WHIM-синдром: обзор литературы и описание двух собственных клинических наблюдений в одной семье

М.В. Марченко, Ю.Н. Кузнецов, А.В. Лапина, И.А. Михайлова, Т.А. Быкова, Т.С. Щеголева, В.В. Байков, А.Д. Кулагин

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Мария Викторовна Марченко, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)338-62-65; e-mail: mv_bogomolova@mail.ru

Для цитирования: Марченко М.В., Кузнецов Ю.Н., Лапина А.В. и др. WHIM-синдром: обзор литературы и описание двух собственных клинических наблюдений в одной семье. Клиническая онкогематология. 2023;16(1):14–26.

DOI: 10.21320/2500-2139-2023-16-1-14-26


РЕФЕРАТ

WHIM-синдром (бородавки, гипогаммаглобулинемия, инфекции и миелокатексис) — редкое генетическое заболевание, связанное с активирующими герминальными мутациями в гене, кодирующем хемокиновый рецептор CXCR4. WHIM-синдром проявляется нейтропенией, лимфопенией, инфекциями и дегенеративными изменениями зрелых нейтрофилов с миелоидной гиперплазией костного мозга (миелокатексисом). У некоторых пациентов выявляются гипогаммаглобулинемия, персистирующие бородавки на коже, в области наружных половых органов, встречаются и другие локализации, а также наблюдаются врожденные пороки сердца. В настоящей работе проведен всесторонний анализ генетических основ, патофизиологии, клинической манифестации, диагностики и возможностей лечения WHIM-синдрома. Приводится описание двух собственных клинических наблюдений в одной семье.

Ключевые слова: WHIM-синдром, CXCR4, бородавки, гипогаммаглобулинемия, инфекции, миелокатексис.

Получено: 30 августа 2022 г.

Принято в печать: 2 декабря 2022 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Wetzler M, Talpaz M, Kleinerman ES, et al. A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. Am J Med. 1990;89(5):663–72. doi: 10.1016/0002-9343(90)90187-i.
  2. Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34(1):70–4. doi: 10.1038/ng1149.
  3. Zuelzer WW. “Myelokathexis” – a new form of chronic granulocytopenia. Report of a case. N Engl J Med. 1964;270:699–704. doi: 10.1056/NEJM196404022701402.
  4. Krill CE, Smith HD, Mauer AM. Chronic idiopathic granulocytopenia. N Engl J Med. 1964;270:973–9. doi: 10.1056/NEJM196405072701902.
  5. Beaussant Cohen S, Fenneteau O, Plouvier E, et al. Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry. Orphanet J Rare Dis. 2012;7:71. doi: 10.1186/1750-1172-7-71.
  6. Heusinkveld LE, Majumdar S, Gao JL, et al. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol. 2019;39(6):532–56. doi: 10.1007/s10875-019-00665-w.
  7. McDermott DH, Murphy PM. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol Rev. 2019;287(1):91–102. doi: 10.1111/imr.12719. PMID: 30565238.
  8. Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature. 1996;382(6594):829–33. doi: 10.1038/382829a0.
  9. Pozzobon T, Goldoni G, Viola A, Molon B. CXCR4 signaling in health and disease. Immunol Lett. 2016;177:6–15. doi: 10.1016/j.imlet.2016.06.006.
  10. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272(5263):872–7. doi: 10.1126/science.272.5263.872.
  11. Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005;6(10):1038–46. doi: 10.1038/ni1251.
  12. Kawai T, Choi U, Whiting-Theobald NL, et al. Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome. Exp Hematol. 2005;33(4):460–8. doi: 10.1016/j.exphem.2005.01.001.
  13. Balabanian K, Lagane B, Pablos JL, et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood. 2005;105(6):2449–57. doi: 10.1182/blood-2004-06-2289.
  14. Gulino AV, Moratto D, Sozzani S, et al. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood. 2004;104(2):444–52. doi: 10.1182/blood-2003-10-3532.
  15. Aprikyan AA, Liles WC, Park JR, et al. Myelokathexis, a congenital disorder of severe neutropenia characterized by accelerated apoptosis and defective expression of bcl-x in neutrophil precursors. Blood. 2000;95(1):320–7. doi: 10.1182/blood.V95.1.320.
  16. McDermott DH, Liu Q, Velez D, et al. A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood. 2014;123(15):2308–16. doi: 10.1182/blood-2013-09-527226.
  17. Balabanian K, Brotin E, Biajoux V, et al. Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood. 2012;119(24):5722–30. doi: 10.1182/blood-2012-01-403378.
  18. Mentzer WC Jr, Johnston RB Jr, Baehner RL, Nathan DG. An unusual form of chronic neutropenia in a father and daughter with hypogammaglobulinaemia. Br J Haematol. 1977;36(3):313–22. doi: 10.1111/j.1365-2141.1977.tb00654.x.
  19. Badolato R, Donadieu J. How I treat warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. Blood. 2017;130(23):2491–8. doi: 10.1182/blood-2017-02-708552.
  20. McGuire PJ, Cunningham-Rundles C, Ochs H, Diaz GA. Oligoclonality, impaired class switch and B-cell memory responses in WHIM syndrome. Clin Immunol. 2010;135(3):412–21. doi: 10.1016/j.clim.2010.02.006.
  21. Handisurya A, Schellenbacher C, Reininger B, et al. A quadrivalent HPV vaccine induces humoral and cellular immune responses in WHIM immunodeficiency syndrome. Vaccine. 2010;28(30):4837–41. doi: 10.1016/j.vaccine.2010.04.057.
  22. Roselli G, Martini E, Lougaris V, et al. CXCL12 Mediates Aberrant Costimulation of B Lymphocytes in Warts, Hypogammaglobulinemia, Infections, Myelokathexis Immunodeficiency. Front Immunol. 2017;8:1068. doi: 10.3389/fimmu.2017.01068.
  23. Dotta L, Notarangelo LD, Moratto D, et al. Long-Term Outcome of WHIM Syndrome in 18 Patients: High Risk of Lung Disease and HPV-Related Malignancies. J Allergy Clin Immunol Pract. 2019;7(5):1568–77. doi: 10.1016/j.jaip.2019.01.045.
  24. Chow KY, Brotin Е, Ben Khalifa Y, et al. A pivotal role for CXCL12 signaling in HPV-mediated transformation of keratinocytes: clues to understanding HPV-pathogenesis in WHIM syndrome. Cell Host Microbe. 2010;8(6):523–33. doi: 10.1016/j.chom.2010.11.006.
  25. Meuris F, Carthagena L, Jaracz-Ros A, et al. The CXCL12/CXCR4 Signaling Pathway: A New Susceptibility Factor in Human Papillomavirus Pathogenesis. PLoS Pathog. 2016;12(12):e1006039. doi: 10.1371/journal.ppat.1006039.
  26. McDermott DH, Gao JL, Liu Q, et al. Chromothriptic cure of WHIM syndrome. Cell. 2015;160(4):686–99. doi: 10.1016/j.cell.2015.01.014.
  27. Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. 2011;144(1):27–40. doi: 10.1016/j.cell.2010.11.055.
  28. Мамаев Н.Н., Гиндина Т.Л., Бойченко Э.Г. Хромотрипсис в онкологии: обзор литературы и собственное наблюдение. Клиническая онкогематология. 2017;10(2):191–205. doi: 10.21320/2500-2139-2017-10-2-191-205.
    [Mamaev NN, Gindina TL, Boichenko EG. Chromothripsis in Oncology: Literature Review and Case Report. Clinical oncohematology. 2017;10(2):191–205. doi: 10.21320/2500-2139-2017-10-2-191-205. (In Russ)]
  29. Auer PL, Teumer A, Schick U, et al. Rare and low-frequency coding variants in CXCR2 and other genes are associated with hematological traits. Nat Genet. 2014;46(6):629–34. doi: 10.1038/ng.2962.
  30. Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. 2014;123(11):1637–46. doi: 10.1182/blood-2013-09-525808.
  31. Dale DC, Dick E, Kelley M, et al Family studies of warts, hypogammaglobulinemia, immunodeficiency, myelokathexis syndrome. Curr Opin Hematol. 2020;27(1):11–7. doi: 10.1097/MOH.0000000000000554.
  32. Latger-Cannard V, Bensoussan D, Bordigoni P. The WHIM syndrome shows a peculiar dysgranulopoiesis: myelokathexis. Br J Haematol. 2006;132(6):669. doi: 10.1111/j.1365-2141.2005.05908.x.
  33. Kim HK, De La Luz Sierra M, Williams CK, et al. G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood. 2006;108(3):812–20. doi: 10.1182/blood-2005-10-4162.
  34. Деордиева Е.А., Швец О.А., Лаберко А.Л. и др. Характеристика группы пациентов с WHIM-синдромом. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(4):68–75. doi: 10.24287/1726-1708-2020-19-4suppl-68-75.
    [Deordieva EA, Shvets OA, Laberko AL, et al. Characteristics of a group of patients with WHIM syndrome. Pediatric Hematology/Oncology and Immunopathology. 2020;19(4):68–75. doi: 10.24287/1726-1708-2020-19-4suppl-68-75. (In Russ)]
  35. McDermott DH, Pastrana DV, Calvo KR, et al. Plerixafor for the Treatment of WHIM Syndrome. N Engl J Med. 2019;380(2):163–70. doi: 10.1056/NEJMoa1808575.
  36. Dale DC, Firkin F, Bolyard AA, et al. Results of a phase 2 trial of an oral CXCR4 antagonist, mavorixafor, for treatment of WHIM syndrome. Blood. 2020;136(26):2994–3003. doi: 10.1182/blood.2020007197.
  37. Dale DC, Alsina L, Azar A, et al. Global Phase 3, Randomized, Placebo-Controlled Trial with Open-Label Extension Evaluating the Oral CXCR4 Antagonist Mavorixafor in Patients with WHIM Syndrome (4WHIM): Trial Design and Enrollment. Blood. 2021;138(Suppl 1):4310. doi: 10.1182/blood-2021-153346.
  38. Handisurya A, Schellenbacher C, Reininger B, et al. A quadrivalent HPV vaccine induces humoral and cellular immune responses in WHIM immunodeficiency syndrome. Vaccine. 2010;28(30):4837–41. doi: 10.1016/j.vaccine.2010.04.057.
  39. Laberko A, Deordieva E, Krivan G, et al. Multicenter Experience of Hematopoietic Stem Cell Transplantation in WHIM Syndrome. J Clin Immunol. 2022;42(1):171-182 doi: 10.1007/s10875-021-01155-8.
  40. Tarzi MD, Jenner M, Hattotuwa K, et al. Sporadic case of warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis syndrome. J Allergy Clin Immunol. 2005;116(5):1101–5. doi: 10.1016/j.jaci.2005.08.040.
  41. Badolato R, Dotta L, Tassone L, et al. Tetralogy of Fallot is an uncommon manifestation of warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. J Pediatr. 2012;161(4):763–5. doi: 10.1016/j.jpeds.2012.05.058.
  42. McDermott DH, De Ravin SS, Jun HS, et al. Severe congenital neutropenia resulting from G6PC3 deficiency with increased neutrophil CXCR4 expression and myelokathexis. Blood. 2010;116(15):2793–802. doi: 10.1182/blood-2010-01-265942.
  43. Leiding JW, Holland SM. Warts and all: human papillomavirus in primary immunodeficiencies. J Allergy Clin Immunol. 2012;130(5):1030–48. doi: 10.1016/j.jaci.2012.07.049.
  44. Mansour S, Josephs KS, Ostergaard P, et al. Redefining WILD syndrome: a primary lymphatic dysplasia with congenital multisegmental lymphoedema, cutaneous lymphovascular malformation, CD4 lymphopaenia and warts. J Med Genet. 2021:jmedgenet-2021–107820. doi: 10.1136/jmedgenet-2021-107820.

Частота и факторы, предрасполагающие к инфекциям, у больных хроническим лимфолейкозом, получающих ибрутиниб

Е.А. Дмитриева1, Е.А. Никитин1, Е.Е. Маркова1, Н.Ю. Дмитриева2, В.В. Птушкин1

1 ГБУЗ «Городская клиническая больница им. С.П. Боткина ДЗМ», 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284

2 ЗАО «Астон Консалтинг», ул. Шаболовка, д. 10, стр. 3, Москва, Российская Федерация, 119049

Для переписки: Евгений Александрович Никитин, д-р мед. наук, 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284; тел.: +7(916)572-06-44; e-mail: eugene_nikitin@mail.ru

Для цитирования: Дмитриева Е.А., Никитин Е.А., Маркова Е.Е. и др. Частота и факторы, предрасполагающие к инфекциям, у больных хроническим лимфолейкозом, получающих ибрутиниб. Клиническая онкогематология. 2019;12(4):438–48.

DOI: 10.21320/2500-2139-2019-12-4-438-448


РЕФЕРАТ

Актуальность. Инфекции являются типичным осложнением хронического лимфолейкоза (ХЛЛ). Рекомендации по профилактике инфекций у пациентов с ХЛЛ, получающих ибрутиниб, отсутствуют, возможно, из-за недостатка данных в литературе.

Цель. Изучение частоты и характера инфекций у больных ХЛЛ, получающих ибрутиниб, и анализ факторов, предрасполагающих к инфекциям.

Материалы и методы. Представлены данные о бактериальных, вирусных и грибковых инфекциях у пациентов с ХЛЛ, получавших ибрутиниб в течение 4,2 года (с ноября 2014 г. по декабрь 2018 г.) в одном центре. Степень тяжести инфекций устанавливали в соответствии с критериями CTCAE, версия IV.

Результаты. В исследование включено 240 пациентов с ХЛЛ. Медиана возраста больных составила 65 лет (диапазон 32–91 год), было 86 (36 %) женщин, 117 (48 %) пациентов имели стадию C по Binet. Ибрутиниб в качестве монотерапии получало 204 (85 %) пациента, в сочетании с моноклональными анти-CD20-антителами — 36 (15 %). Медиана наблюдения составила 14,8 мес. (диапазон 1–54 мес.). Большинство пациентов (n = 224, 93 %) получали ибрутиниб по поводу рецидивов ХЛЛ. Медиана числа линий терапии в анамнезе составила 3 (диапазон 1–12). Нейтропения (определяемая как уровень нейтрофилов < 1000 кл./мкл) до лечения ибрутинибом была выявлена у 20 (8 %) пациентов. Глюкокортикостероиды (ГКС) вместе с ибрутинибом получало 20 пациентов. Всего было зарегистрировано 525 инфекционных эпизодов у 183 пациентов. Из них было 381 (72,5 %) бактериальных/смешанных, 115 (22 %) вирусных и 29 (5,5 %) грибковых инфекций. Среди бактериальных/смешанных инфекций 121 (32 %) эпизод расценивался как инфекция III степени, 43 (11 %) — как IV. У 7 (1,8 %) пациентов инфекции были с летальным исходом. Суммарный кумулятивный риск бактериальных инфекций III–V степени в течение 12 мес. составил 37 % (95%-й доверительный интервал [95% ДИ] 31–43 %), вирусных — 28 % (95% ДИ 22–34 %), грибковых — 8 % (95% ДИ 4–12 %). Более высокий кумулятивный риск бактериальных инфекций III–V степени наблюдался у пациентов с ≥ 3 линий предшествующей ибрутинибу терапии (отношение рисков [ОР] 2,0; 95% ДИ 1,36–2,97), со стадией C по Binet (ОР 1,4; 95% ДИ 0,95–2,08), статусом по ECOG ≥ 2 (ОР 2,4; 95% ДИ 1,6–3,6), исходной нейтропенией (ОР 1,25; 95% ДИ 0,73–2,13), а также у мужчин (ОР 1,8; 95% ДИ 1,16–2,8; = 0,004). В многофакторном анализе мужской пол (ОР 1,89; 95% ДИ 0,5–3,0; = 0,006), статус по ECOG ≥ 2 (ОР 1,97; 95% ДИ 0,5–3,0) и исходная нейтропения (ОР 1,76; 95% ДИ 0,99–3,1) были значимыми и независимыми факторами риска. Кумулятивный риск любых грибковых инфекций был связан с одновременным применением ГКС (ОР 6,0; 95% ДИ 5,85–14,7) и исходной нейтропенией (ОР 2,36; 95% ДИ 0,95–5,85). Единственным показателем, статистически значимо связанным с вирусными инфекциями, было ≥ 3 линий терапии в анамнезе (ОР 1,74; 95% ДИ 1,06–2,86; = 0,029).

Заключение. Пациенты с исходной нейтропенией, статусом по ECOG ≥ 2 имеют наиболее высокий риск развития тяжелых бактериальных инфекций. Мы полагаем, что у этих пациентов следует рассматривать назначение антибактериальной профилактической терапии до достижения статуса по ECOG < 2 и разрешения нейтропении. Пациенты, которым одновременно с ибрутинибом назначаются ГКС, имеют высокий риск развития грибковых инфекций на любом сроке лечения. У этих пациентов следует рассматривать одновременное назначение профилактической противогрибковой терапии.

Ключевые слова: хронический лимфолейкоз, инфекции, ибрутиниб.

Получено: 27 марта 2019 г.

Принято в печать: 19 сентября 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Molica S. Infections in chronic lymphocytic leukemia: risk factors, and impact on survival, and treatment. Leuk Lymphoma. 1994;13(3–4):203–14. doi: 10.3109/10428199409056283.

  2. da Cunha-Bang, C, Simonsen J, Geisler C, et al. Improved survival for patients diagnosed with chronic lymphocytic leukemia in the era of chemo-immunotherapy: a Danish population-based study of 10455 patients. Blood Cancer J. 2016;6(11):e499. doi: 10.1038/bcj.2016.105.

  3. Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N Engl J Med. 2015;373(25):2425–37. doi: 10.1056/NEJMoa1509388.

  4. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23. doi: 10.1056/NEJMoa1400376.

  5. Winqvist M, Asklid A, Andersson P, et al. Real-world results of ibrutinib in patients with relapsed or refractory chronic lymphocytic leukemia: data from 95 consecutive patients treated in a compassionate use program. A study from the Swedish Chronic Lymphocytic Leukemia Group. Haematologica. 2016;101(12):1573–80. doi: 10.3324/haematol.2016.144576.

  6. Perkins JG, Flynn JM, Howard RS, Byrd JC. Frequency and type of serious infections in fludarabine-refractory B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma: implications for clinical trials in this patient population. Cancer. 2002;94(7):2033–9. doi: 10.1002/cncr.0680.

  7. Mohamed AJ, Yu L, Backesjo C-M, et al. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 2009;228(1):58–73. doi: 10.1111/j.1600-065x.2008.00741.x.

  8. Niemann CU, Herman SEM, Maric I, et al. Disruption of in vivo Chronic Lymphocytic Leukemia Tumor-Microenvironment Interactions by Ibrutinib-Findings from an Investigator-Initiated Phase II Study. Clin Cancer Res. 2016;22(7):1572–82. doi: 10.1158/1078-0432.ccr-15-1965.

  9. Chun J-K, Lee TJ, Song JW, et al. Analysis of clinical presentations of Bruton disease: a review of 20 years of accumulated data from pediatric patients at Severance Hospital. Yonsei Med J. 2008;49(1):28–36. doi: 10.3349/ymj.2008.49.1.28.

  10. Chan TS, Au-Yeung R, Chim C-S, et al. Disseminated fusarium infection after ibrutinib therapy in chronic lymphocytic leukaemia. Ann Hematol. 2017;96(5):871–2. doi: 10.1007/s00277-017-2944-7.

  11. Arthurs B, Wunderle K, Hsu M, Kim S. Invasive aspergillosis related to ibrutinib therapy for chronic lymphocytic leukemia. Respir Med Case Rep. 2017;21:27–9. doi: 10.1016/j.rmcr.2017.03.011.

  12. Okamoto K, Proia LA, Demarais PL. Disseminated Cryptococcal Disease in a Patient with Chronic Lymphocytic Leukemia on Ibrutinib. Case Rep Infect Dis. 2016;2016:1–3. doi: 10.1155/2016/4642831.

  13. Lee R, Nayernama A, Jones SC, et al. Ibrutinib-associated Pneumocystis jirovecii pneumonia. Am J Hematol. 2017;92(11):E646–E648.

  14. Ahn IE, Jerussi T, Farooqui M, et al. Atypical Pneumocystis jirovecii pneumonia in previously untreated patients with CLL on single-agent ibrutinib. Blood. 2016;128(15):1940–3.

  15. Ruchlemer R, Ami BR, Lachish T. Ibrutinib for Chronic Lymphocytic Leukemia. N Engl J Med. 2016;374(16):1593–4. doi: 10.1056/nejmc1600328.

  16. Chamilos G, Lionakis MS, Kontoyiannis DP. Call for Action: Invasive Fungal Infections Associated With Ibrutinib and Other Small Molecule Kinase Inhibitors Targeting Immune Signaling Pathways. Clin Infect Dis. 2018;66(1):140–8. doi: 10.1093/cid/cix687.

  17. Ghez D, Calleja A, Protin C, et al. Early-onset invasive aspergillosis and other fungal infections in patients treated with ibrutinib. Blood. 2018;131(17):1955–9. doi: 10.1182/blood-2017-11-818286.

  18. Baron M, Zini JM, Challan BT, et al. Fungal infections in patients treated with ibrutinib: two unusual cases of invasive aspergillosis and cryptococcal meningoencephalitis. Leuk Lymphoma. 2017;58(12):2981–2. doi: 10.1080/10428194.2017.1320710.

  19. Chanan-Khan A, Cramer P, Demirkan F, et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol. 2016;17(2):200–11. doi: 10.1016/s1470-2045(15)00465-9.

  20. Sun C, Tian X, Lee YS, et al. Partial reconstitution of humoral immunity and fewer infections in patients with chronic lymphocytic leukemia treated with ibrutinib. Blood. 2015;126(19):2213–9. doi: 10.1182/blood-2015-04-639203.

  21. De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21. doi: 10.1086/588660.

  22. Moreira J, Rabe KG, Cerhan JR, et al. Infectious complications among individuals with clinical monoclonal B-cell lymphocytosis (MBL): a cohort study of newly diagnosed cases compared to controls. Leukemia. 2013;27(1):136–41. doi: 10.1038/leu.2012.187.

  23. Morrison VA. Infectious complications of chronic lymphocytic leukaemia: pathogenesis, spectrum of infection, preventive approaches. Best Pract Res Clin Haematol. 2010;23(1):145–53. doi: 10.1016/j.beha.2009.12.004.

  24. Morrison VA, Rai KR, Peterson BL, et al. Impact of therapy With chlorambucil, fludarabine, or fludarabine plus chlorambucil on infections in patients with chronic lymphocytic leukemia: Intergroup Study Cancer and Leukemia Group B 9011. J Clin Oncol. 2001;19(16):3611–21. doi: 10.1200/jco.2001.19.16.3611.

  25. Anaissie EJ, Kontoyiannis DP, O’Brien S, et al. Infections in patients with chronic lymphocytic leukemia treated with fludarabine. Ann Intern Med. 1998;129(7):559–66. doi: 10.7326/0003-4819-129-7-199810010-00010.

  26. Hensel M, Kornacker M, Yammeni S, et al. Disease activity and pretreatment, rather than hypogammaglobulinaemia, are major risk factors for infectious complications in patients with chronic lymphocytic leukaemia. Br J Haematol. 2003;122(4):600–6. doi: 10.1046/j.1365-2141.2003.04497.x.

  27. Burger JA, Sivina M, Jain N, et al. Randomized trial of ibrutinib vs ibrutinib plus rituximab in patients with chronic lymphocytic leukemia. Blood. 2019;133(10):1011–9. doi: 10.1182/blood-2018-10-879429.

  28. Baden LR, Swaminathan S, Angarone M, et al. Prevention and Treatment of Cancer-Related Infections, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2016;14(7):882–913. doi: 10.6004/jnccn.2016.0093.

  29. Varughese T, Taur Y, Cohen N, et al. Serious Infections in Patients Receiving Ibrutinib for Treatment of Lymphoid Cancer. Clin Infect Dis. 2018;67(5):687–92. doi: 10.1093/cid/ciy175.

  30. Jongstra-Bilen J, Cano AP, Hasija M, et al. Dual functions of Bruton’s tyrosine kinase and Tec kinase during Fcgamma receptor-induced signaling and phagocytosis. J Immunol. 2008;181(1):288–98. doi: 10.4049/jimmunol.181.1.288.

  31. Strijbis K, Tafesse F, Fairn GD, et al. Bruton’s Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages. PLoS Pathog. 2013;9(6):e1003446. doi: 10.1371/journal.ppat.1003446.

  32. Wierda WG, Byrd JC, Abramson JS, et al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Version 5.2019 – May 23, 2019. Available from: https://www.nccn.org/store/login/login.aspx?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/cll.pdf. (accessed 5.07.2019).

Таксономическая структура и резистентность к антибиотикам возбудителей инфекций кровотока у онкогематологических больных

Багирова Н.С. 

ФГБНУ «Российский онкологический научный центр им. Н.Н. Блохина», Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Наталья Сергеевна Багирова, д-р мед. наук, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(499)324-18-60; e-mail: nbagirova@mail.ru

Для цитирования: Багирова Н.С. Таксономическая структура и резистентность к антибиотикам возбудителей инфекций кровотока у онкогематологических больных. Клиническая онкогематология. 2015;8(2):191–200.


РЕФЕРАТ

Актуальность и цели. В онкогематологии инфекции являются одной из основных причин летальности у больных. Меняющиеся эпидемиологические закономерности отражают не только появление новых возбудителей инфекций кровотока, но и рост резистентности патогенов к противомикробным препаратам. Очень важно проводить постоянный мониторинг таксономической структуры возбудителей инфекций кровотока и их резистентности к антимикробным препаратам в целях адекватной и своевременной терапии тяжелых инфекций. Цель — анализ таксономической структуры возбудителей, выделенных при диагностике бактериемии у взрослых онкогематологических больных с использованием современных приборов, и эффективности терапии тяжелых инфекций.

Методы. Проведено микробиологическое исследование образцов крови онкогематологических больных при подозрении на сепсис и другие тяжелые инфекции за период с 2005 по 2013 г. Диагностику бактериемии проводили с использованием геманализаторов-инкубаторов Bactec FX400 (Becton Dickinson, США) и Bact/Alert (BioMerieux, Франция), идентификацию штаммов — с использованием масс-спектрометра MALDI-TOF Microflex LT (Biotyper, Bruker Daltonics, Германия). Чувствительность к антимикробным препаратам определяли на автоматическом анализаторе Microscan Walk Away 40/96+ (Siemens, Германия) и Vitek 2 (BioMerieux, Франция). Представлены сравнительные данные зарубежных исследователей.

Результаты. Было получено 3794 гемокультуры, из которых в 600 (15,8 %) случаях отмечен рост. Только 210 (53,6 %) из 392 штаммов были расценены как возбудители истинной бактериемии. Статистически значимых различий в частоте выделения грамположительных кокков (47,6 %) и грамотрицательных палочек (39,5 %) не выявлено. Грибы регистрировались статистически значимо реже грамположительных кокков и грамотрицательных палочек (9 %; < 0,0001). Прочие микроорганизмы составили 3,8 %.

Заключение. Терапия и профилактика инфекционных осложнений у онкогематологических больных сопровождаются развитием нарастающей резистентности возбудителей к антибиотикам. Изменения в таксономической структуре возбудителей инфекций кровотока необходимо учитывать при назначении эмпирической и этиотропной терапии.


Ключевые слова: инфекции, рак, инфекции кровотока, бактериемия, антимикробная резистентность, онкогематологические заболевания, антимикробная терапия.

Получено: 12 января 2015 г.

Принято в печать: 30 января 2015 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. European Centre for Disease Prevention and Control (ECDC). Annual epidemiological report on communicable diseases in Europe 2008. Stockholm: ECDC; 2008.
  2. Pien BC, Sundaram P, Raoof N, et al. The clinical and prognostic importance of positive blood cultures in adults. Am J Med. 2010;123(9):819–28. doi: 10.1016/j.amjmed.2010.03.021.
  3. Dreyer AW. Blood Culture Systems: From Patient to Result. In: Azevedo L, ed. Sepsis – An Ongoing and Significant Challenge. InTech; 2012. pp. 287–310. doi: 10.5772/2958.
  4. Dellinger RP, Carlet JM, Masur H, et al. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32(3):858–73. doi: 10.1097/01.ccm.0000117317.18092.e4.
  5. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–96. doi: 10.1097/01.ccm.0000217961.75225.e9.
  6. Girmenia C, Menichetti F. Current Epidemiology and Prevention of Infectious Complications in Cancer Patients. Eur Oncol Haematol. 2011;7(4):270–7. doi: 10.17925/eoh.2011.07.04.270.
  7. Baron EJ, Miller JM, Weinstein MP, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)a. Clin Infect Dis. 2013;57(4): e22–e121. doi: 10.1093/cid/cit278.
  8. Багирова Н.С. Микробиологическая диагностика и рациональные подходы к терапии сепсиса у онкогематологических больных: Автореф. ¼ д-ра мед. наук. М., 2003. 274 с.
    [Bagirova NS. Mikrobiologicheskaya diagnostika i ratsional’nye podkhody k terapii sepsisa u onkogematologicheskikh bol’nykh. (Microbiological diagnosing and rational approaches to therapy of sepsis in oncohematological patients.) [dissertation] Moscow; 2003. 274 p. (In Russ)]
  9. Багирова Н.С., Дмитриева Н.В. Микробиологическая диагностика бактериемии. Пособие для врачей. М.: Министерство здравоохранения Российской Федерации, 2004. 35 с.
    [Bagirova NS, Dmitrieva NV. Mikrobiologicheskaya diagnostika bakteriemii. Posobie dlya vrachei. (Microbiological diagnosing of bacteriemia. Manual for physicians.) Moscow: Ministerstvo zdravookhraneniya Rossiiskoi Federatsii Publ.; 2004. 35 p. (In Russ)]
  10. Багирова Н.С. Современное состояние диагностики бактериемии. Сопроводительная терапия в онкологии. 2006;3:23–38.
    [Bagirova NS. State-of-the-art diagnostics of bacteriemia. Soprovoditel’naya terapiya v onkologii. 2006;3:23–38. (In Russ)]
  11. Laupland KB, Deirdre CL. Population-Based Epidemiology and Microbiology of сommunity-Onset Bloodstream Infections. Clin Microbiol Rev. 2014;27(4):647–64. doi: 10.1128/cmr.00002-14.
  12. Molnar Z, Fogas J. Timing IgM treatment in sepsis: is procalcitonin the answer? In: Vincent J-L, ed. Annual update in intensive care and emergency medicine 2012. Springer; 2012. pp. 109–15.
  13. Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical Practice Guideline for the Use of Antimicrobial Agents in Neutropenic Patients with Cancer: 2010 Update by the Infectious Diseases Society of America (IDSA Guidelines). Clin Infect Dis. 2011;52(4):e56–e93. doi: 10.1093/cid/cir073.
  14. European Centre for Disease Prevention and Control (ECDC). Annual epidemiological report on communicable diseases in Europe 2009. Stockholm, European Centre for Disease Prevention and Control (Surveillance Report – 2.6 Antimicrobial resistance and healthcare-associated infections); 2010. рр. 167–78.
  15. Bagirova N, Dmitrieva N. Bacteriemia in patients with hematological malignancies. J Clin Microbiol Infect Dis. 2005;11(Suppl 2):678.
  16. Bal AM, Garau J, Gould IM, et al. Vancomycin in the treatment of meticillin-resistant Staphylococcus auseus (MRSA) infection: End or an era? J Glob Antimic Resist. 2013;1(1):23–30. doi: 10.1016/j.jgar.2013.01.002.
  17. Peel T, Cheng AC, Spelman T, et al. Differing risk factor for vancomycin-resistant and vancomycin-sensitive enterococcal bacteraemia. J Clin Microbiol Infect Dis. 2011;18(4):388–94. doi: 10.1111/j.1469-0691.2011.03591.x.
  18. Kim YJ, Kim SI, Hong KW, et al. Carbapenem-resistant Acinetobacter baumannii: diversity of resistant mechanism and risk factor for infection. Epidemiol Infect. 2012;140(1):137–45. doi: 10.1017/s0950268811000744.
  19. Vila J, Pachon J. Acinetobacter baumannii resistant to everything: what should we do? J Clin Microbiol Infect Dis. 2011;17(7):955–6. doi: 10.1111/j.1469-0691.2011.03566.x.
  20. Villa-Fares X, Garcia de La Maria C, Lopez-Rojas R, et al. In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii. J Clin Microbiol Infect Dis. 2011;18(4):383–7. doi: 10.1111/j.1469-0691.2011.03581.x.
  21. Bagirova NS, Dmitrieva NV, Blokhin NN. Yeasts in patients (PTS) with hematologic malignancies (HM). Intern J Infect Dis. 2002;6(Suppl 2):S45. doi: 10.1016/s1201-9712(02)90273-0.
  22. Pfaller MA, Diekema DJ. Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J Clin Microbiol. 2012;50(9):2846–56. doi: 10.1128/jcm.00937-12.
  23. Ranque S, Lachaud L, Gari-Toussaint M, et al. Interlaboratory reproducibility of Etest amphotericin B and caspofungin yeast susceptibility testing and comparison with the CLSI method. J Clin Microbiol. 2012;50(7):2305–9. doi: 10.1128/jcm.00490-12.
  24. Rangaraj G, Granwehr BP, Jiang Y, et al. Perils of quinolone exposure in cancer patients: breakthrough bacteremia with multidrug-resistant organisms. Cancer. 2010;116(4):967–73. doi: 10.1002/cncr.24812.