. 2017;35(19):2125–32. doi: 10.1200/JCO.2016.72.1316.

  32. Tsimberidou AM, Braiteh F, Stewart DJ, Kurzrock R. Ultimate fate of oncology drugs approved by the US Food and Drug Administration without a randomized trial. J Clin Oncol. 2009;27(36):6243–50. doi: 10.1200/JCO.2009.23.6018.

  33. Nishijima TF, Shachar SS, Nyrop KA, Muss HB. Safety and tolerability of PD-1/PD-L1 inhibitors compared with chemotherapy in patients with advanced cancer: a meta-analysis. Oncologist. 2017;22(4):470–9. doi: 10.1634/theoncologist.2016-0419.

  34. Shi M, Roemer MGM, Chapuy B, et al. Expression of programmed cell death 1 ligand 2 (PD-L2) is a distinguishing feature of primary mediastinal (thymic) large B-cell lymphoma and associated with PDCD1LG2 copy gain. Am J Surg Pathol. 2014;38(12):1715–23. doi: 10.1097/PAS.0000000000000297.

  35. Twa DDW, Chan FC, Ben-Neriah S, et al. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood. 2014;123(13):2062–5. doi: 10.1182/blood-2013-10-535443.

  36. Van Roosbroeck K, Ferreiro JF, Tousseyn T, et al. Genomic alterations of the JAK2 and PDL loci occur in a broad spectrum of lymphoid malignancies. Genes Chromos Cancer. 2016;55(5):428–41. doi: 10.1002/gcc.22345.

  37. Zinzani PL, Ribrag V, Moskowitz CH, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood. 2017;130(3):267–70. doi: 10.1182/blood-2016-12-758383.

  38. Zinzani PL, Thieblemont C, Melnichenko V, et al. Efficacy and Safety of Pembrolizumab in Relapsed/Refractory Primary Mediastinal Large B-Cell Lymphoma (rrPMBCL): Updated Analysis of the Keynote-170 Phase 2 Trial. ASH conference 2017. Abstract 2833B.

  39. Chapuy B, Roemer MGM, Stewart C, et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood. 2016;127(7):869–81. doi: 10.1182/blood-2015-10-673236.

  40. Nayak L, Iwamoto FM, LaCasce A, et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood. 2017;129(23):3071–3. doi: 10.1182/blood-2017-01-764209.

  41. Eberle FC, Salaverria I, Steidl C, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24(12):1586–97. doi: 10.1038/modpathol.2011.116.

  42. Melani C, Major A, Schowinsky J, et al. PD-1 blockade in mediastinal gray-zone lymphoma. N Engl J Med. 2017;377(1):89–91. doi: 10.1056/NEJMc1704767.

  43. Georgiou K, Chen L, Berglund M, et al. Genetic basis of PD-L1 overexpression in diffuse large B-cell lymphomas. Blood. 2016;127(24):3026–34. doi: 10.1182/blood-2015-12-686550.

  44. Kiyasu J, Miyoshi H, Hirata A, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. 2015;126(19):2193–201. doi: 10.1182/blood-2015-02-629600.

  45. Chen M, Andreozzi M, Pockaj B, et al. Development and validation of a novel clinical fluorescence in situ hybridization assay to detect JAK2 and PD-L1 amplification. Mod Pathol. 2017;30(11):1516–26. doi: 10.1038/modpathol.2017.86.

  46. Gupta M, Han JJ, Stenson M, et al. Elevated serum IL-10 levels in diffuse large B-cell lymphoma: a mechanism of aberrant JAK2 activation. Blood. 2012;119(12):2844–53. doi: 10.1182/blood-2011-10-388538.

  47. Choi JW, Kim Y, Lee JH, et al. MYD88 expression and L265P mutation in diffuse large B-cell lymphoma. Hum Pathol. 2013;44(7):1375–81. doi: 10.1016/j.humpath.2012.10.026.

  48. Bellucci R, Martin A, Bommarito D, et al. Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression. OncoImmunology. 2015;4(6):e1008824. doi: 10.1080/2162402X.2015.1008824.

  49. Laurent C, Charmpi K, Gravelle P, et al. Several immune escape patterns in non-Hodgkin’s lymphomas. OncoImmunology. 2015;4(8):e1026530. doi: 10.1080/2162402X.2015.1026530.

  50. Andorsky DJ, Yamada RE, Said J, et al. Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17(13):4232–44. doi: 10.1158/1078-0432.CCR-10-2660.

  51. Jo JC, Kim M, Choi Y, et al. Expression of programmed cell death 1 and programmed cell death ligand 1 in extranodal NK/T-cell lymphoma, nasal type. Ann Hematol. 2017;96(1):25–31. doi: 10.1007/s00277-016-2818-4.

  52. Muenst S, Hoeller S, Willi N, et al. Diagnostic and prognostic utility of PD-1 in B cell lymphomas. Dis Markers. 2010;29(1):47–53. doi: 10.1155/2010/404069.

  53. Hu L-Y, Xu X-L, Rao H-L, et al. Expression and clinical value of programmed cell death-ligand 1 (PD-L1) in diffuse large B cell lymphoma: a retrospective study. Chin J Cancer. 2017;36(1):94. doi: 10.1186/s40880-017-0262-z.

  54. Ansell SM, Hurvitz SA, Koenig PA, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009;15(20):6446–53. doi: 10.1158/1078-0432.CCR-09-1339.

  55. Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34(23):2698–704. doi: 10.1200/JCO.2015.65.9789.

  56. Armand P, Nagler A, Weller EA, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol. 2013;31(33):4199–206. doi: 10.1200/JCO.2012.48.3685.

  57. Palomba ML, Till BG, Park SI, et al. A phase IB study evaluating the safety and clinical activity of atezolizumab combined with obinutuzumab in patients with relapsed or refractory non-Hodgkin lymphoma (NHL). Hematol Oncol. 2017;35(Suppl 2):137–8. doi: 10.1002/hon.2437_126.

  58. Ansell S, Gutierrez ME, Shipp MA, et al. A phase 1 study of nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039). Blood. 2016;128;22, abstract 183.

  59. Brusa D, Serra S, Coscia M, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953–63. doi: 10.3324/haematol.2012.077537.

  60. Soma LA, Craig FE, Swerdlow SH. The proliferation center microenvironment and prognostic markers in chronic lymphocytic leukemia/small lymphocytic lymphoma. Hum Pathol. 2006;37(2):152–9. doi: 10.1016/j.humpath.2005.09.029.

  61. Nunes C, Wong R, Mason M, et al. Expansion of a CD8(+)PD-1(+) replicative senescence phenotype in early stage CLL patients is associated with inverted CD4:CD8 ratios and disease progression. Clin Cancer Res. 2012;18(3):678–87. doi: 10.1158/1078-0432.CCR-11-2630.

  62. Ramsay AG, Johnson AJ, Lee AM, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118(7):2427–37. doi: 10.1172/JCI35017.

  63. Berger R, Rotem-Yehudar R, Slama G, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–51. doi: 10.1158/1078-0432.ccr-07-4079.

  64. Ding W, LaPlant BR, Call TG, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419–27. doi: 10.1182/blood-2017-02-765685.

  65. Panjwani P, Charu V, DeLisser M, et al. Programmed death-1 ligands PD-L1 and PD-L2 show distinctive and restricted patterns of expression in lymphoma subtypes. Hum Pathol. 2018;71:91–9. doi: 10.1016/j.humpath.2017.10.029.

  66. Menter T, Bodmer-Haecki A, Dirnhoferet S, et al. Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B-cell lymphomas. Hum Pathol. 2016;54:17–24. doi: 10.1016/j.humpath.2016.03.005.

  67. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;131(6):492–9. doi: 10.1038/ni.2035.

  68. Wahlin BE, Aggarwal M, Montes-Moreno S, et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1—positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res. 2010;16(2):637–50. doi: 10.1158/1078-0432.CCR-09-2487.

  69. Myklebust JH, Irish JM, Brody J, et al. High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood. 2013;121(8):1367–76. doi: 10.1182/blood-2012-04-421826.

  70. Smeltzer JP, Jones JM, Ziesmer SC, et al. Pattern of CD14+ follicular dendritic cells and PD1+ T cells independently predicts time to transformation in follicular lymphoma. Clin Cancer Res. 2014;20(11):2862–72. doi: 10.1158/1078-0432.CCR-13-2367.

  71. Carreras J, Lopez-Guillermo A, Roncador G, et al. High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J Clin Oncol. 2009;27(9):1470–6. doi: 10.1200/JCO.2008.18.0513.

  72. Richendollar BG, Pohlman B, Elson P, et al. Follicular programmed death 1-positive lymphocytes in the tumor microenvironment are an independent prognostic factor in follicular lymphoma. Hum Pathol. 2011;42(4):552–7. doi: 10.1016/j.humpath.2010.08.015.

  73. Yang ZZ, Grote DM, Ziesmer SC, et al. PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J. 2015;5:e281. doi: 10.1038/bcj.2015.1.

  74. Horning SJ, Rosenberg SA. The natural history of initially untreated low-grade non-Hodgkin’s lymphomas. N Engl J Med. 1984;311(23):1471–5. doi: 10.1056/NEJM198412063112303.

  75. Berger R, Rotem-Yehudar R, Slama G, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–51. doi: 10.1158/1078-0432.CCR-07-4079.

  76. Westin JR, Chu F, Zhang M, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15(1):69–77. doi: 10.1016/S1470-2045(13)70551-5.

  77. Cheson BD, Leonard JP. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med. 2008;359(6):613–26. doi: 10.1056/NEJMra0708875.

  78. Nastoupil LJ, Westin J, Fowler N, et al. High response rates with pembrolizumab in combination with rituximab in patients with relapsed follicular lymphoma: interim results of an on open-label, phase II study. Hematol Oncol. 2017;35(Suppl 2):120–1. doi: 10.1002/hon.2437_108.

  79. Zaja F, Tabanelli V, Agostinelli C. CD38, BCL-2, PD-1, and PD-1L expression in nodal peripheral T-cell lymphoma: Possible biomarkers for novel targeted therapies? Am J Hematol. 2017;92(1):E1–E2. doi: 10.1002/ajh.24571.

  80. Xerri L, Chetaille B, Serriari N. Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Hum Pathol. 2008;39(7):1050–8. doi: 10.1016/j.humpath.2007.11.012.

  81. Wilcox RA, Feldman AL, Wada DA, et al. B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood. 2009;114(10):2149–58. doi: 10.1182/blood-2009-04-216671.

  82. Vranic S, Ghosh N, Kimbrough J. PD-L1 Status in Refractory Lymphomas. PLoS One. 2016;11(11):e0166266. doi: 10.1371/journal.pone.0166266.

  83. Merryman RW, Armand P, Wright KT, Rodig SJ. Checkpoint blockade in Hodgkin and non-Hodgkin lymphoma. Blood Adv. 2017;1(26):2643–54. doi: 10.1182/bloodadvances.2017012534.

  84. Marzec M, Zhang Q, Goradia A, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA. 2008;105(52):20852–7. doi: 10.1073/pnas.0810958105.

  85. Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003;170(3):1257–66. doi: 10.4049/jimmunol.170.3.1257.

  86. Hebart H, Lang P, Woessmann W. Nivolumab for Refractory Anaplastic Large Cell Lymphoma: A Case Report. Ann Intern Med. 2016;165(8):607–8. doi: 10.7326/116-0037.

  87. Cetinozman F, Jansen PM, Willemze R. Expression of programmed death-1 in primary cutaneous CD4-positive small/medium-sized pleomorphic T-cell lymphoma, cutaneous pseudo-T-cell lymphoma, and other types of cutaneous T-cell lymphoma. Am J Surg Pathol. 2012;36(1):109–16. doi: 10.1097/PAS.0b013e318230df87.

  88. Xia Y, Medeiros JL, Young KH. Signaling pathway and dysregulation of PD1 and its ligands in lymphoid malignancies. Biochim Biophys Acta. 2016;1865(1):58–71. doi: 10.1016/j.bbcan.2015.09.002.

  89. Cetinozman F, Jansen PM, Vermeer MH, et al. Differential expression of programmed death-1 (PD-1) in Sezary syndrome and mycosis fungoides. Arch Dermatol. 2012;148(12):1379. doi: 10.1001/archdermatol.2012.2089.

  90. Khodadoust M, Rook AH, Porcu P, et al. Pembrolizumab for treatment of relapsed/refractory mycosis fungoides and Sezary syndrome: clinical efficacy in a Citn multicenter phase 2 study. Blood. 2016;128:22, abstract 181.

  91. Kwong YL, Chan TSY, Tan D, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood. 2017;129(17):2437–42. doi: 10.1182/blood-2016-12-756841.

  92. Chan TSY, Li J, Loong F, et al. PD1 blockade with low-dose nivolumab in NK/T cell lymphoma failing L-asparaginase: efficacy and safety. Ann Hematol. 2018;97(1):193–6. doi: 10.1007/s00277-017-3127-2.

  93. Four M, Cacheux V, Tempier A, et al. PD1 and PDL1 expression in primary central nervous system diffuse large B-cell lymphoma are frequent and expression of PD1 predicts poor survival. Hematol Oncol. 2017;35(4):487–96. doi: 10.1002/hon.2375.

  94. Pelland K, Mathews S, Kamath A, et al. Dendritic Cell Markers and PD-L1 are Expressed in Mediastinal Gray Zone Lymphoma. Appl Immunohistochem Mol Morphol. 2017. doi: 10.1097/PAI.0000000000000615. [Epub ahead of print]

  95. Park JH, Han JH, Kanget HY, et al. Expression of follicular helper T-cell markers in primary cutaneous T-cell lymphoma. Am J Dermatopathol. 201;36(6):465–70. doi: 10.1097/DAD.0b013e3182a72f8c.

Результаты лечения классической лимфомы Ходжкина, включающего высокодозную химиотерапию с трансплантацией аутологичных гемопоэтических стволовых клеток, в НМХЦ им. Н.И. Пирогова

Н.Е. Мочкин, В.О. Саржевский, Ю.Н. Дубинина, Е.Г. Смирнова, Д.А. Федоренко, А.Е. Банникова, Д.С. Колесникова, В.С. Богатырев, Н.М. Фаддеев, В.Я. Мельниченко

ФГБУ «Национальный медико-хирургический центр им. Н.И. Пирогова», Минздрава России, ул. Нижняя Первомайская, д. 70, Москва, Российская Федерация, 105203

Для переписки: Никита Евгеньевич Мочкин, канд. мед. наук, ул. Нижняя Первомайская, д. 70, Москва, Российская Федерация, 105203; тел.: 8(495)603-72-17; e-mail: nickmed@yandex.ru

Для цитирования: Мочкин Н.Е., Саржевский В.О., Дубинина Ю.Н. и др. Результаты лечения классической лимфомы Ходжкина, включающего высокодозную химиотерапию с трансплантацией аутологичных гемопоэтических стволовых клеток, в НМХЦ им. Н.И. Пирогова. Клиническая онкогематология. 2018;11(3):234–40.

DOI: 10.21320/2500-2139-2018-11-3-234-240


РЕФЕРАТ

Цель. Оценить долгосрочные результаты программного лечения, включающего высокодозную химиотерапию (ВДХТ) и трансплантацию аутологичных гемопоэтических стволовых клеток (аутоТГСК), при классической лимфоме Ходжкина (кЛХ) в рамках одного центра и влияние различных факторов на полученные результаты.

Материалы и методы. C декабря 2006 г. по март 2017 г. в клинике гематологии и клеточной терапии им. А.А. Максимова ФГБУ «НМХЦ им. Н.И. Пирогова» Минздрава России ВДХТ с аутоТГСК выполнена у 260 больных кЛХ. Возраст пациентов 17–62 года (медиана 29 лет). Мужчин было 40 % (n = 104), женщин — 60 % (n = 156). Медиана линий предтрансплантационной химиотерапии составила 3 (диапазон 2–9). На этом этапе, предшествующем аутоТГСК, частота полных ремиссий (ПР) составила 26,5 %, частичных (ЧР) — 52,3 %, стабилизации заболевания — 13,5 %. ВДХТ с аутоТГСК применялись при прогрессировании в качестве терапии «спасения» у 7,7 % больных. У 79,6 % пациентов использовались стандартные режимы кондиционирования ВЕАМ и CBV.

Результаты. У 260 больных кЛХ 5-летняя общая выживаемость (ОВ) после ВДХТ с аутоТГСК составила 74 %, а 5-летняя выживаемость без прогрессирования (ВБП) — 48 %, что соответствует данным ряда международных исследований. Показатели 5-летней ОВ после ВДХТ с аутоТГСК были статистически значимо выше при их выполнении в 1-ю ПР или ЧР (85 %) vs во 2-ю и последующие ПР или ЧР (71 %). Влияние пола (= 0,4) и статуса ECOG (= 0,2) на ОВ и ВБП не выявлено. Показатели 5-летней ОВ были статистически значимо выше при проведении ВДХТ с аутоТГСК в ПР или ЧР (82 %) vs при стабилизации или прогрессировании заболевания (54 %), а также после достижения ПР (93 %) vs ЧР (77 %).

Заключение. При кЛХ сохранение чувствительности опухоли к химиотерапии является основным условием выполнения ВДХТ с аутоТГСК по показаниям. Оптимальным временем проведения ВДХТ с аутоТГСК при кЛХ считается 1-я ПР/ЧР, а наилучшие результаты лечения достигаются при их выполнении пациентам с полным ответом перед ВДХТ с аутоТГСК.

Ключевые слова: классическая лимфома Ходжкина, высокодозная химиотерапия, трансплантация аутологичных гемопоэтических стволовых клеток.

Получено: 9 февраля 2018 г.

Принято в печать: 3 мая 2018 г.

Читать статью в PDF 

ЛИТЕРАТУРА

  1. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2016.[Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines in diagnosis and treatment of lymphoproliferative disorders). Moscow: Buki Vedi Publ.; 2016. (In Russ)]
  2. Skoetz N, Trelle S, Rancea M, et al. Effect of initial treatment strategy on survival of patients with advanced-stage Hodgkin’s lymphoma: a systematic review and network meta-analysis. Lancet Oncol. 2013;14(10):943–52. doi: 10.1016/S1470-2045(13)70341-3.
  3. Kuruvilla J, Keating A, Crump M. How I treat relapsed and refractory Hodgkin lymphoma. Blood. 2011;117(16):4208–17. doi: 10.1182/blood-2010-09-288373.
  4. Thomas RK, Re D, Zander T, et al. Epidemiology and etiology of Hodgkin’s lymphoma. Ann Oncol. 2002;13(Suppl. 4):147–52. doi: 10.1093/annonc/mdf652.
  5. Linch D, Winfield D, Goldstone A, et al. Dose intensification with autologous bone marrow transplantation in relapsed and resistant Hodgkin disease: results of a BNLI randomized trial. Lancet. 1993;341(8852):1051–4. doi: 10.1016/0140-6736(93)92411-L.
  6. Schmitz N, Pfistner B, Sextro M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin disease: a randomized trial. Lancet. 2002;359(9323):2065–71. doi: 10.1016/S0140-6736(02)08938-9.
  7. Josting A, Franklin J, May M, et al. New prognostic score based on treatment outcome of patients with relapsed Hodgkin’s lymphoma registered in the database of the German Hodgkin’s lymphoma study group. J Clin Oncol. 2002;20(1):221–30. doi: 10.1200/JCO.2002.20.1.221
  8. Ljungman P, Bregni M, Brune M, et al. Allogenic and autologous transplantation for haematological disease, solid tumors and immune disorders: current practice in Europe 2009. Bone Marrow Transplant. 2010;45(2):219–34. doi: 10.1038/bmt.2009.141.
  9. Perales M-A, Ceberio I, Armand Ph, et al. Role of cytotoxic therapy with hematopoietic cell transplantation in the treatment of Hodgkin lymphoma: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2015;21(6):971–983. doi: 10.1016/j.bbmt.2015.02.022.
  10. Hoppe RT, Advani RH, Ai WZ, et al. NCCN Clinical Practice Guidelines in Oncology. Hodgkin Lymphoma. Version 1.2018. Available from: https://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf (accessed 05.03.2018).
  11. Moscowitz CH, Kewalramani T, Nimer SD, et al. Effectiveness of high-dose chemoradiotherapy and autologous stem cell transplantation for patients with biopsy-proven primary refractory Hodgkin’s disease. Br J Haematol. 2004;124(5):645–52. doi: 1111/j.1365-2141.2003.04828.x.
  12. Sirohi B, Cunningham D, Powles R, et al. Long-term outcome of autologous stem-cell transplantation in relapsed or refractory Hodgkin’s lymphoma. Ann Oncol. 2008;19(7):1312–9. doi: 10.1093/annonc/mdn052.
  13. Moskowitz CH, Nimer SD, Zelenets AD, et al. A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin disease: analysis by intent to treat and development of a prognostic model. Blood. 2001;97(3):616–23. doi: 10.1182/blood.V97.3.616.
  14. Phillips JK, Spearing RL, Davies JM, et al. VIM-D salvage chemotherapy in Hodgkin’s disease. Cancer Chemother Pharmacol. 1990;27(2):161–3. doi: 10.1007/bf00689103.
  15. The International ChlVPP Treatment Group. ChlVPP therapy for Hodgkin’s disease: experience of 960 patients. Ann Oncol 1995;6(2):167–72.
  16. Colwill R, Crump M, Couture F, et al. Mini-BEAM as salvage therapy for relapsed or refractory Hodgkin’s disease before intensive therapy and autologous bone marrow transplantation. J Clin Oncol. 1995;13(2):396–402. doi: 10.1200/JCO.1995.13.2.396.
  17. Rodriguez MA, Cabanillas FC, Hagemeister FB, et al. A phase II trial of mesna/ifosfamide, mitoxantrone and etoposide for refractory lymphomas. Ann Oncol. 1995;6(6):609–12. doi: 10.1093/oxfordjournals.annonc.a059252.
  18. Aparicio J, Segura A, Garcera S, et al. ESHAP is an active regimen for relapsing Hodgkin’s disease. Ann Oncol. 1999;10(5):593–5. doi: 10.1023/a:1026454831340.
  19. Martin A, Femandez-Jimenez MC, Caballero MD, et al. Long-term follow-up in patients treated with Mini-BEAM as salvage therapy for relapsed or refractory Hodgkin’s disease. Br J Haematol. 2001;113(1):161–71. doi:1046/j.1365-2141.2001.02714.x.
  20. Josting A, Rudolph C, Reiser M, et al. Time-intensified dexamethasone/cisplatin/cytarabine: an effective salvage therapy with low toxicity in patients with relapsed and refractory Hodgkin’s disease. Ann Oncol. 2002;13(10):1628–35. doi: 10.1093/annonc/mdf221.
  21. Abali H, Urun Y, Oksuzoglu B, et al. Comparison of ICE (ifosfamide-carboplatin-etoposide) versus DHAP (cytosine arabinoside-cisplatin-dexamethasone) as salvage chemotherapy in patients with relapsed or refractory lymphoma. Cancer Invest. 2008;26(4):401–6. doi: 10.1080/07357900701788098.
  22. European Society for Blood and Marrow Transplantation Annual Report 2016. Available from: http://www.ebmt.org/sites/default/files/migration_legacy_files/document/Annual%20Report%202016_EBMT.pdf. (accessed 28.03.2018).
  23. Passweg JR, Baldomero H, Bregni M, et al. Hematopoietic SCT in Europe: data and trends in 2011. Bone Marrow Transplant. 2013;48(9):1161–7. doi: 10.1038/bmt.2013.51.
  24. Жуков Н.В., Усс А.Л., Миланович Н.Ф. и др. Оптимальные сроки проведения аутологичной трансплантации клеток предшественников гемопоэза при неблагоприятном течении лимфомы Ходжкина. Зарубежные рекомендации и отечественная практика. Онкогематология. 2014;2:37–44.[Zhukov NV, Uss AL, Milanovich NF, et al. The optimal time for autologous hematopoietic progenitor cell transplantation during treatment of Hodgkin’s lymphoma. Foreign recommendations and Russian experience. Onkogematologiya. 2014;2:37–44. (In Russ)]
  25. Мочкин Н.Е., Саржевский В.О., Дубинина Ю.Н. и др. Высокодозная химиотерапия с трансплантацией аутологичных кроветворных стволовых клеток при лимфоме Ходжкина. Десятилетний опыт ФГБУ «НМХЦ им. Н.И. Пирогова» Минздрава России. Российский журнал детской гематологии и онкологии. 2017;4(2):85–90. doi: 10.17650/2311-1267-2017-4-2-85-90.[Mochkin NE, Sarzhevskii VO, Dubinina YuN, et al. High-dose chemotherapy with autologous hematopoietic stem cell transplantation in patients with Hodgkin’s lymphoma. 10-year experience of the NI Pirogov Russian National Medical Center of Surgery. Rossiiskii zhurnal detskoi gematologii i onkologii. 2017;4(2):85–90. doi: 17650/2311-1267-2017-4-2-85-90. (In Russ)]
  26. Sasse S, Alram M, Muller H, et al. Prognostic relevance of DHAP dose-density in relapsed Hodgkin lymphoma: an analysis of the German Hodgkin-Study Group.Leuk Lymphoma.2016;57(5):1067–73. doi: 10.3109/10428194.2015.1083561.
  27. Moskowitz AJ, Hamlin PA, Perales M-A, et al. Phase II study of bendamustine in relapsed and refractory Hodgkin lymphoma. J Clin Oncol. 2013;31(4):456–60. doi: 10.1200/JCO.2012.45.3308.
  28. Visani G, Malerba L, Stefani PM, et al. BeEAM (bendamustine, etoposide, cytarabine, melphalan) before autologous stem cell transplantation is safe and effective for resistant/relapsed lymphoma patients. Blood. 2011;118(12):3419–25. doi: 10.1182/blood-2011-04-351924.
  29. Caballero MD, Rubio V, Rifon J, et al. BEAM chemotherapy followed by autologous stem cell support in lymphoma patient: analysis of efficacy, toxicity and prognostic factors. Bone Marrow Transplant. 1997;20(6):451–8. doi: 10.1038/sj.bmt.1700913.
  30. Jagannath S, Armitage JO, Dicke KA, et al. Prognostic factors for response and survival after high-dose cyclophosphamide, carmustine, and etoposide with autologous bone marrow transplantation for relapsed Hodgkin’s disease. J Clin Oncol. 1989;7(2):179–85. doi: 10.1200/jco.1989.7.2.179.
  31. Provencio M, Sanchez A, Sanchez-Beato M. New drugs and targeted treatments in Hodgkin’s lymphoma. Cancer Treat Rev. 2014;40(3):457–64. doi. 10.1016/j.ctrv.2013.09.005.

Вирус Эпштейна—Барр у больных классической лимфомой Ходжкина

В.Э. Гурцевич, Е.А. Демина, Н.Б. Сенюта, И.В. Ботезату, К.В. Смирнова, Т.Е. Душенькина, Д.М. Максимович, У.В. Парамонова, И.С. Монин, А.В. Лихтенштейн

ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Владимир Эдуардович Гурцевич, д-р мед. наук, профессор, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: 8(499)324-25-64; e-mail: gurtsevitch-vlad-88@yandex.ru

Для цитирования: Гурцевич В.Э., Демина Е.А. Сенюта Н.Б. и др. Вирус Эпштейна—Барр у больных классической лимфомой Ходжкина. Клиническая онкогематология. 2018;11(2):160–6.

DOI: 10.21320/2500-2139-2018-11-2-160-166


РЕФЕРАТ

Обоснование. Тесная связь между вирусом Эпштейна—Барр (ВЭБ) и классической лимфомой Ходжкина (кЛХ) установлена примерно у 1/3 больных. ВЭБ-положительные случаи этой лимфомы характеризуются повышенными титрами ВЭБ-специфических антител, часто возникающими задолго до появления симптомов опухоли, а также высокой концентрацией ДНК ВЭБ в плазме больных. Эти вирусные маркеры, как правило, коррелируют с клиническими проявлениями болезни и эффектом проведенной терапии. Однако у больных с ВЭБ-отрицательными вариантами кЛХ оценка клинической значимости гуморального ответа на ВЭБ и концентрации ДНК ВЭБ в плазме не проводилась.

Цель. Поиск возможной диагностической и прогностической значимости маркеров ВЭБ у больных с ВЭБ-отрицательными вариантами кЛХ.

Методы. В исследование включено 13 больных кЛХ, наблюдавшихся в отделении химиотерапии гемобластозов НИИ клинической онкологии ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России. Соотношение мужчин и женщин 1:1,3, средний возраст составил 26,4 года. У всех больных до лечения, в процессе его проведения, после его окончания и в период наблюдения анализировали количество лейкоцитов и лимфоцитов крови. Контрольную группу, в которой анализу подвергнуты те же показатели, составили 40 здоровых лиц (средний возраст 41,1 года, соотношение мужчин и женщин 1,5:1). В исследовании использовались серологический тест на антитела к ВЭБ и количественное определение числа копий вирусной ДНК в плазме крови.

Результаты. Полученные данные свидетельствуют о низком уровне гуморального ответа к ВЭБ у изучаемых больных, часто еще более снижающемся после нескольких курсов полихимиотерапии, что коррелировало со снижением абсолютного числа лейкоцитов и лимфоцитов крови. В отличие от титров вирусспецифических антител, не отражающих эффективность противоопухолевой терапии, концентрация ДНК ВЭБ в плазме у 2 пациентов снизилась до 0 после достижения ремиссии.

Заключение. Ограниченное число наблюдений, тем не менее, позволяет предположить, что показатели вирусной нагрузки в плазме больных ВЭБ-отрицательными вариантами кЛХ могут оказаться полезным маркером, отражающим эффективность противоопухолевого воздействия. Необходимы дополнительные исследования для внесения ясности в изучаемую проблему.

Ключевые слова: вирус Эпштейна—Барр (ВЭБ), классическая лимфома Ходжкина, ДНК ВЭБ, ВЭБ-отрицательная классическая лимфома Ходжкина, титр вирусспецифических антител.

Получено: 13 ноября 2017 г.

Принято в печать: 8 февраля 2018 г.

Читать статью в PDF 

ЛИТЕРАТУРА

  1. Alexander FE, Jarrett RF, Lawrence D, et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer. 2000;82(5):1117–21.
  2. Mueller N, Evans A, Harris NL, et al. Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med. 1989;320(11):689–95. doi: 10.1056/nejm198903163201103.
  3. Anagnostopoulos I, Herbst H, Niedobitek G, et al. Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1-positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood. 1989;74(2):810–6.
  4. Tanyildiz HG, Yildiz I, Bassullu N, et al. The Role of Epstein-Barr Virus LMP-1 Immunohistochemical Staining in Childhood Hodgkin Lymphoma. Iran J Pediatr. 2015;25(6):e2359. doi: 10.5812/ijp.2359.
  5. Iwakiri D, Takada K. Role of EBERs in the pathogenesis of EBV infection. Adv Cancer Res. 2010;107:119–36. doi: 10.1016/s0065-230x(10)07004-1.
  6. Glaser SL, Lin RJ, Stewart SL, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70(4):375–82. doi: 10.1002/(sici)1097-0215(19970207)70:4<375::aid-ijc1>3.3.co;2-l.
  7. Jarrett AF, Armstrong AA, Alexander E. Epidemiology of EBV and Hodgkin’s lymphoma. Ann Oncol. 1996;7(Suppl 4):s5–s10. doi: 10.1093/annonc/7.suppl_4.s5.
  8. Ambinder RF. Gammaherpesviruses and “Hit-and-Run” oncogenesis. Am J Pathol. 2000;156(1):1–3. doi: 10.1016/s0002-9440(10)64697-4.
  9. Meij P, Vervoort MB, Bloemena E, et al. Antibody responses to Epstein-Barr virus-encoded latent membrane protein-1 (LMP1) and expression of LMP1 in juvenile Hodgkin’s disease. J Med Virol. 2002;68(3):370–7. doi: 10.1002/jmv.10213.
  10. Chang ET, Zheng T, Lennette ET, et al. Heterogeneity of risk factors and antibody profiles in Epstein-Barr virus genome-positive and -negative Hodgkin lymphoma. J Infect Dis. 2004;189(12):2271–81. doi: 10.1086/420886.
  11. Gallagher A, Perry J, Freeland J, et al. Hodgkin lymphoma and Epstein-Barr virus (EBV): no evidence to support hit-and-run mechanism in cases classified as non-EBV-associated. Int J Cancer. 2003;104(5):624–30. doi: 10.1002/ijc.10979.
  12. Staratschek-Jox A, Kotkowski S, Belge G, et al. Detection of Epstein-Barr virus in Hodgkin-Reed-Sternberg cells: no evidence for the persistence of integrated viral fragments in Latent membrane protein-1 (LMP-1)-negative classical Hodgkin’s disease. Am J Pathol. 2000;156(1):209–16. doi: 10.1016/s0002-9440(10)64721-9.
  13. zur Hausen H, de Villiers EM. Virus target cell conditioning model to explain some epidemiologic characteristics of childhood leukemias and lymphomas. Int J Cancer. 2005;115(1):1–5. doi: 10.1002/ijc.20905.
  14. Jelcic I, Hotz-Wagenblatt A, Hunziker A, et al. Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin’s disease patient: genome reorganization and diversity in the hypervariable region. J Virol. 2004;78(14):7498–507. doi: 10.1128/jvi.78.14.7498-7507.2004.
  15. Feng H, Shuda M, Chang Y, et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100. doi: 10.1126/science.1152586.
  16. Volter C, Hausen H, Alber D, et al. Screening human tumor samples with a broad-spectrum polymerase chain reaction method for the detection of polyomaviruses. Virology. 1997;237(2):389–96. doi: 10.1006/viro.1997.8772.
  17. Lo YM, Leung SF, Chan LY, et al. Kinetics of plasma Epstein-Barr virus DNA during radiation therapy for nasopharyngeal carcinoma. Cancer Res. 2000;60(9):2351–5.
  18. Wang WY, Twu CW, Chen HH, et al. Plasma EBV DNA clearance rate as a novel prognostic marker for metastatic/recurrent nasopharyngeal carcinoma. Clin Cancer Res. 2010;16(3):1016–24. doi: 10.1158/1078-0432.ccr-09-2796.
  19. Au WY. Quantification of circulating Epstein-Barr virus (EBV) DNA in the diagnosis and monitoring of natural killer cell and EBV-positive lymphomas in immunocompetent patients. Blood. 2004;104(1):243–9. doi: 10.1182/blood-2003-12-4197.
  20. Hohaus S, Santangelo R, Giachelia M, et al. The viral load of Epstein-Barr virus (EBV) DNA in peripheral blood predicts for biological and clinical characteristics in Hodgkin lymphoma. Clin Cancer Res. 2011;17(9):2885–92. doi: 10.1158/1078-0432.ccr-10-3327.
  21. Kasamon YL, Jacene HA, Gocke CD, et al. Phase 2 study of rituximab-ABVD in classical Hodgkin lymphoma. Blood. 2012;119(18):4129–32. doi: 10.1182/blood-2012-01-402792.
  22. Kanakry JA, Li H, Gellert LL, et al. Plasma Epstein-Barr virus DNA predicts outcome in advanced Hodgkin lymphoma: correlative analysis from a large North American cooperative group trial. Blood. 2013;121(18):3547–53. doi: 10.1182/blood-2012-09-454694.
  23. Dinand V, Sachdeva A, Datta S, et al. Plasma Epstein Barr Virus (EBV) DNA as a Biomarker for EBV associated Hodgkin lymphoma. Indian Pediatr. 2015;52(8):681–5. doi: 10.1007/s13312-015-0696-9.
  24. Stein H, Delsol G, Pileri SA, et al. Classical Hodgkin lymphoma, introduction. In: Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  25. Lo YM, Chan LY, Chan AT, et al. Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res. 1999;59(21):5452–5.
  26. Botezatu IV, Kondratova VN, Shelepov VP, et al. DNA melting analysis: application of the “open tube” format for detection of mutant KRAS. Anal Biochem. 2011;419(2):302–8. doi: 10.1016/j.ab.2011.08.015.
  27. Srinivas SK, Sample JT, Sixbey JW. Spontaneous loss of viral episomes accompanying Epstein-Barr virus reactivation in a Burkitt’s lymphoma cell line. J Infect Dis. 1998;177(6):1705–9. doi: 10.1086/517427.
  28. Razzouk BI, Srinivas S, Sample CE, et al. Epstein-Barr Virus DNA recombination and loss in sporadic Burkitt’s lymphoma. J Infect Dis. 1996;173(3):529–35. doi: 10.1093/infdis/173.3.529.