Сопроводительная (поддерживающая) терапия при трансплантации гемопоэтических стволовых клеток: традиционные методы и новые подходы

В.П. Поп, О.А. Рукавицын

ФГКУ «Главный военный клинический госпиталь им. Н.Н. Бурденко» Минобороны России, Госпитальная пл., д. 3, Москва, Российская Федерация, 105229

Для переписки: Василий Петрович Поп, канд. мед. наук, Госпитальная пл., д. 3, Москва, Российская Федерация, 105229; тел.: +7(903)178-94-12; факс: 8(499)263-07-39; e-mail: vasiliypop@mail.ru

Для цитирования: Поп В.П., Рукавицын О.А. Сопроводительная (поддерживающая) терапия при трансплантации гемопоэтических стволовых клеток: традиционные методы и новые подходы. Клиническая онкогематология. 2017;10(4):501–13.

DOI: 10.21320/2500-2139-2017-10-4-501-513


РЕФЕРАТ

Сопроводительная (поддерживающая) терапия (СТ) при трансплантации гемопоэтических стволовых клеток (ТГСК) переживает значительное развитие и изменения. Целью обзора является суммирование основных данных о методах и перспективе СТ при ТГСК, анализ новых возможностей, а также развивающихся альтернативных подходов, усиливающих эффективность противоопухолевого потенциала ТГСК. Потребность в СТ постоянно возрастает в силу как увеличения количества проводимых ТГСК, так и возрастания числа живущих после ТГСК. В обзоре освещены традиционные методы СТ, благодаря которым стали возможны успехи ТГСК: антибактериальная, противогрибковая и противовирусная профилактика. Кроме того, рассматриваются вопросы специфической профилактики, такие как возможности предупреждения токсичности криоконсерванта диметилсульфоксида, а также еще недостаточно изученные аспекты вакцинации реципиентов ТГСК и особенности воздействия на микробиоту. Продемонстрировано, что многие классические рекомендации СТ подлежат пересмотру с учетом широкой вариативности подходов не только к посттрансплантационному мониторингу, но и к эмпирической антибактериальной терапии, тактике применения гемопоэтических факторов роста, целесообразности коррекции микробиоты, ограничений внешней среды и социальных контактов. В настоящее время ТГСК может быть выполнима намного более часто, чем ранее, в условиях, близких к амбулаторным, что приводит к улучшению исходов лечения без необходимости значительных затрат на СТ в стационаре. Повышение эффективности использования ресурсов и качества СТ в будущем возможно на основе медицинских информационных технологий и улучшения цифровой инфраструктуры между врачом и пациентом. Представлен собственный опыт СТ при аллоТГСК у 19 пациентов и СТ при аутоТГСК у 82 больных, а также опыт проведения аутоТГСК в неизолированных палатах без HEPA-фильтрации. Анализ литературы свидетельствует как о повышенной востребованности различных методов СТ при ТГСК, так и о возрастающей эффективности СТ. Несмотря на отсутствие единых стандартов, внедрение новых вариантов СТ позволит значительно улучшить исходы ТГСК.

Ключевые слова: трансплантация гемопоэтических стволовых клеток, сопроводительная терапия, мукозит, антибактериальная, противогрибковая и противовирусная профилактика, микробиота, посттрансплантационные осложнения.

Получено: 26 марта 2017 г.

Принято в печать: 22 мая 2017 г.

Читать статью в PDF
ЛИТЕРАТУРА
  1. McCarthy PL, Hahn T, Hassebroek A, et al. Trends in Use of and Survival after Autologous Hematopoietic Cell Transplantation in North America, 1995-2005: Significant Improvement in Survival for Lymphoma and Myeloma during a Period of Increasing Recipient Age. Biol Blood Marrow Transplant. 2013;19(7):1116–23. doi: 10.1016/j.bbmt.2013.04.027.
  2. Auner HW, Szydlo R, Hoek J, et al. Trends in autologous hematopoietic cell transplantation for multiple myeloma in Europe: increased use and improved outcomes in elderly patients in recent years. Bone Marrow Transplant. 2015;50(2):209–15. doi: 10.1038/bmt.2014.255.
  3. Passweg JR, Baldomero H, Bader P, et al. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplant. 2016;51(6):786–92. doi: 10.1038/bmt.2016.20.
  4. Farquhar C, Marjoribanks J, Basser R, Lethaby A. High dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with early poor prognosis breast cancer. Cochrane Database Syst Rev. 2005;3:CD003139. doi: 10.1002/14651858.CD003139.pub2.
  5. Farquhar C, Marjoribanks J, Lethaby A, Azhar M. High-dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with early poor prognosis breast cancer. Cochrane Database Syst Rev. 2016;5:CD003139. doi: 10.1002/14651858.CD003139.pub3.
  6. Gratwohl A, Pasquini MC, Aljurf M, et al. One million haemopoietic stem-cell transplants: a retrospective observational study. Lancet Haematol. 2015;2(3):e91–100. doi: 10.1016/S2352-3026(15)00028-9.
  7. Majhail NS, Tao L, Bredeson C, et al. Prevalence of hematopoietic cell transplant survivors in the United States. Biol Blood Marrow Transplant. 2013;19(10):1498–501. doi: 10.1016/j.bbmt.2013.07.020.
  8. Savani BN. How Can We Improve Life Expectancy and Quality of Life in Long-Term Survivors After Allogeneic Stem Cell Transplantation? Semin Hematol. 2012;49(1):1–3. doi: 10.1053/j.seminhematol.2011.10.014.
  9. Rubio MT, Savani BN, Labopin M, et al. Impact of conditioning intensity in T-replete haplo-identical stem cell transplantation for acute leukemia: a report from the acute leukemia working party of the EBMT. J Hematol Oncol. 2016;9(1):25. doi: 10.1186/s13045-016-0248-3.
  10. Lalla RV, Bowen J, Barasch A, et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014;120(10):1453–61. doi: 10.1002/cncr.28592.
  11. Wang L, Gu Z, Zhai R, et al. Efficacy of oral cryotherapy on oral mucositis prevention in patients with hematological malignancies undergoing hematopoietic stem cell transplantation: a meta-analysis of randomized controlled trials. PloS One. 2015;10(5):e0128763. doi: 10.1371/journal.pone.0128763.
  12. Svanberg A, Оhrn K, Birgegard G. Caphosol® mouthwash gives no additional protection against oral mucositis compared to cryotherapy alone in stem cell transplantation. A pilot study. Eur J Oncol Nurs. 2015;19(1):50–3. doi: 10.1016/j.ejon.2014.07.011.
  13. Spielberger R, Stiff P, Bensinger W, et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med. 2004;351(25):2590–8. doi: 10.1056/nejmoa040125.
  14. Stiff PJ, Emmanouilides C, Bensinger WI, et al. Palifermin reduces patient-reported mouth and throat soreness and improves patient functioning in the hematopoietic stem-cell transplantation setting. J Clin Oncol. 2006;24(33):5186–93. doi: 10.1200/JCO.2005.02.8340.
  15. Abidi MH, Agarwal R, Tageja N, et al. A phase I dose-escalation trial of high-dose melphalan with palifermin for cytoprotection followed by autologous stem cell transplantation for patients with multiple myeloma with normal renal function. Biol Blood Marrow Transplant. 2013;19(1):56–61. doi: 10.1016/j.bbmt.2012.08.003.
  16. Tsirigotis P, Triantafyllou K, Girkas K, et al. Keratinocyte growth factor is effective in the prevention of intestinal mucositis in patients with hematological malignancies treated with high-dose chemotherapy and autologous hematopoietic SCT: a video-capsule endoscopy study. Bone Marrow Transplant. 2008;42(5):337–43. doi: 10.1038/bmt.2008.168.
  17. Nooka AK, Johnson HR, Kaufman JL, et al. Pharmacoeconomic analysis of palifermin to prevent mucositis among patients undergoing autologous hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(6):852–7. doi: 10.1016/j.bbmt.2014.02.025.
  18. Bensinger WI, Becker PS, Gooley TA, et al. A randomized study of melphalan 200 mg/m2 vs 280 mg/m2 as a preparative regimen for patients with multiple myeloma undergoing auto-SCT. Bone Marrow Transplant. 2016;51(1):67–71. doi: 10.1038/bmt.2015.211.
  19. Hari P, Aljitawi OS, Arce-Lara C, et al. A Phase IIb, Multicenter, Open-Label, Safety, and Efficacy Study of High-Dose, Propylene Glycol-Free Melphalan Hydrochloride for Injection (EVOMELA) for Myeloablative Conditioning in Multiple Myeloma Patients Undergoing Autologous Transplantation. Biol Blood Marrow Transplant. 2015;21(12):2100–5. doi: 10.1016/j.bbmt.2015.08.026.
  20. Blijlevens N, Schwenkglenks M, Bacon P, et al. Prospective oral mucositis audit: oral mucositis in patients receiving high-dose melphalan or BEAM conditioning chemotherapy — European Blood and Marrow Transplantation Mucositis Advisory Group. J Clin Oncol. 2008;26(9):1519–25. doi: 10.1200/JCO.2007.13.6028.
  21. Martino M, Tripepi G, Messina G, et al. A phase II, single-arm, prospective study of bendamustine plus melphalan conditioning for second autologous stem cell transplantation in de novo multiple myeloma patients through a tandem transplant strategy. Bone Marrow Transplant. 2016;51(9):1197–203. doi: 10.1038/bmt.2016.94.
  22. Mark TM, Reid W, Niesvizky R, et al. A phase 1 study of bendamustine and melphalan conditioning for autologous stem cell transplantation in multiple myeloma. Biol Blood Marrow Transplant. 2013;19(5):831–7. doi: 10.1016/j.bbmt.2013.02.013.
  23. Costa LJ, Micallef IN, Inwards DJ, et al. Effect of the dose per body weight of conditioning chemotherapy on severity of mucositis and risk of relapse after autologous haematopoietic stem cell transplantation in relapsed diffuse large B cell lymphoma. Br J Haematol. 2008;143(2):268–73. doi: 10.1111/j.1365-2141.2008.07342.x.
  24. Ullmann AJ, Schmidt-Hieber M, Bertz H, et al. Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016. Ann Hematol. 2016;95(9):1435–55. doi: 10.1007/s00277-016-2711-1.
  25. Gafter-Gvili A, Fraser A, Paul M, et al. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev. 2012;1:CD004386. doi: 10.1002/14651858.CD004386.pub3.
  26. Cruciani M, Malena M, Bosco O, et al. Reappraisal with meta-analysis of the addition of Gram-positive prophylaxis to fluoroquinolone in neutropenic patients. J Clin Oncol. 2003;21(22):4127–37. doi: 10.1200/JCO.2003.01.234.
  27. Kimura S, Akahoshi Y, Nakano H, et al. Antibiotic prophylaxis in hematopoietic stem cell transplantation. A meta-analysis of randomized controlled trials. J Infect. 2014;69(1):13–25. doi: 10.1016/j.jinf.2014.02.013.
  28. Taur Y, Jenq RR, Perales M-A, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174–82. doi: 10.1182/blood-2014-02-554725.
  29. Ullmann AJ, Akova M, Herbrecht R, et al. ESCMID* *This guideline was presented in part at ECCMID 2011. European Society for Clinical Microbiology and Infectious Diseases. guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin Microbiol Infect. 2012;18(Suppl 7):53–67. doi: 10.1111/1469-0691.12041.
  30. Deo SS, Gottlieb DJ. Adoptive T-cell therapy for fungal infections in haematology patients. Clin Transl Immunol. 2015;4(8):e40. doi: 10.1038/cti.2015.16.
  31. Parida SK, Poiret T, Zhenjiang L, et al. T-Cell Therapy: Options for Infectious Diseases. Clin Infect Dis. 2015;61(Suppl 3):S217–24. doi: 10.1093/cid/civ615.
  32. Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and Development of Therapies using Chimeric Antigen Receptor-Expressing T cells. Immunol Rev. 2013;257(1):107–26. doi: 10.1111/imr.12131.
  33. Kumaresan PR, Manuri PR, Albert ND, et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci USA. 2014;111(29):10660–5. doi: 10.1073/pnas.1312789111.
  34. Kumaresan PR, Albert N, Singh H, et al. Bioengineered Dectin-1 CAR+ T cells to control invasive fungal infection. Cancer Immunol Res. 2016;4(1 Supplt): Abstract 193. doi: 10.1158/2326-6074.CRICIMTEATIAACR15-A193.
  35. Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35. doi: 10.1182/blood-2009-08-239186.
  36. Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12(10):1160–6. doi: 10.1038/nm1475.
  37. Leen AM, Heslop HE, Brenner MK. Antiviral T-cell therapy. Immunol Rev. 2014;258(1):12–29. doi: 10.1111/imr.12138.
  38. Krebs K, Bottinger N, Huang L-R, et al. T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology. 2013;145(2):456–65. doi: 10.1053/j.gastro.2013.04.047.
  39. Sautto GA, Wisskirchen K, Clementi N, et al. Chimeric antigen receptor (CAR)-engineered T cells redirected against hepatitis C virus (HCV) E2 glycoprotein. Gut. 2016;65(3):512–23. doi: 10.1136/gutjnl-2014-308316.
  40. Ljungman P, Cordonnier C, Einsele H, et al. Vaccination of hematopoietic cell transplant recipients. Bone Marrow Transplant. 2009;44(8):521–6. doi: 10.1038/bmt.2009.263.
  41. Galmes A, Gutierrez A, Sampol A, et al. Long-term hematological reconstitution and clinical evaluation of autologous peripheral blood stem cell transplantation after cryopreservation of cells with 5% and 10% dimethylsulfoxide at 80 degrees C in a mechanical freezer. Haematologica. 2007;92(7):986–9. doi: 10.3324/haematol.11060.
  42. Detry G, Calvet L, Straetmans N, et al. Impact of uncontrolled freezing and long-term storage of peripheral blood stem cells at -80°C on haematopoietic recovery after autologous transplantation. Report from two centres. Bone Marrow Transplant. 2014;49(6):780–5. doi: 10.1038/bmt.2014.53.
  43. Morris C, de Wreede L, Scholten M, et al. Should the standard dimethyl sulfoxide concentration be reduced? Results of a European Group for Blood and Marrow Transplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide. Transfusion. 2014;54(10):2514–22. doi: 10.1111/trf.12759.
  44. Shu Z, Heimfeld S, Gao D. Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant. 2014;49(4):469–76. doi: 10.1038/bmt.2013.152.
  45. Martino M, Morabito F, Messina G, et al. Fractionated infusions of cryopreserved stem cells may prevent DMSO-induced major cardiac complications in graft recipients. Haematologica. 1996;81(1):59–61.
  46. Hechler G, Weide R, Heymanns J, et al. Storage of noncryopreserved periphered blood stem cells for transplantation. Ann Hematol. 1996;72(5):303–6. doi: 10.1007/s002770050176.
  47. Ruiz-Arguelles GJ, Ruiz-Arguelles A, Perez-Romano B, et al. Non-cryopreserved peripheral blood stem cells autotransplants for hematological malignancies can be performed entirely on an outpatient basis. Am J Hematol. 1998;58(3):161–4. doi: 10.1002/(sici)1096-8652(199807)58:3<161::aid-ajh1>3.0.co;2-p.
  48. Gomez-Almaguer D. The simplification of the SCT procedures in developing countries has resulted in cost-lowering and availability to more patients. Int J Hematol. 2002;76(Suppl 1):380–2. doi: 10.1007/bf03165288.
  49. Lopez-Otero A, Ruiz-Delgado GJ, Ruiz-Arguelles GJ. A simplified method for stem cell autografting in multiple myeloma: a single institution experience. Bone Marrow Transplant. 2009;44(11):715–9. doi: 10.1038/bmt.2009.71.
  50. Schroeder T, Fenk R, Saure C, et al. The Mexican way: a feasible approach to avoid DMSO toxicity. Bone Marrow Transplant. 2011;46(3):469–71. doi: 10.1038/bmt.2010.140.
  51. Ruiz-Delgado GJ, Ruiz-Arguelles GJ. A Mexican way to cope with stem cell grafting. Hematol Amst Neth. 2012;17(Suppl 1):S195–7. doi: 10.1179/102453312X13336169157130.
  52. Wannesson L, Panzarella T, Mikhael J, Keating A. Feasibility and safety of autotransplants with noncryopreserved marrow or peripheral blood stem cells: a systematic review. Ann Oncol. 2007;18(4):623–32. doi: 10.1093/annonc/mdm069.
  53. Matsumoto N, Yoshizawa H, Kagamu H, et al. Successful liquid storage of peripheral blood stem cells at subzero non-freezing temperature. Bone Marrow Transplant. 2002;30(11):777–84. doi: 10.1038/sj.bmt.1703692.
  54. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31(1):107–33. doi: 10.1146/annurev.mi.31.100177.000543.
  55. Уголев А.М. Теория адекватного питания и трофология. СПб.: Наука, 1991. 272 с.[Ugolev AM. Teoriya adekvatnogo pitaniya i trofologiya. (The theory of adequate nutrition and throphology.) Saint Petersburg: Nauka Publ; 1991. 272 p. (In Russ)]
  56. Manzo VE, Bhatt AS. The human microbiome in hematopoiesis and hematologic disorders. Blood. 2015;126(3):311–8. doi: 10.1182/blood-2015-04-574392.
  57. Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6. doi: 10.1126/science.1240537.
  58. Daillere R, Vetizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity. 2016;45(4):931–43. doi: 10.1016/j.immuni.2016.09.009.
  59. Pflug N, Kluth S, Vehreschild JJ, et al. Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncoimmunology. 2016;5(6):e1150399. doi: 10.1080/2162402X.2016.1150399.
  60. Alexander JL, Wilson ID, Teare J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356–65. doi: 10.1038/nrgastro.2017.20.
  61. Niesvizky R, Jayabalan DS, Christos PJ, et al. BiRD (Biaxin [clarithromycin]/Revlimid [lenalidomide]/dexamethasone) combination therapy results in high complete- and overall-response rates in treatment-naive symptomatic multiple myeloma. Blood. 2008;111(3):1101–9. doi: 10.1182/blood-2007-05-090258.
  62. Mark TM, Boyer A, Rossi AC, et al. ClaPD (Clarithromycin, Pomalidomide, Dexamethasone) Therapy in Relapsed or Refractory Multiple Myeloma. ASH Annu Meeting Abstracts. 2012;120(21):77.
  63. Ishimatsu Y, Mukae H, Matsumoto K, et al. Two cases with pulmonary mucosa-associated lymphoid tissue lymphoma successfully treated with clarithromycin. Chest. 2010;138(3):730–3. doi: 10.1378/chest.09-2358.
  64. Ohe M, Hashino S. A case of follicular B-cell lymphoma treated using clarithromycin. Korean J Hematol. 2011;46(3):203–6. doi: 10.5045/kjh.2011.46.3.203.
  65. Ohe M, Hashino S, Hattori A. Successful treatment of diffuse large B-cell lymphoma with clarithromycin and prednisolone. Korean J Hematol. 2012;47(4):293–7. doi: 10.5045/kjh.2012.47.4.293.
  66. Ohe M, Hashino S. Successful treatment of angioimmunoblastic T-cell lymphoma with clarithromycin. Blood Res. 2016;51(2):139–42. doi: 10.5045/br.2016.51.2.139.
  67. Storb R, Gyurkocza B, Storer BE, et al. Allogeneic hematopoietic cell transplantation following minimal intensity conditioning: predicting acute graft-versus-host disease and graft-versus-tumor effects. Biol Blood Marrow Transplant. 2013;19(5):792–8. doi: 10.1016/j.bbmt.2013.02.006.
  68. Andermann TM, Rezvani A, Bhatt AS. Microbiota Manipulation with Prebiotics and Probiotics in Patients Undergoing Stem Cell Transplantation. Curr Hematol Malig Rep. 2016;11(1):19–28. doi: 10.1007/s11899-016-0302-9.
  69. Staffas A, da Silva MB, van den Brink MRM. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood. 2017;129(8):927–33. doi: 10.1182/blood-2016-09-691394.
  70. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15. doi: 10.1056/NEJMOA1205037.
  71. Leffler DA, Lamont JT. Clostridium difficile Infection. N Engl J Med. 2015;372(16):1539–48. doi: 10.1056/NEJMRA1403772.
  72. Kakihana K, Fujioka Y, Suda W, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood. 2016;128(16):2083–8. doi: 10.1182/blood-2016-05-717652.
  73. Atarashi K, Tanoue T, Oshima K, , et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6. doi: 10.1038/nature12331.
  74. Саржевский В.О. Оценка токсических эффектов высокодозной химиотерапии с трансплантацией периферических стволовых гемопоэтических клеток у больных лимфопролиферативными заболеваниями: Автореф. дис. … д-ра мед. наук: М., 2016. 52 с.[Sarzhevskii VO. Otsenka toksicheskikh effektov vysokodoznoi khimioterapii s transplantatsiei perifericheskikh stvolovykh gemopoeticheskikh kletok u bol’nykh limfoproliferativnymi zabolevaniyami. (Assessment Toxicity Effects of High-Dose Chemotherapy with Transplantation of Peripheral Hematopoietic Stem Cells in Patients with Lymphoproliferative Diseases.) [dissertation] Moscow; 2016. 52 p. (In Russ)]
  75. Lee SJ, Astigarraga CC, Eapen M, et al. Variation in Supportive Care Practices in Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant. 2008;14(11):1231–8. doi: 10.1016/j.bbmt.2008.08.008.
  76. Peters WP, Ross M, Vredenburgh JJ, et al. The use of intensive clinic support to permit outpatient autologous bone marrow transplantation for breast cancer. Semin Oncol. 1994;21(4 Suppl 7):25–31.
  77. Faucher C, Le Corroller Soriano AG, Esterni B, et al. Randomized study of early hospital discharge following autologous blood SCT: medical outcomes and hospital costs. Bone Marrow Transplant. 2012;47(4):549–55. doi: 10.1038/bmt.2011.126.
  78. Graff TM, Singavi AK, Schmidt W, et al. Safety of Outpatient Autologous Hematopoietic Cell Transplantation for Multiple Myeloma and Lymphoma. Bone Marrow Transplant. 2015;50(7):947–53. doi: 10.1038/bmt.2015.46.
  79. Solomon SR, Matthews RH, Barreras AM, et al. Outpatient myeloablative allo-SCT: a comprehensive approach yields decreased hospital utilization and low TRM. Bone Marrow Transplant. 2010;45(3):468–75. doi: 10.1038/bmt.2009.234.
  80. Bashey A, Zhang X, Brown S, et al. Myeloablative Allogeneic Hematopoietic Cell Transplantation Performed without Routine Inpatient Admission: A Single Center Experience of 462 Consecutive Patients. Blood. 2016;128(22):661.
  81. Baumann FT, Kraut L, Schule K, et al. A controlled randomized study examining the effects of exercise therapy on patients undergoing haematopoietic stem cell transplantation. Bone Marrow Transplant. 2010;45(2):355–62. doi: 10.1038/bmt.2009.163.
  82. Steinberg A, Asher A, Bailey C, Fu JB. The role of physical rehabilitation in stem cell transplantation patients. Supp Care Cancer. 2015;23(8):2447–60. doi: 10.1007/s00520-015-2744-3.
  83. Chiffelle R, Kenny K. Exercise for fatigue management in hematopoietic stem cell transplantation recipients. Clin J Oncol Nurs. 2013;17(3):241–4. doi: 10.1188/13.CJON.241-244.
  84. Chung HM, Lyckholm LJ, Smith TJ. Palliative care in BMT. Bone Marrow Transplant. 2009;43(4):265–73. doi: 10.1038/bmt.2008.436.
  85. Rioth MJ, Warner J, Savani BN, Jagasia M. Next-generation long-term transplant clinics: improving resource utilization and the quality of care through health information technology. Bone Marrow Transplant. 2016;51(1):34–40. doi: 10.1038/bmt.2015.210.
  86. Basch E, Reeve BB, Mitchell SA, et al. Development of the National Cancer Institute’s Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE). J Natl Cancer Inst. 2014;106(9):dju244. doi: 10.1093/jnci/dju244.
  87. SABCS 2016: IBM Watson for Oncology Platform Shows High Degree of Concordance with Physician Recommendations. The ASCO Post [Internet]. Available from: http://www.ascopost.com/News/44214. Accessed 31.07.2017.